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Supplementary Information 

Section S1. Derivation of Eq. 4 

Modifying the aperture to simulate defocus 

Consider the intensity distribution at the output fiber facet (after pixellation removal) due to a point 

source located a distance 𝑧 (ie. source depth) from the input fiber facet. This point spread function (PSF) 

depends on both the collection aperture of the fiber and the depth of the point source. A useful model for 

this PSF is a 2D Gaussian (30), with a width that scales with object depth and collection aperture 

 

𝑃𝑆𝐹(𝑟, 𝑧, tan 𝜃) =
1

𝑧2
exp[−4ln⁡(2)|𝑟|2 𝑧2 tan2 𝜃⁄ ]   (S1) 

 

Note that total energy contained within this PSF is independent of 𝑧, and increases with the square of the 

collection aperture. The factor of 4ln(2) in the exponential sets the full width at half maximum (FWHM) 

of the Gaussian to 𝑧 tan 𝜃. Note that in this approximation, the majority of the energy of the PSF is within 

the maximum collection angle aperture, as would be expected of a fiber with a finite numerical aperture.  

Now consider three imaging scenarios with PSFs, 𝐼0,𝐼1, and 𝐼2. Images 𝐼0 and 𝐼1 are acquired with identical 

fiber-to-sample distance⁡𝑧, but with different collection apertures: tan 𝜃0 and tan 𝜃1, respectively. Image 

𝐼2 is acquired with collection aperture tan 𝜃0, with the fiber physically moved along the z-axis by a 

distance 𝛥𝑧 

 

𝐼0 = 𝑃𝑆𝐹(𝑟, 𝑧, tan 𝜃0) =
1

𝑧2
exp[−4ln⁡(2)|𝑟|2 𝑧2 tan2 𝜃0⁄ ]   (S2) 

𝐼1 = 𝑃𝑆𝐹(𝑟, 𝑧, tan 𝜃1) =
1

𝑧2
exp[−4ln⁡(2)|𝑟|2 𝑧2 tan2 𝜃1⁄ ]   (S3) 

𝐼2 = 𝑃𝑆𝐹(𝑟, 𝑧 + 𝛥𝑧, tan 𝜃0) =
1

(𝑧+𝛥𝑧)2
exp[−4ln⁡(2)|𝑟|2 (𝑧 + 𝛥𝑧)2 tan2 𝜃0⁄ ] (S4) 

 

Our goal is to derive an equation that relates 𝐼1 and 𝐼2. In order to do this, we need to choose a 𝛥𝑧 value 

such that the width of the PSF is equal for 𝐼1 and 𝐼2. This is accomplished by setting 𝛥𝑧 = 𝑧 (
tan𝜃1

tan𝜃0
− 1). 

With this identification, we can write 

 

𝛼𝐼1 ⁡=
1

(𝑧+𝛥𝑧)2
exp[−4ln⁡(2)|𝑟|2 (𝑧 + 𝛥𝑧)2 tan2 𝜃0⁄ ] = 𝐼2  (S5) 

 

with 𝛼 = (
tan𝜃0

tan𝜃1
)
2

. Note that 𝛼 is also the ratio of the total energy collected in each case: 

𝛼 = ∫ 𝐼0𝑑𝑟 ∫ 𝐼1𝑑𝑟⁄ . Using Eq. S5, the discrete axial derivative of intensity at the fiber facet can be 

expressed in two ways 



 

 

𝜕𝑃𝑆𝐹

𝜕𝑧
≈

𝐼0−𝐼2

𝛥𝑧
=

𝐼0−𝛼𝐼1

𝑧(
tan𝜃1
tan𝜃0

−1)
     (S6) 

 

Conveniently, the second expression involves two images, 𝐼0 and 𝐼1, which we can obtain from a single 

fiber bundle image without physically moving the fiber. 

