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A Review of Eff-Tox Tradeoff Based Phase I-II Design

The phase I-II design introduced by Thall and Cook (2004), and refined by Thall, et al. (2014), may
be summarized as follows. All necessary computations for implementation are carried out by the EffTox
program, available on the MDAnderson biostatistics software website. Indexing efficacy by E and toxicity
by T , the bivariate binary outcome, (YE , YT ), takes on four possible values, (a, b), with a, b ∈ {0, 1}. For each
marginal probability, m = E, T, and standardized dose xj , denoting the model parameter vector by θθθET , it
is assumed that πm(xj , θθθET ) = P (Ym = 1 | xj , θθθET ) = logit−1{ηm(xj , θθθET )}, with linear terms

ηT (xj , θθθET ) = τT,1 + τT,2xj and ηE(xj , θθθET ) = τE,1 + τE,2xj + τE,3x
2
j . (1)

with τT,2 > 0. These linear terms are formulated to ensure that πT (xj , θθθET ) increases with dose, but to
allow πE(xj , θθθET ) to possibly be non-monotone in dose. An association parameter ψ is used to define the
joint distribution of YE and YT from their marginals using a copula, as follows. Suppressing the arguments
xj , θθθET for brevity, the four joint probabilities πa,b for a, b ∈ {0, 1} are given by

πa,b = πaE(1− πE)1−aπbT (1− πT )1−b + (−1)a+bπE(1− πE)πT (1− πT )

(
eψ − 1

eψ + 1

)
. (2)

Thus θθθET = (τT,1, τT,2, τE,1, τE,2, τE,3, ψ). For priors, it is assumed that these six parameters are independent
with ψ ∼ N(0, 1), τE,2 ∼ N(0, .20), and τm,r ∼ N(µ̃m,r, σ̃

2
m,r) for m = E, T and r = 1, 2. This requires

specifying numerical values of the four hyper-means and four hyper-standard deviations. This is done using
elicited means of πm(xj , θθθET ), for j = 1, · · · , J, m = E, T, with a specified prior effective sample size used
to calibrate the priors of the eight remaining hyper-parameters. Details are provided by Thall et al.(2014).

During the trial, a dose xj is acceptable in phase I-II if

P{πE(xj , θET ) > πE |data} > pE and P{πT (xj , θET ) < π̄T |data} > pT ,

where πE , π̄T , pE , pT are design parameters fixed in advance.
Adaptive dose-finding decisions are based on a real-valued desirability (trade-off) function φ(πE , πT ) for

πππ = (πE , πT ) ∈ [0, 1]2. Key properties of φ(πE , πT ) are that (1) it must increase in πE , (2) it must decrease in
πT , and (3) it should quantify the desirability of each πππ ∈ [0, 1]2 as the risk-benefit trade-off between allowing
a higher πT and achieving a higher πE . To compute φ, one may first elicit three equally desirable outcome
probability pairs πππ∗

1 = (π∗
1,E , 0), πππ∗

2 = (1, π∗
2,T ) and πππ∗

3 = (π∗
3,E , π

∗
3,T ), with π∗

1,E < π∗
3,E and π∗

3,T < π∗
2,T .

Since πππ = (1,0) is the optimal probability pair, the function φ then may be defined by the equation

φ(πE , πT ) = 1− ‖(πE , πT )− (1, 0)‖p = 1−
{(

πE − 1

π∗
E,1 − 1

)p
+

(
πT − 0

π∗
T,2 − 0

)p}1/p

(3)

where p > 0. The equation φ(π∗
E,3, π

∗
T,3) = 0 is solved for p using the bisection method, to give φ(πππ) = 0 on

the target contour C0. This in turn defines a family of trade-off contours in [0, 1]2 such that

Cz = {(πE , πT ) : φ(πE , πT ) = z},
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so for real z all pairs on Cz have the same desirability z. To use this structure for dose selection, denote the
marginal hyperparameter vectors by ζE and ζT with µm,j,n(ζm) = E{πm(xj , θθθm) | Dn, ζm} for m = E, T and
xj . The acceptable dose with largest estimated desirability φ(µE,j,n(ζE), µT,j,n(ζT )) is chosen. As explained
by Thall, et al. (2014), the three probability pairs used to define C0 must be chosen to give a family of target
contours sufficiently steep so that there is a reasonable payoff for increasing dose, and thus obtaining larger
µE,k,n(θ̃θθE) as a trade-off for larger µT,k,n(θ̃θθT ). Web Figure 1 illustrates the trade-off contour used in the
illustrative trial in the simulation study.

Figure 1: Contour used for determining values of φ(·) in the simulation study.

