
GigaScience

SciPipe - A workflow library for agile development of complex and dynamic
bioinformatics pipelines

--Manuscript Draft--

Manuscript Number: GIGA-D-18-00390R1

Full Title: SciPipe - A workflow library for agile development of complex and dynamic
bioinformatics pipelines

Article Type: Technical Note

Funding Information: Swedish strategic research programme
eSSENCE, Swedish e-Science Research
Centre (SeRC), National Bioinformatics
Infrastructure Sweden (NBIS)

Dr. Ola Spjuth

Horizon 2020
(654241)

Dr. Ola Spjuth

Abstract: Background: The complex nature of biological data has driven the development of
specialized software tools. Scientific workflow management systems simplify the
assembly of such tools into pipelines, assist with job automation and aid reproducibility
of analyses. Many contemporary workflow tools are specialized or not designed for
highly complex workflows, such as with nested loops, dynamic scheduling and
parametrization which is common in e.g. machine learning.
Findings: SciPipe is a workflow programming library implemented in the programming
language Go, for managing complex and dynamic pipelines in bioinformatics,
cheminformatics and other fields. SciPipe helps in particular with workflow constructs
common in machine learning, such as extensive branching, parameter sweeps and
dynamic scheduling and parametrization of downstream tasks. SciPipe builds on Flow-
based programming principles to support agile development of workflows based on a
library of self-contained, reusable components. It supports running subsets of
workflows for improved iterative development, and provides a data-centric audit
logging feature that saves a full audit trace for every output file of a workflow, which
can be converted to other formats such as HTML, TeX and PDF on-demand. The utility
of SciPipe is demonstrated with a machine learning pipeline, a genomics, and a
transcriptomics pipeline.
Conclusions: SciPipe provides a solution for agile development of complex and
dynamic pipelines, especially in machine leaning, through a flexible programming API
suitable for scientists used to programming or scripting.d

Corresponding Author: Samuel Lampa, PhD

SWEDEN

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Samuel Lampa, PhD

First Author Secondary Information:

Order of Authors: Samuel Lampa, PhD

Martin Dahlö, M.Sc.

Jonathan Alvarsson, PhD

Ola Spjuth, PhD

Order of Authors Secondary Information:

Response to Reviewers: Dear Editor,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

We were pleased to read the many positive and constructive comments from all the
three reviewers; there were several useful suggestions which has improved the
manuscript. We have updated the manuscript accordingly and provide below point-by-
point responses to the reviewers’ comments. With these improvements, we hope You
will find it acceptable for publication in GigaScience.

Sincerely,

Samuel Lampa and Co-authors

--
Reviewer #1
--
Reviewer #1: The submitted paper presents a workflow engine for scientific computing,
with particular emphasis on applications in genomics, bioinformatics, and
transcriptomics. The authors do a nice job at emphasizing the usefulness of their
particular tool, highlighting limitations of prior art, demonstrating novel features in
Scipipe, and suggesting design principles which are useful for others in the space of
workflow engine development. The presented tool is written in the elegant and popular
Go Programming Language, and proved easy to use for even the Go-novice that is this
reviewer. The manuscript is very well written, and was easy to follow.

While I have attached notes and comments below, the only area I feel needs to be
addressed which has significant impact the quality and usefulness of this manuscript
and tool is that of interoperability. The authors discuss other standards or engines in
this area, and while they mention the plan for future integration with the Common
Workflow Language, they do not discuss the integration with or adoption of other
standards. As there are many workflow engines, and several dominant options in the
space of bioinformatics such as Galaxy, while Scipipe may be preferable in some ways
the cost for authors to switch is
non-zero. What is the motivation for scientists who have their workflows integrated in
one of these other systems to switch? What tools are there or will there be to aid in this
process? These are questions which readers and potential users may be thinking, and
I believe are important to address.
Regarding interoperability, there are also various standards and tools which exist in
other spaces covered here. For instance, there are tools which record or ensure
interoperability of provenance records, such as Reprozip for managing file I/O
provenance and constructing access graphs of executions, and W3C-PROV for
representing records as disambiguated entities. This reviewer also found the
representation of command-lines themselves was rather simple, without any type-
checking of parameters (which, while not performed directly in Bash by command-line
applications, can be of use to prevent connecting nodes which may be incompatible,
such as a string output being connected to an input expecting a number, let alone
bounds on reasonable values for it), whereas standards exist such as Boutiques that
address this for command-line utilities through the use of JSON tool descriptors and
utilities which aid in the validation of parameters. Similarly, a common workflow engine
in
neuroinformatics, Nipype, exists as a very similar tool to Scipipe but has been written in
Python with neuroscience applications in mind, though it is in principle also agnostic to
domain. In each of these cases, it would be valuable to consider adopting established
standards where possible - or import/export functionality where this isn't possible - and
justify the decisions made in Scipipe in their context. While Scipipe presents a novel
workflow management system, addressing the above points and interoperability
between other frameworks may put to rest any concerns in adopting Scipipe or
integrating it within their current practices.

--
Authors' response
--
First, thank you for the kind words!

In answer to the raised concerns, we do not see SciPipe as a silver bullet to replace
existing successful systems, but rather as a solution to those researchers and
developers facing particularly complex workflow challenges - increasingly common

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

because of the upsurge in machine learning and cross-validation - which might
motivate to trade some ease-of-use for the required flexibility to be able to model their
computations at all. We thus think the selection of primary target group for SciPipe in
itself will ensure the motivation for switching is there.

We do have plans for improved interoperability though, and want to do this primarily as
subcommands added to the scipipe helper tool, to avoid cluttering the core library with
non-essential functionality. The reason for this is that one core design goal of SciPipe
has been to retaining a simple implementation to keep it maintainable with minimal
efforts in the long run.

We are thankful for the additional pointers about standards and formats, and have
updated the manuscripts brief reviews of these tools, and our plans and views
regarding them.

--
Reviewer #1
--
Below are my notes on specific sections of the paper which questions or comments.
There is some overlap with the above paragraphs as I have tried to identify where I
believe some of these points could be well addressed.

Page 1, Line 51, column 2
 - Is the implication that Bash, Python, or Perl are more prone to becoming fragile than
Go? Is this the case? If so, why?

--
Authors' response
--
The comparison (which also follows in the next paragraph) is not made with Go per se,
but with workflow tools or libraries. So, the comparison stands between “plain scripts”
and workflow tools or libraries, which could sometimes be implemented in scripting
languages.

We have reworded the sentence slightly to clarify this intention, as well as removed the
paragraph split just after that sentence, to clarify that the explanation follows right after
it.

--
Reviewer #1
--
Page 2 & 3
 - The authors did a very nice and thorough review of many tools in the space of
workflow management tools. An alternative that wasn't mentioned here was Nipype, a
tool commonly used in neuroscience for workflow management, though in principle it is
domain agnostic. In particular, I notice that many of the features described as desired
here, including branching, provenance tracking, and enabling reproducible
computation, having both a command-line and in-language API, etc., are very similar to
those of Nipype. I would like the authors to do a review and comparison of these tools,
as well. Another tool or representation of potential interest could be the Common
Workflow Language, which I only found brief mention of later on.