 

Effective light field moments 

Suppose that our image 𝐼 is now the result of 𝑛 point sources each at a different depth 𝑧𝑗    

 

𝐼(𝑟, 𝑧, tan 𝜃) = ∑ 𝐵𝑗𝑃𝑆𝐹(𝑟𝑗 , 𝑧𝑗 , tan 𝜃)
𝑛
𝑗=1 = ∑ 𝐵𝑗𝑃𝑆𝐹𝑗

𝑛
𝑗=1    (S7) 

 

For the two aperture settings of interest 𝜃0 and 𝜃1 

 

𝐼0 = 𝐼(𝑟, 𝑧, tan 𝜃0) = ∑ 𝐵𝑗𝑃𝑆𝐹(𝑟𝑗 , 𝑧𝑗 , tan 𝜃0)
𝑛
𝑗=1 = ∑ 𝐵𝑗𝑃𝑆𝐹0𝑗

𝑛
𝑗=1   (S8) 

𝐼1 = 𝐼(𝑟, 𝑧, tan 𝜃1) = ∑ 𝐵𝑗𝑃𝑆𝐹(𝑟𝑗 , 𝑧𝑗 , tan 𝜃1)
𝑛
𝑗=1 = ∑ 𝐵𝑗𝑃𝑆𝐹1𝑗

𝑛
𝑗=1   (S9) 

 

Where 𝐵𝑗  is the brightness of point source 𝑗. We can relate the intensity resultant from each point source 

to the axial intensity derivative using Eq. S6 

 

 ∑ 𝐵𝑗𝑃𝑆𝐹0𝑗 − 𝛼𝐵𝑗𝑃𝑆𝐹1𝑗
𝑛
𝑗=1 ≈⁡(

tan 𝜃1

tan 𝜃0
− 1)∑ 𝑧𝑗𝐵𝑗

𝜕𝑃𝑆𝐹𝑗

𝜕𝑧

𝑛
𝑗=1     (S10) 

 

From the continuity equation underpinning LMI (Eq. 1 main text), we can also relate the axial intensity 

derivatives 
𝜕𝑃𝑆𝐹𝑗

𝜕𝑧
 to the light field moments 𝑀⃗⃗⃗𝑗

21 

 

𝜕𝑃𝑆𝐹𝑗

𝜕𝑧
= −∇⊥ ⋅ 𝑃𝑆𝐹𝑗 𝑀⃗⃗⃗𝑗       (S11) 

 

Where ∇⊥= [
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
]. Combining the preceding two equations yields 

 

∑ 𝐵𝑗𝑃𝑆𝐹0𝑗 − 𝛼𝐵𝑗𝑃𝑆𝐹1𝑗
𝑛
𝑗=1 ≈⁡− (

tan𝜃1

tan𝜃0
− 1)∑ 𝑧𝑗∇⊥ ⋅ 𝐵𝑗𝑃𝑆𝐹𝑗 𝑀⃗⃗⃗𝑗

𝑛
𝑗=1 = −(

tan𝜃1

tan𝜃0
− 1)∇⊥ ⋅ 𝐼𝑀⃗⃗⃗𝑒     (S12) 



 

 

→ 𝐼0 − 𝛼𝐼1 = −(
tan𝜃1

tan𝜃0
− 1)∇⊥ ⋅ 𝐼𝑀⃗⃗⃗𝑒     (S13) 

 

where the effective light field moment 𝑀⃗⃗⃗𝑒 is an intensity-weighted average of the light field moments 𝑀⃗⃗⃗𝑗 , 

scaled by the depth of each point source 

 

𝑀⃗⃗⃗𝑒 ⁡= ∑ 𝑧𝑗𝐵𝑗𝑃𝑆𝐹𝑗 𝑀⃗⃗⃗𝑗
𝑛
𝑗=1 𝐼⁄      (S14) 

 

The effective light field moments 𝑀⃗⃗⃗𝑒 can therefore be calculated with two images of the same scene with 

the same focus position, but different aperture settings (𝐼0 and 𝐼1). We will call this approach “aperture-

LMI” (aLMI). Note that if the point sources are all located at the same depth, the effective light field 

moment vector is simply the intensity-weighted average of the light field moment vector arising from 

each point source. For images containing point sources at different depths, their contributions to 𝑀⃗⃗⃗𝑒⁡are 

amplified by the z-position (depth) of each point source.   

Note that 𝐼 in Eqs. S13-14 must be evaluated at a particular aperture setting. In practice, we use 

𝐼 = (𝐼0 + 𝛼𝐼1)/2. This choice makes the finite difference in Eq. S6 resemble a central finite difference, as 

opposed to a forward or backward finite difference. 