B Computational Algorithm for Simulating Posterior Samples

We perform a Markov chain Monte Carlo (MCMC) sampling scheme for θθθET and θθθS separately, where the
MCMC for θθθS also includes reversible jump moves. The sampling for θθθET = (τT,1, τT,2, τE,1, τE,2, τE,3, ψ)
involves Metropolis Hastings moves for each entry with adaptive proposal variances for the first half of the
posterior sampling to improve convergence rates. Since we impose the assumption that toxicity probability
increases with dose, log(τ∗T,2) is proposed from a normal distribution with mean log(τT,2) and variance στT,2

,
denoted by N(log(τT,2), στT,2

), which is adjusted every 250 iterations by either doubling or halving its value
during the first half of the MCMC to maintain acceptance rates between .2 and .8. Let YSYSYS denote all
(Y 0, δ) data. Denoting likelihood by L, the proposed value τ∗T,2 is accepted over the previous value τT,2 with
probability

min

{
τ∗T,2L(θθθ∗ET |YEYEYE ,YTYTYT ,xxx)N(τ∗T,2|0, .2)

τT,2L(θθθET |YEYEYE ,YTYTYT ,xxx)N(τT,2|0, .2)
, 1

}
.

Let θET,j denote an entry of θθθET for j = 2, .., 6. We propose a value θ∗ET,j by sampling from aN(θET,j , σθ2ET,j
),

which is adjusted every 250 iterations by either doubling or halving its value during the first half of the MCMC
to maintain acceptance rates between .2 and .8. The proposed value which is adjusted every 250 iterations by
either doubling or halving its value during the first half of the MCMC to maintain acceptance rates between
.2 and .8. The proposed value θ∗ET,j and vector θθθ∗ET is accepted over the previous value with probability

min

{
L(θθθ∗ET |YEYEYE ,YTYTYT ,xxx)N(θ∗ET,j |µ̃j , σ̃2

j )

L(θθθET |YEYEYE ,YTYTYT ,xxx)N(θET,j |µ̃j , σ̃2
j )
, 1

}
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where µ̃j is derived from clinician elicited prior expected efficacy and toxicity probabilities at each dose and
σ̃2
j is calibrated so that the design has a desired prior effective sample size (ESS), with a suggested value of

ESS near .9. For θET,6 = ψ, µ̃6 = 0 and σ̃2
j = 1. The other prior means and variances can be determined

using the EffTox software available on the MD Anderson Biostatistics website. We found that drawing 2000
samples and discarding the first half of the samples, with proposal variances adjusted throughout, showed
good convergence as evidenced by parameter traceplots.

In our MCMC sampling scheme for θθθS , we perform five different moves consisting of four Metropolis
Hastings moves (one of which is Metropolis-Hastings-Green move) and one Gibbs sampler. We perform 2000
iterations and burn in the first half, adaptively adjusting proposal variances throughout the first half of the
MCMC. Let βββS denote the vector (β1, β2, βE , βT ). One generic iteration of the sampler proceeds as follows:

1. Sample βββS |YYY S ,YYY E ,YYY T ,xxx, ttt,λλλ via a Metropolis-Hastings step. For entry j, we propose β∗
S,j from a

N(βS,j , σ
2
βS,j

), where σ2
βS,j

is halved or doubled every 250 iterations during the burn-in period to
ensure that these parameters exhibit good convergence. We accept β∗

S,j over the previous value with
probability equal to the likelihood ratio times min{N(β∗

S,j |0, 100)/N(βS,j |0, 100), 1}. As before, here
the variance is set to 100 to ensure that the prior does not control the decision making.

2. Sample σ−2|µ,λλλ, ttt via a Gibbs step. Sample directly from:

σ−2
λ |λλλ ∼ Gamma

.5J + 1, 0.5

J+1∑
j=2

(λj − λj−1)2


3. Sample λλλ|σλ,YYY S ,YYY E ,YYY T , ttt via a Metropolis-Hastings step. We sample the lth entry of λλλ for l =

1, ..., J + 1 by drawing λ∗l ∼ U [λl − .25, λl + .25] and accept it with probability

L(λλλ∗|YYY S ,YYY E ,YYY T ,βββS ,xxx, ttt)
L+1∏
l=2

N(λ∗l |λl−1, σ
2
λ)

L(λλλ|YYY S ,YYY E ,YYY T ,xxx,βββS , ttt)
L+1∏
l=2

N(λl|λl−1, σ2
λ)

for l = 2, .., L+ 1 when L > 0. We accept moves on λ1 with probability

min

{
L(λλλ∗|YYY S ,YYY E ,YYY T ,xxx,βββS , ttt)N(λ∗1|0, 25)

L(λλλ|YYY S ,YYY E ,YYY T ,xxx,βββS , ttt)N(λ1|0, 25)
, 1

}
if L = 0,

else

min

{
L(λλλ∗|YYY S ,YYY E ,YYY T ,xxx,βββS , ttt)N(λ∗1|0, 25)N(λ2|λ∗1, σ2

λ)

L(λλλ|YYY S ,YYY E ,YYY T ,xxx,βββS , ttt)N(λ1|0, 25)N(λ2|λ1, σ2
λ)
, 1

}
The prior variance on λ1 is set to 25 to be non-informative for the hazard exp(λ1) on the interval [0, t1)
while also imposing realistic hazard values a priori.