--
Authors' response
--
Thanks for the suggestion of Nipype. Because of the specific focus on the
Neuroimaging community, we had not noticed the generality of Nipype before. Upon
reading the paper, we indeed see that it shares many similarities with SciPipe. We
have added it to the comparison of existing tools. Regarding CWL, we note that CWL is
not really a workflow implementation, but rather a language, with multiple
implementations. The language is what will be the limiting factor for what is easy to
express though, so we have included a brief mention about it also in the introduction.

--

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Reviewer #1
--
Page 3, Line 36, column 1
 - Broken citation

--
Authors' response
--
Fixed, thanks!

--
Reviewer #1
--
Page 3, Line 48, column 1
 - How does this provenance log compare to those obtained from Reprozip? The
authors may wish to do a comparison of provenance standards in the first section, as
well.

--
Authors' response
--
From our understanding, Reprozip is a complementary approach to SciPipe, which
goes much deeper and traces and hijacks system calls to create a completely self-
contained reproducible package, based on any tool, not just workflows. SciPipe
provenance reports do not take this comprehensive technical approach, but rather
gathers the semantics it does handle by each task invocation, and stores a trace of this
information for every output from the workflow.

We have updated the manuscript with a bit of comparison to other provenance
standards and tools, including W3C-PROV and Reprozip, both in the main text (W3C
PROV and Reprozip) and under Known limitations (W3C PROV, Boutiques).

--
Reviewer #1
--
Figure 1
 - What was the reason behind defining tasks in the way shown on lines 16 and 20?
There are some standards, such as Boutiques (boutiques.github.io) and CWL which
define task command-lines, including validating data typing, etc., that it seems could be
of some use here to make sure that commands are being run meaningfully. For
instance, these standards could perhaps enabling checking that all values in the DNA
string are A, G, C, or T.
 - I successfully re-executed this script after following the installation instructions found
on the documentation page.

--
Authors' response
--
We have been evaluating the tool syntax tooling in CWL prior to developing our too
(code here: https://github.com/NBISweden/workflow-tools-evaluation). Our choice to
not prioritize any functionality based on this or similar standards has been an
intentional decision because of the nontrivial amount of complexity that this type of
parsing tooling typically adds to a tool. For example, the current SciPipe
implementation is a completely self-contained Go library, without dependencies on
other libraries apart from Bash and a Unix-like operating system.

We think it could be interesting to consider for future development though, in particular
if it is possible to implement in the form of a subcommand in the stand-alone scipipe
helper tool, as that would still enable to keep the core library (the part that is shipped
with workflows) small and easy to maintain. We have updated the text to note this as
interesting for future development.

--
Reviewer #1

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

--
Page 6, Line 37-47, column 1
 - Are you defining this provenance data with respect to any accepted standard, such
as JSON-LD (the W3C-PROV compatible JSON format)? If not, how come, and what
are the consequences of this custom definition of metadata?

--
Authors' response
--
The data we are storing here are a very straight-forward mapping from the internal data
structures in SciPipe, to JSON. This is thus by definition the most compact and generic
representation of the provenance data possible based on the data that we have. Our
approach has then been to provide any other data formats (including HTML, TeX/PDF
and executable Bash scripts) via converters in the scipipe commandline helper tool.
We think this would be a very natural choice for how to implement conversion to W3C-
PROV serialized as JSON-LD as well. We have updated the manuscript with a mention
about this.

--
Reviewer #1
--
Remove commas:
 - Page 4, Line 48, column 2: after "used"
 - Page 6, Line 25, column 2: after "workflow system"
 - Page 7, Line 31, column 1: after "programming language"

--
Authors' response
--
Fixed, thanks!

--
Reviewer #2
--
Reviewer #2: Excellent work, building a workflow system implementing the data flow
paradigm for bioinformatics with a fast language (GO) as well. Some minor concerns I
have are the following:

- This is obviously targeted to bioinformatics developers, but assuming there is a
community that adopts it, would there be a way for someone who can do basic
command line to use
it ? I am assuming that is there is a community many workflows will be published and a
non developer could run it with a single command by just pointing to his / her datasets?

--
Authors' response
--
Thank you for kind words! Just as with Python scripts, Go code, and thus SciPipe
workflows, can be made into very easy to use command-line programs, that can be
used as easily as any other command-line program. Go additionally has the benefit
that workflows can be compiled to self-contained executable files, so that the user does
not even need to figure out how to execute a specific interpreter command, such as
with Python, R or Perl.

--
Reviewer #2
--
- What other dependencies does it need besides GO to be installed ?

--
Authors' response
--
SciPipe requires a Unix or Linux like operating system, and the Bash shell. This
information is available in the manuscript, under the section “Availability of supporting

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

source code and requirements”

--
Reviewer #2
--
- Can it do parallelism in data chunks similar to Nextflow ? Many bioinformatics files
(think for example reads) can be processed in an embarrassingly parallel way, for
example if they
are split and aligned to a reference genome.

--
Authors' response
--
SciPipe can indeed to parallel processing. SciPipe supports both so called
embarrassingly parallel tasks, by enabling scatter/gather types of workflows. There is
an example of this in the code repository:
https://github.com/scipipe/scipipe/blob/master/examples/scatter_gather/scattergather.g
o

SciPipe also supports pipeline parallelism, firstly by means of processing multiple
stages at once, as long as there are enough data to be travelling through the system
that the first stages has work to do even when they have passed on some data to
downstream stages. SciPipe additionally supports a features that as far as we know is
not included even in Nextflow: Unix pipe-based streaming, using named pipes, to
support pipeline parallelism across multiple stages even for single data items.
Documentation for this feature is available here: http://scipipe.org/howtos/streaming/

--
Reviewer #2
--
- Finally, what about Docker containers? For example Nextflow has build in the option
to pull containers "on the fly" with the tools preconfigured from repositories such as
Dockstore etc
which have hundreds of pre-made containers. This is especially useful in the case of
complex bioinformatics pipelines which have 10-15 different tools. Of course a
developer can build a single container with all the tools pre-configured and run SciPipe
from within this container, but if container support is available natively within the
SciPipe implementation, developers can simply point to available (public or internally)
containers with pre-configured tools, which will be started at runtime of the workflow in
order to provide the algorithms which the workflow feeds the data
for processing during each different step.

--
Authors' response
--
SciPipe already supports running Singularity containers natively, by calling them like
command-line programs. The path we have otherwise taken in regards to containers,
is is to provide integration with Kubernetes. This is ongoing experimental work,
available in a separate branch on GitHub.