 

Light field from light field moments 

The consequence of using 𝑀⃗⃗⃗𝑒 to calculate a light field instead of⁡𝑀⃗⃗⃗ can be illustrated by considering the 

light field 𝐿𝑗  of a point source 𝑃𝑆𝐹𝑗  located at a depth of 𝑧𝑗 , and centered at the origin. With traditional 

LMI, we construct a light field using a Gaussian approximation for the angular portion (parameterized by 

the 𝑢𝑣 coordinates) of the light field 

 

𝐿𝑗(𝑥, 𝑦, 𝑢, 𝑣) = 𝑃𝑆𝐹𝑗 exp [−2 (𝑢 − 𝑀𝑗𝑥)
2
𝜎2⁄ − 2 (𝑣 − 𝑀𝑗𝑦)

2
𝜎2⁄ ]  (S15) 

where 𝑀⃗⃗⃗𝑗 = [𝑀𝑗𝑥 , 𝑀𝑗𝑦]. Instead, with aLMI, we construct something slightly different  

 

𝐿𝑗(𝑥, 𝑦, 𝑢, 𝑣) = 𝑃𝑆𝐹𝑗 exp [− 2(𝑢 − 𝑧𝑗𝑀𝑗𝑥)
2
𝜎2⁄ − 2 (𝑣 − 𝑧𝑗𝑀𝑗𝑦)

2
𝜎2⁄ ]      (S16) 

 

Section S2. Derivation of Eq. 5 

Parallax from the light field  

The light field moment vector due to a point source can be written down using simple trigonometry (See 

Fig. 1A in the main text)  

𝑀⃗⃗⃗𝑗 = [𝑀𝑗𝑥 , 𝑀𝑗𝑦] = [
𝑥

𝑧𝑗
,
𝑦

𝑧𝑗
]     (S17) 



 

 

Substituting our 2D Gaussian PSF (Eq. S2) into Eq. S15 gives  

 

𝐿𝑗(𝑥, 𝑦, 𝑢, 𝑣) =
1

𝑧𝑗
2 exp[−4ln⁡(2)(𝑥

2 + 𝑦2) 𝑧𝑗
2 tan2 𝜃0⁄ ] exp [−2((𝑢 −

𝑥

𝑧𝑗
)
2

+ (𝑣 −
𝑦

𝑧𝑗
)
2

) /𝜎2]   

 (S18) 

 

Thus, 𝐿𝑗  is the product of two Gaussians, offset in 𝑥𝑦 space. The product of these two Gaussians is itself a 

Gaussian, with a centroid (mean) 𝐶𝑗 that depends on the chosen viewpoint [𝑢0, 𝑣0] 

 

𝐶𝑗 =
𝑧𝑗 tan

2 𝜃0

tan2 𝜃0+⁡2ln(2)𝜎
2
[𝑢0, 𝑣0]     (S19) 

→ 𝐶𝑗 ∝ 𝑧𝑗[𝑢0, 𝑣0]      (S20) 

 

This relationship describes the manifestation of parallax: the lateral position of an object shifts linearly 

with both the object depth and viewpoint. 

On the other hand, the light field constructed with aLMI is (substituting Eq. S2 into Eq. S16) 

 

𝐿𝑗(𝑥, 𝑦, 𝑢, 𝑣) =
1

𝑧𝑗
2 exp[−4ln⁡(2)(𝑥

2 + 𝑦2) 𝑧𝑗
2 tan2 𝜃0⁄ ] exp[−2((𝑢 − 𝑥)2 + (𝑣 − 𝑦)2)/𝜎2]        (S21) 

 

In this case, the centroid of the point source image is 

 

⁡𝐶𝑗 =
𝑧𝑗
2 tan2 𝜃0

𝑧𝑗
2 tan2 𝜃0+⁡2ln⁡(2)𝜎

2
[𝑢0, 𝑣0]     (S22) 

 

Note that the centroid shift goes to 0 as 𝑧𝑗 → 0 (as is the case for traditional LMI). This is because of the 

unphysical behavior of the purely geometric optics Gaussian PSF (𝑃𝑆𝐹𝑗), whose width vanishes as 𝑧𝑗 → 0. 