4. Sample the locations of ttt|λλλ,YYY s,YYY E ,YYY T , L via a Metropolis-Hastings move that shuffles the locations
of t1, ..., tL. We sample t∗l ∼ U [tl−1, tl+1] for l = 1, ..., L. We accept ttt∗ with probability

min

{
L(ttt∗|YYY S ,YYY E ,YYY T ,xxx,βββS ,λλλ)(t∗l − tl−1)(tl+1 − t∗l )
L(ttt|YYY S ,YYY E ,YYY T ,xxx,βββS ,λλλ)(tl − tl−1)(tl+1 − tl)

, 1

}
5. Sample ttt,λλλ, L|YYY S ,YYY E ,YYY T ,xxx via a Metropolis-Hastings-Green move by proposing adding a split point

and deleting a split point.

• Birth Move: Draw a random split point via a t∗ ∼ U [0, tmax] and set ttt∗ = Sort(t∗, ttt). Changing
the dimension of ttt also adjusts the entries of λλλ in the following manner. Draw U ∼ U [0, 1] and

assume that t∗ ∈ (tl−1, tl]. Then we define the multiplicative perturbation as
exp(λ∗

l+1)

exp(λ∗
l )

= 1−U
U as

in Green (1996). Then the new log heights of the hazard function are determined as
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λ∗l = λl −
tl − t∗
tl − tl−1

log

(
1− U
U

)

λ∗l+1 = λl +
t∗ − tl−1

tl − tl−1
log

(
1− U
U

)
The proposed vectors (ttt∗,λλλ∗) is accepted with probability

N(λ∗l+2|λ∗l+1, σ
2
λ)N(λ∗l+1|λ∗l , σ2

λ)N(λ∗l |λ∗l−1, σ
2
λ)Poi(L+ 1|ζS)(2L+ 3)(2L+ 2)(t∗ − tj−1)(tj − t∗)

N(λl+1|λl, σ2
λ)N(λl|λl−1, σ2

λ)Poi(L|ζS)t2maxU(1− U)(tl − tl−1)

times the likelihood ratio for ttt∗,λλλ∗ if it is < 1, otherwise with probability = 1, from their previous
values.

• Death Move: Similar to a Birth move, a death move adjusts both ttt and λλλ. We propose deleting
one entry t1, .., tL with equal probabilities. Assume we delete tl to obtain ttt∗ then we delete λl+1

from λλλ∗ and set

λ∗l =
λl(tl − tl−1) + λl+1(tl+1 − tl)

tl+1 − tl−1

We draw U ∼ U [0, 1] as the random perturbation to maintain balance between the two parameter
spaces and we accept the proposed vectors (ttt∗,λλλ∗) with probability

N(λl+1|λl−1, σ
2
λ)Poi(L− 1|ζS)(tl+1 − tl−1)t2maxU(1− U)

N(λl+1|λl, σ2
λ)N(λl|λl−1, σ2

λ)Poi(L|ζS)(2L+ 1)2J(tl+1 − tl)(tl − tl−1)

times the likelihood ratio, if it is < 1, otherwise with probability = 1,

C List of Phase I-II/III Design and Model Parameters

The design and model parameters needed to conduct a phase I-II/III trial are as follows:

• NET : The number of patients to enroll in the phase I-II portion of the trial.

• NF : The number of patients assign optimized doses in phase I-II based on φ(·) prior to adaptive
randomization.

• φ(·, ·) : The desireability function for a given phase I-II data set. This is determined from the clinician
elicited efficacy toxicity tradeoff contours. The clinician should specify a desired efficacy probability for
a patient with a toxicity, a desired toxicity probability for a patient with efficacy and a pair of equally
desireable efficacy and toxicity probabilities. φ(·, ·) is determined based on a contour determined from
the usual Eff-Tox methodology.

• ζET : The hypermeans and standard deviations used in the Eff-Tox model (3), (4).

• πE , π̄T , pE , pT : The acceptable limits for toxicity and response probabilities in the context of continuing
the trial. This also is used in the adaptive randomization scheme, only randomizing to acceptable doses.