--
Reviewer #2
--
Some corrections:
Line 33, right column better to use "Fig. 1" with bold letters.
Line 36, left column missing reference.
Line 46, right column, correct as "As can be seen on lines 17, 21 and 25, Fig.1", so that
we know which figure we refer to.

--
Authors' response
--
Thanks! We have fixed the suggested corrections, except the first one, which we think
violates the styling guidelines for the TeX template in use (we have not seen bold letter

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

used in any other articles using the same template).

--
Reviewer #3
--
Reviewer #3: ##Comments to paper

This is a well written paper describing the, to my knowledge, first workflow manager
implemented in Go. Although there are many alternative workflow managers, this work
is motivated by the limitation of one of the state-of-the-art workflow managers (Luigi)
that the authors have previously used and even extended.

The paper describes the design of SciPipe, shows how it is used, and provides use
cases. It does not provide any evaluation of SciPipe, nor does it describe system the
use cases were run on. The latter should be included, since one of the motivations for
SciPipe is the issues encountered with SciLuigi when run on more than 64 workers.
The paper also does not describe how many users SciPipe has. Is it just used by the
authors? I would also have liked a discussion about workflows, such as ADAM
(https://github.com/bigdatagenomics/adam), that are implemented in Spark.

--
Authors' response
--
We have updated the paper with a “Usage” section, describing the known usage of
SciPipe, including a brief discussion of the systems on which we have run real-world
workflows.
We have also extended the introduction with a review of ADAM.

--
Reviewer #3
--
A minor issue: on page 3, line 36, there is a missing reference.

--
Authors' response
--
Thanks! Fixed.

--
Reviewer #3
--
Comments to the source code and documentation

The SciPipe webpage is well designed, with documentation and example workflows.
The GitHub repository has 833 commits, with the last commit on August 18th. It has
426 stars and 27 forks, which suggest that there is interest in the community. The
install documentation are a bit hard to find in the webpage, especially for someone that
has not read the paper. There does not seem to be a test suite for SciPipe.

--
Authors' response
--
SciPipe does indeed include a test suite. The test suite in Go does not need to reside
in a separate folder, but are put in files ending with “_test.go”. Tests are integrated and
run in our continuous integration suite, and continuously updated coverage statistics
are available at:
https://codecov.io/gh/scipipe/scipipe

--
Reviewer #3
--
I tested SciPipe on my laptop in Ubuntu on Windows. I have very limited knowledge of
Go, so I just followed the examples on the webpage. They did work as described.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

I first tested the RNA-seq case study. For it the documentation was less clear, and
there were no instructions for how to do it. For example, how to specify the input
dataset, which I later found was in the go code. The execution took a while, and it was
hard to know if the program was working, or if it has crashed or waiting for input
(especially since the first step downloads a 1.7GB file for which the size or progress is
not shown). The case study failed, due to a missing library used by STAR. This is not a
SciPipe issue, and it would not occur on a production system. SciPipe did however
save the logs necessary to understand the issue.

--
Authors' response
--
We have now updated the individual case study workflow folders with simple
README.md files, to help take out the guesswork. Thanks for pointing this out!

--
Reviewer #3
--
Second, I tested the drug discovery workflow. It could not be compiled due to:

./utils.go:45: t.Round undefined (type time.Duration has no field or method Round)

--
Authors' response
--
It turns out that this is caused by using a Go version below 1.9. We have added the
version information in the dependencies listing in the manuscript.

--
Reviewer #3
--
Finally, I tested the genomics cancer workflow, which also failed due to a version issue
in GenomeAnalysisTK.jar. Again, this is a third party installation error.

I did not do any more advanced testing of SciPipe, including using my own data,
running it on more than one machine, nor stopping and restarting workflow execution.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

GigaScience, 2018, 1–13
doi: xx.xxxx/xxxx
Manuscript in Preparation
Technical Note

TE CHN I C A L NOTE

SciPipe - A work�ow library for agile development
of complex and dynamic bioinformatics pipelines
Samuel Lampa1,2,*, Martin Dahlö1, Jonathan Alvarsson1 and Ola Spjuth1
1Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala,
Sweden and 2Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden,
Science for Life Laboratory, Stockholm University, Sweden
*samuel.lampa@farmbio.uu.se

Abstract
Background: The complex nature of biological data has driven the development of specialized software tools. Scienti�c
work�ow management systems simplify the assembly of such tools into pipelines, assist with job automation and aid
reproducibility of analyses. Many contemporary work�ow tools are specialized or not designed for highly complex
work�ows, such as with nested loops, dynamic scheduling and parametrization which is common in e.g. machine learning.
Findings: SciPipe is a work�ow programming library implemented in the programming language Go, for managing
complex and dynamic pipelines in bioinformatics, cheminformatics and other �elds. SciPipe helps in particular with
work�ow constructs common in machine learning, such as extensive branching, parameter sweeps and dynamic
scheduling and parametrization of downstream tasks. SciPipe builds on Flow-based programming principles to support
agile development of work�ows based on a library of self-contained, reusable components. It supports running subsets of
work�ows for improved iterative development, and provides a data-centric audit logging feature that saves a full audit
trace for every output �le of a work�ow, which can be converted to other formats such as HTML, TeX and PDF on-demand.
The utility of SciPipe is demonstrated with a machine learning pipeline, a genomics, and a transcriptomics pipeline.
Conclusions: SciPipe provides a solution for agile development of complex and dynamic pipelines, especially in machine
leaning, through a �exible programming API suitable for scientists used to programming or scripting.
Key words: Scienti�c Work�ow Management Systems, Pipelines, Reproducibility, Machine Learning, Flow-based Program-
ming, Go, Golang

Findings

Driven by the highly complex and heterogeneous nature of
biological data [1, 2], computational biology is characterized
by an extensive ecosystem of command-line tools, each spe-
cialized on one or a few of the many aspects of biological
data. Because of their specialized nature these tools gener-
ally need to be assembled into sequences of processing steps,
often called “pipelines”, to produce meaningful results from
raw data. Due to the increasingly large sizes of biological data
sets [3, 4], such pipelines often require integration with High-
Performance Computing (HPC) infrastructures or cloud com-
puting resources to complete in an acceptable time. This has

created a need for tools to coordinate the execution of such
pipelines in an e�cient, robust and reproducible manner. This
coordination can in principle be done with simple scripts in lan-
guages like Bash, Python or Perl but plain scripts can quickly
become fragile. When the number of tasks becomes su�-
ciently large and the execution times long, the risk for fail-
ures during the execution of such scripts increases almost lin-
early with time and simple scripts are not a good strategy for
when large jobs need to be restarted from a failure. This is
because they lack the ability to distinguish between �nished
and half-�nished �les. They also do not provide means to de-
tect if intermediate output �les are already created and can be
reused to avoid wasting time on redoing already �nished cal-

Compiled on: March 3, 2019.
Draft manuscript prepared by the author.