In reality, the wave nature of light and discrete sampling of the fiber cores cause the PSF width to 

approach a finite value as the object nears the fiber facet. To account for these effects, we modify the 

Gaussian PSF to include the fitting parameter 𝜎0 

 

𝑃𝑆𝐹𝑗 = exp [−4ln⁡(2)|𝑟𝑗|
2
(𝑧𝑗

2 tan2 𝜃 + 𝜎0
2)⁄ ]

tan2 𝜃0

𝑧𝑗
2 tan2 𝜃0+𝜎0

2   (S23) 

 

Which in turn yields a parallax-induced centroid-shift 



 

 

𝐶𝑗 =
𝑧𝑗
2 tan2 𝜃0+𝜎0

2

𝑧𝑗
2 tan2 𝜃0+𝜎0

2+2ln⁡(2)𝜎2
[𝑢0, 𝑣0]    (S24) 

 

This equation describes how the apparent lateral shift of an object scales with viewpoint (𝑢0, 𝑣0) and 

object depth 𝑧𝑗 . In Eq. 5 of the main text we have rewritten the above equation in terms of a depth 

constant ℎ ≝ 𝜎/ tan 𝜃0 

   

𝐶𝑗 =
𝑧𝑗
2 tan2 𝜃0+𝜎0

2

𝑧𝑗
2 tan2 𝜃0+𝜎0

2+2 ln(2)ℎ2 tan2 𝜃0
[𝑢0, 𝑣0]   (S25) 

 

Evidently, we have at our disposal a tunable parameter in ℎ2, which we can tune to modify the shape of 

the centroid-shift curve 𝐶𝑗 . If ℎ2 ≪ ⁡𝑧𝑗
2, then 𝐶𝑗 ≈ [𝑢0, 𝑣0], which is independent of depth and therefore 

precludes the appearance of parallax. If ℎ2 ≫ ⁡𝑧𝑗
2, then the centroid-shift behavior approaches a parabolic 

behaviour with object depth. In this instance, parallax will be observed. If ℎ2 is too large, however, the 

centroid-shift becomes increasingly small and cannot be visualized conveniently.   

Section S3. Resilience to bending 

Figures S3 and S4 demonstrate that a moderate fiber bundle bending displacement of ~25mm over a 

120mm section of fiber has a negligible effect on our technique. This makes our light field imaging 

technique at least 2 orders of magnitude more robust than wavefront shaping techniques multimode 

fibers, where imaging quality degrades significantly after only a few hundred 𝜇𝑚 of fiber bending 

displacement (16). We use depths maps for analysis as they inherently rely on parallax from all 

viewpoints in 𝑢𝑣-space. Therefore, any effect of fiber bending on our light field imaging technique will be 

apparent in the resulting depth maps. 

In figs. S3A-C, we describe the fiber imaging geometry used to explore fiber-bending effects. A ~120mm 

section of a 1m long Fujikura FIGH-10-350S fiber is fixed to an optical table using tape. The remaining 

free arc (fig. S3B) is either left stationary or is manually bent by ~25mm repeatedly during a 10s 

acquisition (10 frames per second, 99ms integration time), as shown in fig. S3C. A flat sample of 

fluorescent beads is placed on the distal end at either 𝑧 = 11⁡𝜇𝑚 or 𝑧 = 26⁡𝜇𝑚 from the fiber facet. Depth 

maps are created using Adelson’s least-squares method (29), with a window size of 9x9 pixels. Intensity 

and depth map images at 𝑧 = 11⁡𝜇𝑚 are shown for reference in figs. S3D-E. Time traces of the mean 

depth map value within the field-of-view are shown in fig. S3F. At 𝑧 = 11⁡𝜇𝑚, the standard deviation of 

the mean depth value time trace is slightly lower when actively bending the fiber compared to when left 

stationary (0.89⁡𝜇𝑚⁡and⁡1.04⁡𝜇𝑚, respectively). The opposite is true at 𝑧 = 26⁡𝜇𝑚, where we measure 

standard deviations of 2.56⁡𝜇𝑚⁡and⁡2.22⁡𝜇𝑚, for actively bent and stationary fibers, respectively. Actively 

bending the fiber appears to have no systematic statistical effect on the temporal variation of mean depth 

map value.  

While depth mapping appears to be unaffected by fiber bending, isolated core-to-core coupling can be 

observed in the raw camera images. In fig. S4, we follow the effects of an instance of large core-to-core 

coupling on depth mapping, when the sample is placed at 𝑧 = 11⁡𝜇𝑚 from the fiber facet. At 3.5s (fig. 

S4A), the fiber is in its bent state (fig. S3C), whereas at t=4.2s (fig. S4B), the fiber is stationary (fig. S3B). 