• NS : The maximum number of patients to enroll in the phase III portion of the trial.

• n∗3, ..., n∗
K : The respective numbers of patient events required to make interim looks for superiority

and futility decisions at stages k = 3, ...,K. These are determined based on desired information
proportions. This portion of the trial should be planned considering the possibility that patient data
will be lost after switching doses. We do not want the information proportion to be small so that a
superiority/inferiority decision is not made based on a small number of patients treated at A(x̂optS ).

4



• Superiority and Inferiority bounds ūk, uk: The trial planner needs to determine the superiority and
futility boundaries required to determine the outcome of the trial. This is done using East software.

• ∆ : Desired improvement in mean survival to conclude A(xj) is better than C. We test the hypotheses
H0 : µC = µA(xj) versus H1 : |µC − µA(xj)| > ∆.

• n∗2: The number of patient events in the phase 3 portion of the trial to decide what dose A(x̂optS ) should
be used for the randomized comparisons to C. Clinicians should be willing to risk the possibility of
losing patient data in the trial if a dose is discontinued where patients in phase 3 have been enrolled.
This will likely reduce power from that had the correct dose of A been chosen initially.

• ζS : The prior mean number of split points in the baseline hazard. We suggest a default of ζS ∈
{3, 4, 5, 6, 7}, since we have a lot of patient data to inform the posterior if no split points are needed.

Some of these values are set by the clinician to meet safety requirements and practical constriants, while
others can be determined empirically via simulation. Functions in the package Phase123 simulate repetitions
of the Eff-Tox trial with adaptive randomization, re-optimize doses in phase III, and record final decisions
about superiority and futility for both the conventional phase I-II → III and phase I-II/III designs. The
statistician should simulate trials under a reasonable set of different dose-efficacy and dose-toxicity probability
configurations, relationships between (x, YE , TT ) and hS , as well as survival time distributions.

D Guide for Using the Phase123 Package

Here we describe in detail how to use several functions from the package Phase123. Explicit documentation
of the arguments of each function and what they do can be found on CRAN. There are five important
functions for the typical user, with some built upon functions that can be used for simulation studies on a
cluster unit. These are:

1. SimPhase123: This function simulates replications of a phase I-II/III trial, given desired maximum
sample sizes, assumed accrual rates, true efficacy and toxicity probabilities at each dose, time to
event distribution family and true linear term coefficients related to dose, efficacy status and toxicity
status. It returns a list containing two matrices containing results for both the phase I-II/III trial
and the conventional phase I-II → phase III paradigm. The first element of the list contains columns
corresponding to x̂optS , the decision made in the trial (-1 indicates C is declared superior, 1 indicates
A is declared superior and 0 indicates the trial ended in futility), the sample size of the phase III
portion of the trial and the trial duration. The second element of the list contains the results for the
conventional paradigm, with the first column instead containing x̂optET .

2. ReturnOCS: This function takes output from the SimPhase123 function, true mean survival times for
each dose, the true control mean, desired improvement in survival and the hypothesis (1 for alternative,
0 for null). If operating characteristics under the alternative hypothesis are desired, γ1, γ2, and W are
returned. Otherwise, α is returned. Average sample sizes and trial durations also are returned.

3. Reoptimize: This function returns the newly reoptimized dose x̂optS as a function of the survival data
(Y 0, δ), YE , YT and xj for all patients treated with agent A during both phase I-II and phase III.

4. AssignEffTox: This function assigns a dose to the next cohort of patients in the phase I-II portion of
the trial when patients are not adaptively randomized.

5. RandomEffTox: This function adaptively randomizes the next cohort of patients to a dose during phase
I-II, with probabilities proportional to the desirability scores of the doses.

D.1 Simulating a Phase123 Trial and Evaluating Operating Characteristics

The following code comes from the example listed on CRAN for SimPhase123, with the number of simulation
replications adjusted to nSims = 100 for illustration. The function ReturnOCS is used to process and return
the results. This example is scenario 3 in the manuscript for the exponential case under the alternative
hypothesis.
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#'#This is scenario 3 for the exponential case

#'##the additional phase 123 parameters and simulation parameters

#' ###########PHASE12 Parameters ##################

DoseStart=1

#'##True Efficacy and Toxicity Probabilities

PT = c(.05,.08,.1,.15,.2)

PE=c(.2,.25,.35,.4,.55)

#'##Dose Levels considered

Dose = c(1,2,3,3.5,5)

#'#Max Sample Size

NET=60

#'##Number of patients before randomization

NF=15

#'##Cohort size

cohort=3

##Hypermeans for Eff-Tox

Hypermeans = c(.022,3.45,0,-4.23,3.1,0)

Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)

Hypervars=Hypervars^2

#'##Contour Vector

Contour = c(.35, .75,.7,.4)

#'##Acceptability Criteria

PiLim = c(.3,.4)

ProbLim=c(.1,.1)

#'##Phase 12 accrual rate

Accrue12=5

#'###How long is the time window in phase 12?