1

Manuscript (Updated) Click here to access/download;Manuscript;scipipe-submitted-
v2.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/giga/download.aspx?id=60822&guid=b3d4abe7-d7b9-4a88-ba29-b120bd518943&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=60822&guid=b3d4abe7-d7b9-4a88-ba29-b120bd518943&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2446&rev=1&fileID=60822&msid=7a0e007f-6df3-46f9-a601-6ce8316e100a

2 | GigaScience, 2018, Vol. XX, No. X

culations. These limits with simple scripts calls for a strategy
with a higher level of automation and more careful manage-
ment of data and state. This need is addressed by a class of soft-
ware commonly referred to as “scienti�c work�ow manage-
ment systems” or simply “work�ow tools”. Through a more
automated way of handling the execution, work�ow tools can
improve the robustness, reproducibility and understandability
of computational analyses. In concrete terms, work�ow tools
provide means for handling atomic writes (making sure �n-
ished and half-�nished �les can be separated after a crashed
or stopped work�ow), caching of intermediate results, distri-
bution of tasks to the available computing resources and au-
tomatically keeping or generating records of exactly what was
run, to make analyses reproducible.
It is widely agreed upon that work�ow tools generally make

it easier to develop automated, reproducible and fault-tolerant
pipelines, althoughmany challenges and potential areas for im-
provement still do exist with existing tools [5]. This has made
scienti�c work�ow systems a highly active area of research.
Numerous work�ow tools have been developed and many new
ones are continuously being developed.
The work�ow tools developed di�er quite widely in terms of

how work�ows are de�ned and what features are included out-
of-the box. This probably re�ects the fact that di�erent types
of work�ow tools can be suited for di�erent categories of users
and use cases. Graphical tools like Galaxy [6, 7, 8] and Yabi [9]
provide easy to use environments especially well-suited for
scientists without scripting experience. Text-based tools like
Snakemake [10], Next�ow [11], BPipe [12], Cuneiform [13] and
Pachyderm [14] on the other hand, are implemented as Domain
Speci�c Languages (DSLs), that can often provide a higher level
of �exibility, at the expense of the ease of use of a graphical
user interface. They can thus be well suited for “power users”
with experience in scripting or programming.
Even more power and �exibility can be gained from work-

�ow tools implemented as programming libraries, which pro-
vide their functionality through a programming API accessed
from an existing programming language such as Python, Perl
or Bash. By implementing the API in an existing language,
users get access to the full power of the implementation lan-
guage as well as the existing tooling around the language. One
example of a work�ow system implemented in this way is
Luigi [15]. Another interesting work�ow system implemented
as a programming library and which shares many features with
SciPipe is Nipype [16].
As reported in [5], although many users �nd important ben-

e�ts in using work�ow tools, many also experience limitations
and challenges with existing tools, especially regarding the
ability to express complex work�ow constructs such as branch-
ing and iteration, as well as limitations in terms of audit log-
ging and reproducibility. Belowwe brie�y review a few existing
popular systems and highlight areas where we found that the
development of a new approach and tool was desirable, for use
cases that includes very complex work�ow constructs.
Firstly, graphical tools like Galaxy and Yabi, although being

easy-to-use even for users without programming experience,
are often perceived to be limited in their �exibility due to the
need to install and run a web server to use them, which is not
always permitted or practical on HPC systems.
Text-based tools implemented as DSLs, such as Snakemake,

Next�ow, BPipe, Pachyderm and Cuneiform do not have this
limitation but have other characteristics which might be prob-
lematic for for complex work�ows.
For example, Snakemake is dependent on �le naming strate-

gies for de�ning dependencies, which can in some situations be
limiting, and also uses a “pull-based” scheduling strategy (the
work�ow is invoked by asking for a speci�c output �le, where
after all tasks required for reproducing the �le will be executed).

While this makes it easy to reproduce speci�c �les, it can make
the system hard to use for work�ows involving complex con-
structs such as nested parameter sweeps and cross-validation
fold generation, where the �nal �le names are hard to foresee,
if at all possible. Snakemake also performs scheduling and exe-
cution of the work�ow graph in separate stages, meaning that
it does not support dynamic scheduling.
Dynamic scheduling, which basically means on-line

scheduling during the work�ow execution [17], is useful both
where the number of tasks is unknown before the work�ow is
executed and where a task needs to be scheduled with a param-
eter value obtained during the work�ow execution. An example
of the former is reading row by row from a database, splitting
a �le of unknown size into chunks or processing a continuous
stream of data from an external process such as an automated
laboratory instrument. An example of the latter is training a
machine learning model with hyper parameters obtained from
a parameter optimization step prior to the �nal training step.
BPipe constitutes a sort of middle-ground in terms of dy-

namic scheduling. It supports dynamic decisions of what to
run by allowing execution-time logic inside pipeline stages, as
long as the structure of the work�ow does not need to change.
Dynamic change of the work�ow structure can be important
in work�ows for machine learning though, e.g. if parametriz-
ing the number of folds in a cross-validation based on a value
calculated during the work�ow run, such as dataset size.
Next�ow has push-based scheduling and supports dynamic

scheduling via the data�ow paradigm and does not su�er from
this limitation. It does not, however, support creating a library
of reusable work�ow components. This is because of its use of
data�ow variables shared across component de�nitions, which
requires processes and the work�ow dependency graph to be
de�ned together.
Pachyderm is a container-based work�ow system which

uses a JSON and YAML-based DSL to de�ne pipelines. It has a
set of innovative features including a version-controlled data
management component with Git-like semantics and support
for triggering of pipelines based on data updates, among oth-
ers. These in combination can provide some aspects of dynamic
scheduling. On the other hand, the more static nature of the
JSON/YAML-based DSLmight not be optimal for really complex
setups such as creating loops or branches based on parameter
values obtained during the execution of the work�ow. The re-
quirement of Pachyderm to be run on a Kubernetes [18] cluster
can also make it less suitable for some academic environments
where ability to run pipelines also on traditional HPC clusters
is required. On the other hand, because of the easy incorpora-
tion of existing tools, it is possible to provide such more com-
plex behavior by including a more dynamic work�ow tool as
a work�ow step inside Pachyderm instead. We thus primarily
see Pachyderm as a complement to other light-weight work-
�ow systems, rather than necessarily an exclusive alternative.
The usefulness of such an approach where an over-arching

framework provides primarily an orchestration role while call-
ing out to other systems for the actual work�ows, is demon-
strated by the Arteria project [19]. Arteria builds on the event-
based StackStorm framework to allow triggering of external
work�ows based on any type of event, providing a �exible au-
tomation framework for sequencing core facilities.
Another group of work�ow tools are those designed around

the Common Work�ow Language (CWL) [20] as their primary
authoring interface. These include Toil [21] and Rabix [22], as
well as the CWL reference implementation. A detailed review
of each of these tools is getting outside the scope for this arti-
cle. We note though that while CWL provides very important
bene�ts in terms of work�ow portability, it can at the same
time be too limited for very complex and dynamic work�ow
constructs because of its declarative YAML-based nature, just