Visual inspection shows that the depth maps at these two timepoints are nearly indistinguishable, with 

only very minor differences apparent upon magnification of a region of interest (ROI) in field-of-view 

(figs. S4A-B top insets). The raw core images indicate that core-to-core coupling is occurring in this ROI. 



 

 

In particular the intensity of cores 1 (red) and 2 (blue) are strongly anti-correlated (Pearson correlation 

coefficient -0.80) as can be seen in their time traces (fig. S4C). These are the only two cores within this 

ROI that demonstrate significant intensity variation (>10%) during movie acquisition. Despite this 

behaviour, the standard deviation of the depth map at the location of core 1 is 0.73⁡𝜇𝑚, which is less than 

the standard deviation of the mean depth map value over the entire field-of-view, regardless of whether 

the fiber is actively bent (0.89⁡𝜇𝑚), or stationary (1.04⁡𝜇𝑚). We conclude that even instances of strong 

local core-to-core coupling are not resolvable above the noise floor in the depth map for typical 

acquisition parameters. 

Section S4. Sampling considerations 

This section is intended to provide a discussion of trade-offs related to sampling at the fiber bundle facets 

and the image sensor plane. 

Distal fiber facet: Potential users of this technique will find that they are effectively limited to the fiber 

bundles used in this work (Fujikura) due to their market dominance in this core size regime. As such, 

there is freedom to choose between “S” and “N” series fibers, which have average fiber radii of ~1um and 

~1.45um (ref. 16). We use the S series fibers due to their superior spatial sampling density. The N series 

fibers will support ~2x more modes, which in theory will increase the information content in the angular 

domain, though taking advantage of this extra information may require more sophisticated modal 

unmixing techniques. However, this extra information in the angular domain comes at the expense 

reduced information in the spatial domain. We note that this trade-off is ever-present in light field 

imaging, regardless of the imaging architecture.  

Proximal fiber facet: Correct sampling at the proximal facet is crucial for high quality results. As with any 

fiber related technique, it is advisable to match the NA of the microscope objective to the NA of the fiber, 

in this case~0.4. 0.4NA microscope objectives are commonplace in either 10x or 20x magnifications. 

Using an objective with a lower NA is still possible, however, the collection efficiency of higher order 

modes by the microscope objective will suffer, leading to a decrease in SNR for large angles in the light 

field. Another view of the same effect is that a low-NA objective cannot spatially resolve the high-order 

modes due to the diffraction limit. The fundamental cause of this effect is the same: the photons carrying 

high spatial frequency information from high-order modes are not collected by a low NA microscope 

objective.   

Maintaining a large field of view is also ideal, so using a low magnification (10x), 0.4NA microscope 

objective is preferable. 

Image sensor: The image sensor must sample the image projected by the microscope objective (through 

the tube lens) with a high enough sampling density to resolve all of the modes present. Thus, one must 

satisfy the Nyquist criterion at the diffraction limit of the objective, resulting in a maximum pixel size of ≈ 

Mλ/4NA=3.125μm for 500nm light, NA=0.4 and magnification M=10x. This is the maximum pixel size 

permissible in order to avoid compromising the angular information of the light field. This matches our 

camera’s pixel size of 3.1μm. Smaller pixel sizes or larger magnifications are possible , at the expense of 

SNR due to increased camera read noise for the same fiber area. Note that this sampling requirement 

necessitates more pixels per core than a standard microendoscope system - roughly 2x more in each 

dimension. As a result, read noise is increased by approximately a factor of 2, and therefore 4x more 

photons are needed to maintain the same SNR as in a system where the cores are just resolvable. This 

increased photon budget is a direct consequence of the enhanced information content delivered by the 

resolved core modes.     

 



 

 

Section S5. Light field imaging considerations: Axial direction  

There is no fundamental limit to the axial range of our fiber imaging technique aside from SNR and 

dynamic range considerations. If the entire PSF is contained within the fiber’s FOV, our approach will be 

able to return a light field. The more stringent restriction is that of the SNR. If the sample is 3D with some 

parts close to the fiber facet and some parts far away, then parts close to the sample will appear to be 

much brighter. At some depth, the photons emitted by a distant object are so spread out over the fiber 

and camera that the signal will fall below the noise floor of the camera. One can remedy this by increasing 

the excitation intensity or integration time but close objects will eventually saturate the camera. 