Time12=1

#'##########PHASE3 Parameters####################

Nmax=500

#'##Number of patient events for interim looks

NLook = c(200,300,400)

#'##Superiority Boundaries

Sup = c(2.96, 2.53,1.99)

#'##Futility Boundaries (0 means no futility decision)

Fut = c(0,1.001,0)

#'##Average accrual rate for phase III

Accrue = 10

#'###########Phase123 Parameters###########

###Number of patient events to re-optimize doses

NLookSwitch=50

#' ##Time in between phase 12 and phase 3

Twait=1

#########Simulation Parameters######

#'###Family of Distributions

Family="Exponential"

#'###Shape parameter, Not needed for Exponential

alpha=1

#'###True Beta vector (beta_1,exp(beta_E),-exp(beta_T),beta_2,beta_0)

betaA = c(.1, .3, -1,-1,3.6)

#'##True beta vector for (exp(beta_E),-exp(beta_T),beta_C) of the control treatment

betaC=c(.3,-1,log(24/1.035111))

#'##True efficacy and toxicity probability for control group

ProbC = c(.3,.1)

6



#'##Number of simulations to run

nSims=100

##Run Simulations

Results=SimPhase123(DoseStart,Dose,PE,PT,Hypermeans,Hypervars,Contour,

PiLim,ProbLim,NET,NF,Accrue12,Time12,cohort,betaA,ProbC,betaC,

Family,alpha,Nmax,Accrue,Twait,NLookSwitch,NLook,Sup,Fut,nSims)

##Now Process Results for the Operating Characteristics using ReturnOCS

##True Mean Survival Time Vector for A##

Means=c(6.9, 24.7, 38, 33.1, 6.3)

##True Control Mean Survival Time ##

CMu=24

##Desired Improvement in Survival##

Delta=12

##Null=0, or Alternative = 1 Hypothesis ##

Hyp=1

ReturnOCS(Results,Means,CMu,Delta,Hyp)

During the simulations, for each replication, the dose x̂optS that is chosen is printed, saying for example:
Assign Patients receiving A to dose 3. The last lines of code that use the ReturnOCS function output the op-
erating characteristics. The mean survival vector can be determined using the function ReturnMeansAgent
which has additional documentation on CRAN. Output from the ReturnOCS function is shown below:

> ReturnOCS(Results,Means,CMu,Delta,Hyp)

TRIAL TIMES

Conventional Design[1] 3.252829

Phase123 Design[1] 4.821758

Number of Patients

Conventional Design[1] 372.03

Phase123 Design[1] 457.2

Percentage of times best dose selected

Conventional Design[1] 0.1

Phase123 Design[1] 0.85

Generalized Power

Conventional Design [1] 0.09

Phase123 Design [1] 0.74

bar{W} values: Average true improvement in survival

Conventional Design [1] 1.729

Phase123 Design [1] 10.997

We see the results for the simulations for both the conventional paradigm and the phase I-II/III design
displaying, in order, the average trial times (in years), the average number of patients treated, the proportion
of times that the optimal dose was selected, the generalized power, and the value of W . When the option
Hyp=0 is chosen, the value of W is not printed and the type I error is listed instead of the generalized power.
When two or more doses have truly superior mean survival, both γ1 and γ2 are listed. When determining
what value n∗2 should be used, we want to have both a high probability of selecting the best dose and a high
generalized power. Values of n∗2 that are too large will result in low generalized power, but values of n∗2 that
are too small will result in poor optimal dose selection probability.

D.2 Re-optimizing dose during phase III

After n∗2 patient deaths have occured, we look at all the data for patients treated with agent A in both
phase I-II and phase III to determine if we should switch doses. Below is code to implement this step, where
x̂optET = 5 and the truly optimal dose in terms of mean survival is xoptS = 3. The data provided was printed
out running the SimPhase123 function with scenario 3 described above.
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##This is data from a simulated phase123 trial where dose 5 has been brought to phase III

#but dose 3 is optimal in terms of mean survival

##Doses Given

Dose = c(1,2,3,3.5,5)

Dose=(Dose-mean(Dose))/sd(Dose)