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lampa et al. | 3

as for Pachyderm.
There is also a class of work�ow systems building on

Big Data technologies such as the Hadoop ecosystem, where
ADAM [23] is one prominent example, using Spark [24] as a
foundation for its pipeline component. Through a set of spe-
cialized formats, APIs and work�ow step implementations for
genomics data, ADAM manages to provide impressive scalabil-
ity of genomics analyses across multiple compute nodes. By
relying on Spark which has a programming model where data
operations are expressed directly, ADAM is quite a di�erent
beast than the other work�ow systems reviewed here though.
In these other more traditional work�ow tools, components
are generally instead handled in a black-box fashion and most
often being implemented outside of the work�ow layer itself.
Just as with Pachyderm, the requirement for additional tech-
nology layers for distributed computing, like as the Hadoop
Distributed File System (HDFS) [25] and the Spark execution
system, means that ADAM might not always be a feasible so-
lution for HPC clusters with tight restrictions on system privi-
leges, or for local laptops with limited resources.
Going back to traditional work�ow systems, Cuneiform

takes a di�erent approach compared to most work�ow tools by
wrapping shell commands in functions in a �exible functional
language (described in [26]), which allows leveraging common
bene�ts in functional programming languages, such as side-
e�ect free functions, to de�ne work�ows. It also leverages the
distributed programming capabilities of the Erlang Virtual Ma-
chine (EVM), to provide automatic distribution of workloads. It
is still a new, domain speci�c language though, which means
that tooling and editor support might not be as extensive as for
an established programming language.
Luigi is a work�ow library developed by Spotify, which pro-

vides a high degree of �exibility due to its implementation as
a programming library, Python. For example, the program-
ming API exposes full control over �le name generation. Luigi
also provides integration with many Big Data systems such
as Hadoop and Spark, and cloud-centric storage systems like
HDFS and S3.
SciLuigi [27] is a wrapper library for Luigi, previously de-

veloped by the authors, which introduces a number of bene-
�ts for scienti�c work�ows by leveraging selected principles
from Flow-based programming (FBP) (named ports and sep-
arate network de�nition) to achieve an API that makes itera-
tively changing the work�ow connectivity easier than in vanilla
Luigi.
While Luigi and SciLuigi were shown to be a helpful solution

for complex work�ows in drug discovery, they also have a num-
ber of limitations for highly complex and dynamic work�ows.
Firstly, since Python is an un-typed, interpreted language, cer-
tain software bugs are discovered only far into a work�ow run,
rather than while compiling the program. Secondly, the fact
that Luigi creates separate processes for each worker which
communicate with the central Luigi scheduler via HTTP re-
quests over the network, can lead to robustness problems when
going over a certain number of workers (around 64 in the au-
thors’ experience) leading to HTTP connection time-outs.
Finally Nipype, which is also a programming library imple-

mented in Python and which shares a number of features with
SciPipe such as �exible �le name generation, separate named
inputs and outputs and a rather Flow-based programming like
dependency de�nition, is expected to su�er from some of the
same limitations as in Luigi because of the lack of static typing
and worse performance of the Python programming language
compared to Go.
The mentioned limitations for complex work�ows in exist-

ing tools is the background and motivation for developing the
SciPipe library.

The SciPipe work�ow library

SciPipe is a work�ow library based on Flow-Based Program-
ming principles, implemented as a library in the Go program-
ming language. The library is freely available as open source
on GitHub [28]. All releases of GitHub are also archived on Zen-
odo [29]. Similarly to Next�ow, SciPipe leverages the data�ow
paradigm to achieve dynamic scheduling of tasks based on in-
put data, allowing many work�ow constructs not easily coded
in many other tools.
Combined with design principles from Flow-based pro-

gramming such as separate network de�nition and named
ports bound to processes, this has resulted in a productive and
discoverable API that enables agile authoring of complex and
dynamic work�ows. The fact that the work�ow network is de-
�ned separately from processes, enables building work�ows
based on a library of reusable components, although the cre-
ation of ad-hoc shell-command based components is also sup-
ported.
SciPipe provides a provenance tracking feature that creates

one audit log per output �le, rather than only one for the whole
work�ow run. This means that it is always easy to verify ex-
actly how each output of a work�ow was created.
SciPipe also provides a few features which are not very com-

mon among existing tools, or which are not commonly occur-
ring together in one system. These include support for stream-
ing via Unix named pipes, ability to run push-based work�ows
up to a speci�c stage of the work�ow, and �exible support for
�le naming of intermediate data �les generated by work�ows.
By implementing SciPipe as a library in an existing lan-

guage, the language’s ecosystem of tooling, editor support and
third-party libraries can be directly used to avoid “reinventing
the wheel” in these areas. By leveraging the built-in concur-
rency features of Go, such as go-routines and channels, the
developed code base has been kept small compared with sim-
ilar tools, and also does not require external dependencies for
basic usage (some external tools are used for optional features
like PDF generation and graph plotting). This means that the
code base should be possible to maintain for a single developer
or small team, and that the code base is practical to include in
work�ow developers’ own source code repositories, in order to
future-proof the functionality of work�ows.
Below, we �rst brie�y describe how SciPipe work�ows are

created. We then describe in some detail the features of SciPipe
that are the most novel or improves most upon existing tools,
followed by a few more commonplace technical considerations.
We �nally demonstrate the usefulness of SciPipe by applying it
to a set of case study work�ows in machine learning for drug
discovery and next-generation sequencing genomics and tran-
scriptomics.

Writing work�ows with SciPipe

SciPipe work�ows are written as Go programs, in �les ending
with the .go extension. As such, they require the Go tool chain
to be installed for compiling and running them. The Go pro-
grams can be either compiled to self-contained executable �les
with the go build command, or run directly, using the go run
command.
The simplest way to write a SciPipe program is to write the

work�ow de�nition in the program’s main() function, which
is executed when running the compiled executable �le, or run-
ning the �le as script with go run. An example work�ow writ-
ten in this way is shown in in �gure 1, which provides a simple
example work�ow consisting of three processes, demonstrat-
ing a few of the basic features of SciPipe. The �rst process
writes a string of DNA to a �le, the second computes the base

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 | GigaScience, 2018, Vol. XX, No. X

1 package main

2

3 import (

4 "github.com/scipipe/scipipe"

5)

6

7 const dna = "AAAGCCCGTGGGGGACCTGTTC"

8

9 func main() {

10 // Initialize workflow, using max 4 CPU cores

11 wf := scipipe.NewWorkflow("DNA Base Complement Workflow", 4)

12

13 // Initialize processes based on shell commands:

14

15 // makeDNA writes a DNA string to a file

16 makeDNA := wf.NewProc("Make DNA", "echo "+dna+" > {o:dna}")

17 makeDNA.SetOut("dna", "dna.txt")