Saturated pixels violate our imaging model, leading to erroneous results. Therefore, in practical 

circumstances, the axial FOV is restricted by the dynamic range of the camera and/or by the height and 

brightness variation of the sample itself. There is no hard and fast rule here, but our experience indicates 

that good results can be obtained between within 75μm of the fiber facet with 8-bit machine vision 

cameras. More expensive sCMOS cameras will certainly do better as they have larger electrons wells and 

lower read noise. 

The ability to truly resolve overlapping objects in 3D is achieved using lightfield focal stack 

deconvolution. The resolution of this approach is dependent on the SNR and the inherent contrast and 

geometry of the sample, therefore no simple relationship can be given to quantify the axial resolution for 

all samples and cameras (see ref. 28 for further discussion). However, the optimal sampling approaches 

outlined above are essential for achieving maximum axial resolution. To reiterate, major factors that will 

decrease axial resolution are: a) microscope objective NA less than 0.4; b) oversampling at the image 

sensor. Lower wavelengths are also ideal from the perspective of information throughput as the more 

modes can propagate in cores at 500nm than 600nm (for example). However, this effect is minimal and in 

practice emission wavelength is dictated by clinical restrictions (FDA approved contrast agents) and the 

typical autofluorescence window in the green. 

  



 

 

Supplementary Figures and Videos 

 

 

Fig. S1. Optical setup for fluorescence imaging through optical fiber bundles. Components are labeled as follows: LED=Light 
emitting diode (Thorlabs, center wavelength 455nm); EX=Band pass excitation filter (Semrock, center wavelength 465nm, 40nm 
FWHM); CL1=Condenser lens 1 (Thorlabs, f=30mm); M=Mirror; CL2=Condenser lens 2 (Thorlabs, f=100mm); DM=Long pass 
dichroic mirror (Semrock, Cut-on wavelength 509nm); OBJ=Microscope objective (Olympus, 10x, 0.4NA); xyz=3-axis micrometer 
stages (Thorlabs) ; S=Sample; EM=Fluorescence emission filters (532nm long pass (Semrock) + 600nm short pass (Edmund 
Optics); TL=Tube lens (Thorlabs, f=200mm); CAM = Camera (Point Grey Grasshopper 3). Blue and green arrows represent 
excitation and fluorescence emission light, respectively.  

 

 

 

Fig. S2. Correlation between ray angle and intracore light distribution. Scatterplot of first radial moment 𝑟̅ (defined as 
𝑟̅ = ∑|𝑟|𝐼𝑐 ∑ 𝐼𝑐⁄ , integral is taken over the image of the core 𝐼𝑐 ), against the tangent of the input ray angle 

(tan 𝜃𝑟 = √tan2 𝜃𝑥 + tan2 𝜃𝑦). Each datapoint corresponds to the 𝑟̅ value of an individual core from the image in Fig. 1d. The y-

axis is displayed in units of core radii to account for the variable sizes of the cores. The blue line is a linear fit to the data, with 
𝑟̅ = 0.36 × tan 𝜃𝑟 + 0.51. The first radial moment 𝑟̅ and the tangent of the ray angle tan 𝜃𝑟  are strongly correlated, with a Pearson 
correlation coefficient of 0.86 (p-value 3.2 × 10−18). The linear fit is not intended to convey a specific physical relationship 
between 𝑟̅ and tan 𝜃𝑟 , but rather to demonstrate that the two quantities are strongly correlated.  

  



 

 

 

Fig. S3. Depth mapping is robust to dynamic fiber bending. (A) Overview of a 1m long fiber bundle (Fujikura FIGH-10-350S) 
in the optical system described in fig. S1. The white dashed arc indicates the location of the fiber bundle on the optical table for 
clarity. Scale bar 25mm. (B) Zoom-in of a portion of the looped fiber bundle when stationary. The fiber bundle is affixed to the 
optical table at either end of an arc by black tape. Scale bar 25mm. (C) As in (B), but with the fiber actively bent by a finger. The 
approximate displacement of the middle of the arc when bent is 25mm. This bending is repeated manually at a rate of 
approximately 0.75Hz over 10s for depth map bending analysis. (D) Intensity image of a field of view of fluorescent beads 
observed through the fiber bundle, after light field processing (central viewpoint). In this image, this flat sample is placed at 
11𝜇𝑚 from the fiber facet. Scale bar 𝟏𝟎𝟎𝝁𝒎. (E) Mean depth map of the field of view in (D). (F) Mean depth map value for 
sample-to-fiber facet distance of 𝑧 = 11⁡𝜇𝑚 for stationary and actively bent fiber bundles. (as pictured in (B) and (C)). The 
stationary dataset is taken of the same field of view immediately after the active bending dataset for both sample-to-fiber 
distances. When the fiber is actively bent (stationary), the time-averaged mean depth map value is 11.43⁡𝜇𝑚⁡(10.92⁡𝜇𝑚), with 
standard deviation 0.89⁡𝜇𝑚⁡(1.04⁡𝜇𝑚). There is no discernible difference in the magnitude of time trace noise for actively bent vs. 
stationary fiber bundles. The inherent depth mapping noise is larger than variation introduced by this bending. 