#Survival and Follow up times

Y=c(2.49, 3.44, 0.90, 0.49, 0.13, 6.18, 4.39, 1.56, 4.16, 1.01,

9.76, 2.87,4.01,4.58,2.17,9.33,9.15,9.06,0.34,1.01,

6.57, 8.04, 7.97, 0.17,3.74, 7.83, 2.10, 5.28,6.87, 2.62,

6.53, 6.41, 1.10, 6.01, 5.94, 5.57, 5.27, 5.18,0.47,4.46,

0.16, 3.59, 2.31, 3.16, 3.98, 3.89, 3.75, 2.99, 3.41,3.33,

3.26, 3.22,3.12, 2.99, 0.40, 1.28, 1.52, 2.58, 2.52,2.42,

2.37, 1.38,1.11,1.06,1.02,0.98,0.93, 0.41, 0.17, 0.14,

5.96, 6.49, 5.42, 10.78, 23.37, 23.37, 23.07, 6.26, 23.07, 22.49,

21.35, 5.83, 22.02, 6.58, 22.02, 7.02, 4.13, 21.01, 0.05, 3.72,

20.72, 10.49, 20.36, 4.50, 11.40, 20.29, 20.29, 2.47, 2.59, 19.90,

8.39, 18.70, 3.38, 18.14, 9.70, 14.45, 10.23, 5.72, 3.73, 0.46,

11.19, 1.84, 15.16, 0.47, 4.13, 1.01, 3.02, 11.04, 15.04, 5.82,

9.30, 14.03, 14.03, 14.03, 5.27, 4.98, 13.52, 0.50, 1.99, 5.64)

##Censoring Indicators

I=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,

0,0,1,1,0,1,1,0,1,0,0,1,0,0,0,0,0,1,0,1,1,

1,1,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,

0,0,0,0,1,0,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,

0,1,1,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,1,1,

0,1,1,1 )

#Dose numbers given

Doses=c(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5,1,1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,2,2,2,3,3,3,4,4,4,3,

3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,4,4,4,3,3 ,3,5,5,5)

##Efficacy Status Vector

YE=c(0,1,0,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0,0,0,0,1,

1,0,1,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,

1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,1,0,0,

1,0,0,1,1,0,0,1,0,1,1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0,0,0,1,0)

##Toxicity Vector

YT=c(1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0, 0,0,1,0)

##Hypermeans for Eff-Tox

Hypermeans = c(.022,3.45,0,-4.23,3.1,0)

Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)

Hypervars=Hypervars^2

###Number of iterations

B=2000

Reoptimize(Y,I,YE,YT, Doses, Dose, Hypermeans, Hypervars,B)

This function returns:

Assign Patients receiving A to dose [1] 3
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The design accurately switched the dose of A for comparison to the control C from dose 5 to dose 3,
that is x̂optS = xoptS = 3. After this switch, all patients randomized to A should be assigned dose 3 and
those patients previously treated with dose level 5 should be excluded from the subsequent group sequential
superiority and inferiority decisions.

D.3 Assigning patients during phase I-II

During phase I-II, the acting statistician assigns new cohorts of patients to a dose either deterministically
or randomized with probabilities proportional to the acceptable desireability scores of the doses. This is
also a function of the doses tried so far during phase I-II, since we do not allow escalating more than one
untried dose at a time. While the number of patients enrolled in the trial is less than NF we use the function
AssignEffTox to assign new cohorts to a dose, which is also used to determine x̂optET after phase I-II (stage
1). After NF patients are enrolled, we begin to use the function RandomEffTox to adaptively randomize
patient cohorts to different doses. A very key point is that the dose numbers outputted by these functions
are indexed starting at 0. This means that dose level 0 is really dose level 1 and dose 2 is really dose level
3, etc. This is because these two functions are also used in the c++ code for simulating phase I-II/III trials
and c++ indexes vectors starting at 0. Below is the example code listed on CRAN along with output for
both the AssignEffTox and RandomEffTox functions.

##Doses of patients currently enrolled

Doses= c(1,1,1,2,2,2,1,1,1,3,3,3,1,1,1,2,2,2)

##Efficacy indicators

YE = c(0,0,1,1,1,0,0,0,0,1,1,1,0,0,1,1,1,0)

##Toxicity Indicators

YT=c(0,0,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0)

##Vector of Numerical Doses

Dose = c(1,2,3,3.5,5)

Dose=(Dose-mean(Dose))/sd(Dose)

##Five doses, but only 3 tried so we have

DosesTried=c(1,1,1,0,0)

## Contour Vector. (Prob Eff | No Tox, Prob Tox | Eff, PE pair, PT pair)

Contour = c(.35, .75,.7,.4)

##Hypermeans

Hypermeans = c(.022,3.45,0,-4.23,3.1,0)

Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)

Hypervars=Hypervars^2

##Acceptability Criteria

PiLim = c(.3,.4)

ProbLim=c(.1,.1)