18

19 // complmt computes the base complement of a DNA string

20 complmt := wf.NewProc("Base Complement", "cat {i:in} | tr ATCG TAGC > {o:compl}")

21 complmt.SetOut("compl", "{i:in|%.txt}.compl.txt")

22

23 // reverse reverses the input DNA string

24 reverse := wf.NewProc("Reverse", "cat {i:in} | rev > {o:rev}")

25 reverse.SetOut("rev", "{i:in|%.txt}.rev.txt")

26

27 // Connect data dependencies between out- and in-ports

28 complmt.In("in").From(makeDNA.Out("dna"))

29 reverse.In("in").From(complmt.Out("compl"))

30

31 // Run the workflow

32 wf.Run()

33 }

Figure 1. A simple example work�ow implemented with SciPipe. The work�ow computes the reverse base complement of a string of DNA, using standard UNIX
tools. The work�ow is a Go program and is supposed to be saved in a �le with the .go extension and executed with the go run command. On line 4, the SciPipe
library is imported, to be later accessed as scipipe. On line 7, a short string of DNA is de�ned. On line 9-33, the full work�ow is implemented in the program’s
main() function, meaning that it will be executed when the resulting program is executed. On line 11, a new work�ow object (or “struct” in Go terms) is initiated
with a name and the maximum number of cores to use. On lines 15-25, the work�ow components, or processes, are initiated, each with a name and a shell
command pattern. Input �le names are de�ned with a placeholder on the form {i:INPORTNAME} and outputs on the form {o:OUTPORTNAME}. The port-name will be
used later to access the corresponding ports for setting up data dependencies. On line 16, a component that writes the previously de�ned DNA string to a �le is
initiated, and on line 17, the �le path pattern for the out-port dna is de�ned (in this case a static �le name). On line 20, a component that translates each DNA
base to its complementary counterpart is initiated. On line 21, the �le path pattern for its only out-port is de�ned. In this case, reusing the �le path of the �le it
will receive on its in-port named in, thus the {i:in} part. The %.txt part removes .txt from the input path. On line 24, a component that will reverse the DNA
string is initiated. On lines 27-29, data dependencies are de�ned via the in- and out-ports de�ned earlier as part of the shell command patterns. On line 32, the
work�ow is being run.

complement, and the last process reverses the string. All in all,
the work�ow computes the reverse base complement of the
initial string.
As can be seen in �gure 1 on line 11, a work�ow object

(or struct, in Go terminology) is �rst initialized, with a name
and a setting for the maximum number of tasks to run at a
time. Furthermore, on line 15-19, processes are de�ned with
the Workflow.NewProc() method on the work�ow struct, with
name and a command pattern which is very similar to the Bash
shell command that would be used to run a command manu-
ally, but where concrete �le names have been replaced with
placeholders, on the form {i:INPORTNAME}, {o:OUTPORTNAME} or
{p:PARAMETERNAME}. These placeholders de�ne input and output
�les, as well as parameter values, and works as a sort of tem-
plates, that will be replaced with concrete values as concrete
tasks are scheduled and executed.
As can be seen on lines 17, 21 and 25 (�gure 1), output paths

to use for output �les are de�ned using the Process.SetOut()
method, taking an out-port name and a pattern for how to gen-
erate the path. For simple work�ows this can be just a static
�le name, but for more complex work�ows with processes that
produce more than one output on the same port – e.g. by pro-
cessing di�erent input �les, or using di�erent sets of param-
eters – it is often best to reuse some of the input paths and
parameter values con�gured earlier in the command pattern

to generate a unique path for each output.
Finally, on lines 27-29, we see how in-ports and out-ports

are connected in order to de�ne the data dependencies between
tasks. Here, the in-port and out-port names used in the place-
holders in the command pattern described above, are used to
access the corresponding in-ports and out-ports, and making
connections between them, with a syntax on the general form
of InPort.From(OutPort).
The last thing needed to do to run the work�ow, is seen

on line 32, where the Workflow.Run() method is executed. Pro-
vided that the work�ow code in �gure 1 is saved in a �le named
workflow.go, it can be run using the go run command, like so:
$ go run workflow.go

This will then produce three output �les and one accompa-
nying audit log for each �le, which we can be seen by listing
the �les in a terminal:
dna.txt
dna.txt.audit.json
dna.compl.txt
dna.compl.txt.audit.json
dna.compl.rev.txt
dna.compl.rev.txt.audit.json

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lampa et al. | 5

1 {

2 "ID": "tuir75c24kxe4rrqmm2p",

3 "ProcessName": "Reverse",

4 "Command": "cat ../dna.compl.txt | rev \u003e dna.compl.rev.txt",

5 "Params": {},

6 "Tags": {},

7 "StartTime": "2018-07-26T13:02:16.855172344+02:00",

8 "FinishTime": "2018-07-26T13:02:16.863536059+02:00",

9 "ExecTimeNS": 8363715,

10 "OutFiles": {

11 "rev": "dna.compl.rev.txt"

12 },

13 "Upstream": {

14 "dna.compl.txt": {

15 "ID": "2g7tr2trhu9zubovwlua",

16 "ProcessName": "Base Complement",

17 "Command": "cat ../dna.txt | tr ATCG TAGC \u003e dna.compl.txt",

18 "Params": {},

19 "Tags": {},

20 "StartTime": "2018-07-26T13:02:16.845769702+02:00",

21 "FinishTime": "2018-07-26T13:02:16.854035213+02:00",

22 "ExecTimeNS": 8265532,

23 "OutFiles": {

24 "compl": "dna.compl.txt"

25 },

26 "Upstream": {

27 "dna.txt": {

28 "ID": "vu8ltmoujzo3vn2b39pr",

29 "ProcessName": "Make DNA",

30 "Command": "echo AAAGCCCGTGGGGGACCTGTTC \u003e dna.txt",

31 "Params": {},

32 "Tags": {},

33 "StartTime": "2018-07-26T13:02:16.842112643+02:00",

34 "FinishTime": "2018-07-26T13:02:16.84486747+02:00",

35 "ExecTimeNS": 2754810,

36 "OutFiles": {

37 "dna": "dna.txt"

38 },

39 "Upstream": {}

40 }

41 }

42 }

43 }

44 }

Figure 2. Example audit log �le in JSON format [30], for a �le produced by a SciPipe work�ow. The work�ow used to produce this audit log in particular, is the one
in �gure 1. The audit information is hierarchical, with each level representing a step in the work�ow. The �rst level contains meta-data about the task executed
last, to produce the output �le that this audit log refers to. The �eld Upstream on each level, contains a list of all upstream task of the current task, indexed by the
�le paths that each of the upstream tasks did produce, and which was subsequently used by the current task. Each task is given a globally unique ID, which helps
to deduplicate any duplicate occurrences of tasks, when converting the log to other representations. Execution time is given in nanoseconds. Note that input paths
in the command �eld, is prepended with ../, compared to how they appear in the Upstream �eld. This is because each task is executed in a temporary directory
created directly under the work�ow’s main execution directory, meaning that to access existing data �les, it has to �rst navigate up one step out of this temporary
directory.