  



 

 

 

 

 

Fig. S4. Effect of dynamic core-to-core coupling during bending. (A) Top: Depth map of a field of view of fluorescent beads at 
t=3.5s during active bending (fig. S3). Fiber-to-sample distance 𝑧 = 11𝜇𝑚. Scale bar 100⁡𝜇𝑚. Inset: magnified view of boxed 
region. Scale bar 10⁡𝜇𝑚. Bottom: Raw core images corresponding to the depth map inset region, and magnified view of the cores. 
Core 1 is circled in red, core 2 is circled in blue. (B) Top: Depth map of a field of view of fluorescent beads at t=4.2s during active 
bending (fig. S3). Inset: magnified view of white boxed region. Note the small difference between the insets of (A) and (B). 
Bottom: Raw core images corresponding to the depth map inset region, and magnified view of the cores. Core colours as in (A). 
Note the small difference between red and blue circled cores at t=3.5s (a) vs. t=4.2s (B). (C) Time trace of the intensity at the 
center of cores 1 and 2 (red and blue, respectively in (A) and (B)). Y-axis is plotted in terms of the % change in intensity from the 
mean intensity for a given core. Vertical lines indicate t=3.5, 4.2s. The intensity time trace of core 1 and cores 2 are strongly anti-
correlated (Pearson correlation coefficient -0.80, p = 8 × 10−23). (D) Time trace of core 1 overlaid with the depth map value at 
the location of core 1 (white x) in the depth maps in (A) and (B). The intensity time trace of core 1 (red) is partially correlated to 
this local depth map value (Pearson correlation coefficient 0.41, p = 3 × 10−5). The standard deviation of the depth map value at 
this location is 0.73⁡𝜇𝑚, with mean 7.70⁡𝜇𝑚. This standard deviation is slightly less than the standard deviation of the mean 
depth map time trace for the entire field-of-view (0.89⁡𝜇𝑚, see fig. S3), indicating that even large core coupling effects are 
negligible compared to the inherent depth mapping noise of our technique.  

  



 

 

 

 

Fig. S5. Centroid shift of a fluorescent bead viewed from different 𝒖 positions (viewpoints). Centroid shift vs. 𝒖 data and 
linear fits are shown for depths of 𝑧 =⁡10 (blue), 30 (red), 50 (green) and 70𝜇𝑚 (purple). Datapoints correspond to 
experimentally measured centroid shifts, and solid lines are linear fits to the data. The R-squared values of the fits are 0.9998, 
1.000, 0.9987, and 0.9968 for bead depths of 𝑧 =⁡10, 30, 50, 70𝜇𝑚, respectively, indicating that data match the expected 
theoretical linear trend in Eq. 5 of the text. 

 

 

 

Fig. S6. SE in depth measurements from Fig. 3B. The raw standard deviations (given by the error bars in Fig. 3A) are 
converted to an uncertainty in depth (δ𝑧) by finding the depths corresponding to the centroid shifts at the true depth ± one 
standard deviation (of the centroid shift measurements). The average differences between these depths and the true depth is 
reported as the standard error in depth δ𝑧. Blue, red and black datapoints are for light field reconstructions with ℎ =
75, 100, and⁡150𝜇𝑚, respectively. Inset: Zoomed-in plot of the depth uncertainty up to 71𝜇𝑚. Uncertainty in measured depth is 
less than 5𝜇𝑚 for depths less than 71𝜇𝑚, and better than 2.1𝜇𝑚 for depths between 6𝜇𝑚 and 51𝜇𝑚. The larger uncertainty at a 
depth of 1𝜇𝑚 occurs because the PSF is almost entirely confined to a single pixel (core), yielding poor localization precision. 