##Number of iterations for MCMC

B=2000

AssignEffTox(YE,YT, Doses, Dose, DosesTried, Hypermeans, Hypervars, Contour, PiLim, ProbLim, B )

[1] 1

RandomEffTox(YE,YT, Doses, Dose, DosesTried, Hypermeans, Hypervars, Contour, PiLim, ProbLim, B )

[1] 0

##Note 0 means dose 1, 1 means dose 2, etc

According to the output of these two functions, if we were deterministically assigning doses (i.e. n < NF )
we would assign the next cohort to dose 2. If we randomly assigned this cohort with probabilities proportional
to the desireability scores, we would assign the next cohort to dose level 1.
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E Web Tables

Table 1: Simulation results for the phase I-II Eff-Tox portion of phase I-II/III, for NET = 90. True outcome
probabilities (πE , πT )TR, desirabilities φ{(πE , πT )TR}, and operating characteristics for the usual (non-
adaptively randomized) EffTox phase I-II trial design.

Scenario Value 1 2 3 4 5
1 (πE , πT )TR (.20, .10) (.40,.15) (.60, .25) (.65, .35) (.70, .50)

φ{(πE , πT )TR} -.37 -.13 .05 -.01 -.13
% Selected .01 .14 .31 .31 .24
# Treated 7.9 19.3 26.6 23.8 12.3

2 (πE , πT )TR (.2, .05) (.25, .08) (.35, .10) (.40, .15) (.55, .20)
φ{(πE , πT )TR} -.30 -.26 -.14 -.13 .04

% Selected .02 .04 .07 .11 .76
# Treated 7.8 11.1 18.4 21.6 31.1

3 (πE , πT )TR (.40, .10) (.50, .15) (.60, .35) (.65, .60) (.70, .70)
φ{(πE , πT )TR} -.06 .03 -.09 -.35 -.40

% Selected .34 .50 .12 .03 .01
# Treated 22.9 33.1 21.4 10.7 1.9
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Table 2: Simulation results for phase I-II sample size NET = 90 in the phase I-II/III design. Values are
repeated for NET = 60 from Table 5 in the manuscript to facilitate comparison. α is the probability of a
type I error or concluding an inferior version of A is better than C under the null. γ1 is the probability of the
generalized power event at A(xoptS ) (selecting the best dose xoptS and declaring it to be superior to C) under
the alternative hypothesis. γ2 is the generalized power (probability of selecting any truly superior dose of A
and declaring it superior to C). W is the mean improvement in patient survival time under the alternative
hypothesis, Dur is the mean trial duration, and N is the mean sample size.

Alternative Hypothesis Null Hypothesis

Scenario NET W γ1 γ2 Dur N α Dur N
1 60 10.15 .83 .83 4.73 479.2 – .03 4.32 492.0

90 10.81 .88 .88 4.71 478.2 – .03 4.34 493.7

2 60 8.97 .75 .75 4.45 470.7 – .02 4.18 489.9
90 10.02 .84 .84 4.46 469.0 – .02 4.16 489.4

3 60 11.51 .79 .79 4.56 476.9 – .04 4.22 485.6
90 12.66 .88 .88 4.56 476.8 – < .01 3.57 422.2

4 60 5.86 .42 .42 4.30 472.0 – .05 3.81 442.0
90 6.51 .46 .46 4.16 464.4 – .05 3.93 456.9

5 60 16.71 .68 .88 4.24 464.4 – .03 4.37 493.9
90 18.25 .81 .94 4.15 462.1 – .03 4.37 493.8

6 60 12.67 .59 .75 4.53 472.7 – .04 4.39 494.0
90 13.99 .67 .90 4.46 471.1 – .04 4.41 494.8
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Table 3: Robustness Study Parameters: True means under null and alternative hypotheses for each distribu-
tion considered. µHm

µHmµHm = (µA(x1), µA(x2), µA(x3), µA(x4), µA(x5)) are the mean survival times for doses x1, ..., x5
of A under hypothesis m = 0, 1.