The �le dna.txt should now contain the string
AAAGCCCGTGGGGGACCTGTTC, and dna.compl.rev.txt should
contain GAACAGGTCCCCCACGGGCTTT, which is the reverse base
complement of the �rst string. In the last �le above, the full
audit log for this minimal work�ow can be found. An example
content of this �le is shown in �gure 2.
In this code example, it can be seen that both of the com-

mands we executed are available, and also that the Reverse
process lists its "upstream" processes, which are indexed
by the input �le names in its command. Thus, under the
dna.compl.txt input �le, we �nd the Base Complement process
together with its meta-data, and one further upstream pro-
cess (the Make DNA process). This hierarchic structure of the
audit log ensures that the complete audit trace, including all
commands contributing to the production of an output �le, is
available for each output �le from the work�ow.
More information about how to write work�ows with SciP-

ipe is available on the documentation website [31]. Note that
the full documentation on this website is also available in a
folder named docs inside the SciPipe Git repository, which en-

sures that documentation for the version currently used is al-
ways available.

Dynamic scheduling

Since SciPipe is built on the principles from Flow-based pro-
gramming (see the methods section for more details), a SciP-
ipe program consists of independently and concurrently run-
ning processes, which schedule new tasks continually during
the work�ow run. This is here referred to as dynamic scheduling.
This means that it is possible to create a process that obtains
a value and passes it on to a downstream process as a param-
eter, so that new tasks can be scheduled with it. This feature
is important in machine learning work�ows, where hyper pa-
rameter tuning is often employed to �nd an optimal value of
a parameter, such as cost for Support Vector Machines (SVM),
which is then used to parametrize the �nal training part of the
work�ow.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 | GigaScience, 2018, Vol. XX, No. X

Reusable components

Based on principles from Flow-based programming, the work-
�ow graph in SciPipe is de�ned by making connections be-
tween port objects bound to processes. This enables to keep
the dependency graph de�nition separate from the process
de�nitions. This is in contrast to other ways of connecting
data�ow processes, such as with data�ow variables, which are
shared between process de�nitions. This makes processes in
�ow-based programming fully self-contained, meaning that
libraries of reusable components can be created and that com-
ponents can be loaded on-demand when creating new work-
�ows. A graphical comparison between dependencies de�ned
with data�ow variables and �ow-based programming ports, is
shown in �gure 3.

Figure 3. Comparison between data�ow variables and Flow-based program-
ming ports in terms of dependency de�nition. a) shows how data�ow variables
(blue and green) shared between processes (in gray) make the processes tightly
coupled. In other words, process- and network de�nitions get intermixed. b)
shows how ports (in orange) bound to processes in Flow-based programming
allows keeping the network de�nition separate from process de�nitions. This
enables processes to be reconnected freely without changing their internals.

Running subsets of work�ows

With pull-based work�ow tools like Snakemake or Luigi, it is
easy to on-demand reproduce a particular output �le, since the
scheduling mechanism is optimized for the use case of asking
for a speci�c �le and calculating all the tasks required to be
executed based on that.
With push-based work�ow tools though, reproducing a spe-

ci�c set of �les without running the full work�ow is not always
straight-forward. This is a natural consequence of the push-
based scheduling strategy, and data�ow in particular, as the
identities and quantities of output �les might not be known
before the work�ow is run.
SciPipe provides a mechanism for partly solving this lack

of “on demand �le generation” in push-based data�ow tools,
by allowing to reproduce all �les of a speci�ed process, on-
demand. That is, the user can tell the work�ow to run all pro-
cesses in the work�ow upstream of, and including, a speci�ed
process, while skipping processes downstream of it.
This has turned out very useful when iteratively refactoring

or developing new pipelines. When a part in the middle of a
long sequence of processes need to be changed, it is helpful to
be able to test-run the work�ow up to that particular process
only, not the whole work�ow, to speed up the development
iteration cycle.

Other characteristics

Below are a few technical characteristics and considerations
that are not necessarily unique to SciPipe, but could be of in-
terest to potential users assessing whether SciPipe �ts their
use cases.
Data centric audit log
The audit log feature in SciPipe collects meta data about ev-
ery executed task (concrete shell command invocation) which
is passed along with every �le that is processed in the work-
�ow. It writes a �le in the ubiquitous JSON format, with the
full trace of tasks executed for every output in the work�ow,
with the same name as the output �le in question but with the
additional �le extension .audit.json. Thus, for every output
in the work�ow, it is possible to check the full record of shell
commands used to produce it. An example audit log �le can be
seen in �gure 2.
This data-oriented provenance reporting contrasts to prove-

nance reports common in many work�ow tools, which often
provide one report per work�ow run only, meaning that the
link between data and provenance report is not as direct.
The audit log feature in SciPipe in many aspects re�ects

the recommendations in [32] for developing provenance report-
ing in work�ows, such as producing a coherent, accurate, in-
spectable record for every output data item from the work�ow.
By producing provenance records for each data output rather
than for the full work�ow only, SciPipe could provide a basis
for the problem of iteratively developing work�ow variants, as
outlined in [33].
SciPipe also loads any existing provenance reports for ex-

isting �les that it uses, and merges these with the provenance
information from its own execution. This means that even if
a chain of processing is spread over multiple SciPipe work�ow
scripts, and executed at di�erent times by di�erent users, the
full provenance record is still being kept and assembled, as long
as all work�ow steps were executed using SciPipe shell com-
mand processes. The main limitation to this “follow the data”
approach, is for data generated externally to the work�ow, or
by SciPipe components implemented in Go. For external pro-
cesses, it is up to the external process to generate any reporting.
For Go-based components in SciPipe, these can not currently
dump a textual version of the Go code executed. This consti-
tutes an area of future development.
SciPipe provides experimental support for converting the