 

 



 

 

 

Fig. S7. Effect of light field focal stack deconvolution on axial localization. Mean axial intensity profile for refocused light 
fields (dotted curves) and deconvolved + refocused (solid curves) light fields for ground truth sample positions of 𝑧 =
11,31, and⁡51⁡𝜇𝑚. Mean axial intensity profiles are computed by summing over the horizontal (x) direction in Figs. 4e,g,i for 
refocused light fields and in Figs. 4k,m,o for deconvolved + refocused light fields. Light field focal stack deconvolution + 
refocusing significantly sharpens the axial intensity profile compared to refocusing only. The deconvolved light field focal stack 
axial width (~20−30⁡𝜇𝑚) is comparable to the axial slice thickness of fixed-focus commercial fluorescence microendoscope 
systems (ref. 7).  



 

 

 

Fig. S8. Confocal versus light field depth maps. Comparison between ground truth confocal (A) and light field (B) depth maps 
for 3D fluorescent bead sample in Figs. 5b. The sample consists of 6 evenly spaced layers of beads in PDMS, however there are no 
beads from layer #3 in this field of view. Representative subregions containing beads from a single layer are circled and labelled 
with the layer depth. For (B) the reported depth is the average depth within a 3x3 pixel subregion centred on the circled region. 
The colour legend in (A) is the depth colour code for the confocal image. The depths in (A) are considered to be the ground truth; 
the depths in (B) are measured depths using the light field. For both datasets, we take the first layer as the reference layer and 
calculate subsequent depth with respect to this first layer. Both scale bars are 200𝜇𝑚. (C) Comparison between confocal image 
stack and deconvolved light field focal stack, along xy (left) and yz (right) axes, for the area highlighted by the red boxes in (A) and 

(B). XY axis images are color-coded for depth: layer 1 is colored yellow and layer 5 is colored blue. The yz axis images are cross-
sections along the dotted white line in xy axis images. Scale bar 25um. (D) Cross-sectional schematic of the multi-layered PDMS 
sample with fluorescent beads. Each layer has a thickness of ≈ 11𝜇𝑚. All layers are incased in PDMS, except for the top layer 
(yellow beads) which are open to air. 

 



 

 

 

Fig. S9. Stereo pair for the 3D samples from Fig. 5. (A) 3D bead sample. (B) Fluorescent paper sample. These stereo pairs can 
be viewed on a mobile phone using virtual reality goggles such as Google Cardboard or similar.  

 

Fig. S10. Confocal stack of proflavine-stained mouse brain. Selected slices of the confocal stack used to calculate the dashed 

blue curve in Fig. 6C of the main text. Here, images are gamma-corrected for visibility. Scalebar 100𝜇𝑚. 



 

 

Supplementary Movies 

For movies S1-S8, the point of fixation is moved slightly into the sample so that objects closest to the fiber 

facet appear to move in the opposite direction from those farthest from the fiber facet. This is achieved by 

applying a translation to each frame in the animation, proportional to the magnitude and direction of the 

viewpoint shift of that frame. Moving the point of fixation in this way enhances natural depth perception 

but does not affect the relative disparity between objects in the scene. 

Movie S1. Viewpoint shifting animation of multilayered bead sample (Fig. 5, A and B) along the  

x axis.  

Movie S2. Viewpoint shifting animation of multilayered bead sample (Fig. 5, A and B) along the  

y axis.  

Movie S3. Viewpoint shifting animation of multilayered bead sample (Fig. 5, A and B) along a circular 

trajectory.  

Movie S4. Viewpoint shifting animation of fluorescent paper sample (Fig. 5, C and D) along the  

x axis.  

Movie S5. Viewpoint shifting animation of fluorescent paper sample (Fig. 5, C and D) along the  

y axis. 

Movie S6. Viewpoint shifting animation of fluorescent paper sample (Fig. 5, C and D) along a circular 

trajectory.  

Movie S7. Viewpoint shifting animation of proflavine-stained mouse brain sample (Fig. 6, A to C) along the 

x axis. 

Movie S8. Viewpoint shifting animation of skin autofluorescence (Fig. 6, D to F) along the x axis.  
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