Scenario Distribution µH0
µH0µH0

µH1
µH1µH1

1 Exponential (8.3, 17.9, 24, 22.5, 9.8) (1, 14.5, 36.2, 28.3, 1)
Lognormal, σ = .5 (9.3, 17.9, 24.0, 22.5, 9.8) (1.1, 16.4, 41.0, 32.1, 1.2)
Lognormal, σ = 1 (8.4, 17.9, 24.0, 22.5, 9.8) (1, 14.7, 36.7, 28.9, 1.0)
Weibull Increasing (8.3, 17.9, 24.0, 22.5, 9.8) (1.1, 15.4, 38.5, 30.2, 1.1)
Weibull Decreasing (8.3, 17.9, 24.0, 22.5, 9.8) (1.0, 14.7, 36.8, 28.9, 1.0)
Gamma (8.3, 17.9, 24.0, 22.5, 9.8) (1.0, 14.7, 36.8, 28.9, 1.2)

2 Exponential (3.2, 10.1, 20.4, 24, 20.4) (3.0, 12.9, 31.8, 40, 36.6)
Lognormal, σ = .5 (3.2, 10.1, 20.4, 24.0, 20.4) (3.2, 13.7, 33.9, 42.6, 38.9)
Lognormal, σ = 1 (3.2, 10.1, 20.5, 24.0, 20.5) (3.1, 13.0, 32.0, 40.3, 36.8)
Weibull Increasing (3.2, 10.1, 20.4, 24.0, 20.5) (3.1, 13.0, 32.1, 40.4, 36.8)
Weibull Decreasing (3.2, 10.1, 20.4, 24.0, 20.4) (3.1, 13.0, 32.1, 40.4, 36.9)
Gamma (3.2, 10.1, 20.4, 24.0, 20.4) (3.1, 13.3, 32.8, 41.2, 37.7)

3 Exponential (14.0, 17.8, 21.9, 23, 24) (7.1, 10.3, 16.0, 19.5, 36)
Lognormal, σ = .5 (14.1, 17.8, 21.9, 23.0, 24.0) (8.0, 11.7, 18.1, 22.0, 40.8)
Lognormal, σ = 1 (14.1, 17.8, 21.9, 23.0, 24.0) (7.2, 10.6, 16.3, 19.9, 36.8)
Weibull Increasing (14.0, 17.8, 21.8, 22.9, 24.0) (7.2, 10.5, 16.2, 19.7, 36.5)
Weibull Decreasing (14.0, 17.8, 21.9, 23.0, 24.0) (7.2, 10.5, 16.2, 19.8, 36.6)
Gamma (14.0, 17.8, 21.9, 23.0, 24.0) (7.2, 10.5, 16.2, 19.8, 36.6)

4 Exponential (9.5, 18.5, 24, 22.5, 10.4) (6.9, 24.7, 38, 33.1, 6.3)
Lognormal, σ = .5 (9.5, 10.6, 24.0, 22.6, 10.4) (7.0, 25.2, 38.8, 33.8, 6.5)
Lognormal, σ = 1 (9.5, 18.6, 24.0, 22.6, 10.4) (7.0, 25.0, 38.6, 33.6, 6.4)
Weibull Increasing (9.5, 18.5, 24.0, 22.5, 10.4) (7.0, 25.0, 38.6, 33.7, 6.4)
Weibull Decreasing (9.5, 18.5, 24.0, 22.6, 10.4) (6.9, 24.9, 38.3, 33.4, 6.4)
Gamma (9.5, 18.5, 24.0, 22.7, 10.4) (6.9, 24.9, 38.3, 33.4, 6.4)

5 Exponential (9.3, 18.7, 24.0, 22.7, 10.4) (7.8, 28.8, 44, 38.6, 7.4)
Lognormal, σ = .5 (9.3, 18.7, 24.0, 22.7, 10.4) (7.8, 28.8, 44, 38.6, 7.4)
Lognormal, σ = 1 (9.3, 18.7, 24.0, 22.7, 10.5) (7.8, 28.9, 44.2, 38.8, 7.4)
Weibull Increasing (9.3, 18.7, 24.0, 22.7, 10.5) (8.0, 29.6, 45.2, 39.7, 7.6)
Weibull Decreasing (9.3, 18.7, 24.0, 22.8, 10.5) (7.9, 29.3, 44.8, 39.3, 7.5)
Gamma (9.3, 18.7, 24.0, 22.8, 10.5) (7.9, 29.3, 44.8, 39.3, 7.5)

6 Exponential (24,13.6, 8.9, 6.8,7.8) (38, 24.6, 18.4, 15.0, 21.1)
Lognormal, σ = .5 (24.0, 13.6, 8.9, 6.8, 7.8) (38.0, 24.5, 18.4, 15.0, 21.0)
Lognormal, σ = 1 (24.0, 13.6, 8.9, 6.8, 7.8) (38.9, 25.2, 18.8, 15.4, 21.6)
Weibull Increasing (24.0, 13.6, 8.9, 6.8, 7.9) (38.2, 24.7, 18.5, 15.1, 21.2)
Weibull Decreasing (24.0, 13.6, 8.9, 6.8, 7.9) (38.7, 25.0, 18.7, 15.3, 21.4)
Gamma (24.0, 13.6, 8.9, 6.8, 7.9) (38.7, 25.0, 18.7, 15.3, 21.4)
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