JSON-structure into reports in HTML and TeX format, or into
executable Bash scripts that can reproduce the �le which the
audit report describes from available inputs or from scratch.
These tools are available in the scipipe helper command. The
TeX report can be easily further converted to PDF using the
pdflatex command of the pdfTex software [34]. An example of
such a PDF report, is shown in �gure 4, which was generated
from the audit report for the last �le generated by the code
example in �gure 1.
Note that JSON format used natively by SciPipe is not fo-

cused on adhering to a standard such as the W3C recommended
standard for provenance information, W3C PROV [35]. To fol-
low the approach taken with the scipipe helper tool, support
for W3C PROV serialized e.g. to JSON-LD [36] would be a most
suitable additional conversion target, and is planned for future
development.
Note also that the provenance log in SciPipe can be seen as

complementary to much more technically comprehensive but
also more low-level approaches such as ReproZip [37]. Re-
proZip monitors not just shell command executions but ev-
ery system call made during a work�ow run to enable captur-
ing all required dependencies and packing these into a repro-
ducible archive. One way to contrast these two approaches is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lampa et al. | 7

that while the primary goal of ReproZip is reproducible execu-
tion, the provenance report in SciPipe serves multiple purposes,
where understandability of executed analyses has a much more
pronounced role than in ReproZip.
Atomic writes
SciPipe ensures that cancelled work�ow runs do not result in
half-written output �les being mistaken for �nished ones. It
does this by executing each task in a temporary folder, and
moving all newly created �les into their �nal location after the
task is �nished. By using a folder for the execution, any extra
�les created by a tool that are not explicitly con�gured by the
work�ow system are captured and treated in an atomic way.
Examples of where this is needed is for the �ve extra �les cre-
ated by bwa index [38], when indexing a reference genome in
FASTA format.
Streaming support
In data intensive �elds like Next-Generation Sequencing, it
is common that intermediate steps of pipelines produce large
amounts of intermediate data, often multiplying the storage
requirements considerably compared to the raw data from se-
quencing machines [39]. To help ease these storage require-
ments, SciPipe provides the ability to optionally stream data
between two tasks via Random Access Memory (RAM) instead
of saving to disk between task executions. This approach has
two bene�ts. Firstly, the data does not need to be stored on
disk, which can lessen the storage requirements considerably.
Secondly, it enables the downstream task to start processing
the data from the upstream task immediately as soon as the
�rst task has started to produce partial output. It thus enables
to achieve pipeline parallelism in addition to data parallelism, and
can thereby shorten the total execution time of the pipeline.
Flexible �le naming and data “caching”
SciPipe allows �exible naming of the �le path of every inter-
mediate output in the work�ow, based on input �le names and
parameter values passed to a process. This enables creating
meaningful �le naming schemes, to make it easy to manually
explore and sanity-check outputs from work�ows.
Con�guring a custom �le naming scheme is not required

though. If no �le path is con�gured, SciPipe will automatically
create a �le path that ensures that two tasks with di�erent
parameters or input data will never clash, and that two tasks
with the same command signature, parameters and input-�les,
will reuse the same cached data.

Usage

SciPipe has successfully been used by the authors to train ma-
chine learning models for o�-target binding pro�les for early
hazard detection of candidate drug molecules in early drug dis-
covery [40]. This study was run on a single HPC node on the
Rackham cluster [41] at UPPMAX HPC center at Uppsala Uni-
versity, which has two CPUs with 10 physical and 20 virtual
cores each, and 128-256 GB of RAM (we had access to nodes
with di�erent amounds of RAM, and were using whatever our
application needed).
Due to some changes in how we performed the training we

did not get the opportunity to try out the exact same situation
that we were struggling with SciLuigi before, but based on ex-
periments done on compute nodes on the same HPC cluster, it
has been veri�ed that SciPipe is able to handle up to 4999 con-
current idle shell commands (which could be e.g. monitoring
jobs on the SLURM resource manager [42]), as opposed to the
maximum of around 64 concurrent commands with SciLuigi.
Apart from that and the occasional work�ow in the

wild [43], the SciPipe library has not yet seen much adoption
outside of the authors’ research group just yet. Based on the
high interest for the library on GitHub (462 stars and 30 forks
at the time of writing this), we think this is a matter of time
though. We also think the interest in work�ows implemented
in compiled languages will increase as datasets continue to
increase in size and performance and robustness issues grow
more and more important.
Since SciPipe is a somewhat more complex tool than the

most popular ones such as Galaxy, we are planning to produce
more tutorial material such as videos and blog posts, to help
newcomers get started.

Known limitations

Below we list a number of known limitations of SciPipe that
might a�ect the decision whether to use SciPipe for a particular
use case or not.
Firstly, the fact that writing SciPipe work�ows requires

some basic knowledge of the Go programming language can
be o�-putting to users who are not well acquainted with pro-
gramming. Go code, although having taken inspiration from
scripting languages, is still markedly more verbose and low-
level in nature than Python, and can take a little longer to get
used to.
Secondly, the level of integration with HPC resource man-

agers is currently quite basic compared to some other work�ow
tools. The SLURM resource manager can readily be used by us-
ing the Prepend �eld on processes to add a string with a call to
the salloc SLURM command, but more advanced HPC integra-
tion is planned to be addressed in upcoming versions.
Thirdly, the way commands are de�ned in SciPipe is quite

simplistic compared to some other approaches. Approaches
such as the Common Work�ow Language tool description for-
mat [44] and the Boutiques [45] framework, provide more se-
mantically comprehensive description of the commandline for-
mat. Boutiques also provide certain features for validation of
inputs, which can help avoid connecting work�ow inputs and
outputs which are not compatible. We see this as an exciting
area for future development, and where community contribu-
tions to the open source code will be especially welcome.
Furthermore, reproducing speci�c output �les is not as nat-

ural and easy as with pull-based tools like Snakemake, al-
though SciPipe provides a mechanism to partly resolve this
problem.
Finally, SciPipe does not yet support integration with the

Common Work�ow Language [20] for interoperability of work-
�ows, and with the W3C PROV [35] format for provenance in-
formation. These are prioritized areas for future developments.

Case Studies

To demonstrate the usefulness of SciPipe, we have used it to im-
plement a number of representative pipelines from drug discov-
ery and bioinformatics with di�erent characteristics and hence
requirements on the work�ow system. These work�ows are
available in a dedicated git repository on GitHub [46].

Machine learning pipeline in drug discovery

The initial motivation for building SciPipe stemmed from prob-
lems encountered with complex dynamic work�ows in ma-
chine learning for drug discovery applications. It was thus
quite natural to implement an example of such a work�ow in
SciPipe. To this end we re-implemented a work�ow imple-
mented previously for the SciLuigi library [27], which was itself

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 | GigaScience, 2018, Vol. XX, No. X

Figure 4. Audit report for the last �le generated by the code example in �gure 1, converted to TeX with SciPipe’s experimental audit2tex feature and then converted
to PDF with pdfTeX. In the top, the PDF �le includes summary information about the SciPipe version used and the total execution time. After this follows an
execution time line, in a gantt-chart style, that shows the relative execution times of individual tasks in a graphical way. After this follows a comprehensive list
of tables with information for each task executed towards producing the �le for which the audit report belongs. The task boxes are color coded and ordered in the
same way that the tasks appear in the timeline.

Figure 5. Directed graph of the machine learning drug discovery case study work�ow, plotted with SciPipe’s work�ow plotting function. The graph has been
modi�ed for clarity by collapsing the individual branches of the parameter sweeps and cross validation fold-generation. The layout has also been manually made
more compact to be viewable in print. The collapsed branches are indicated by intervals in the box labels. tr{500-8000} represent branching into training dataset
sizes 500, 1000, 2000, 4000, 8000. c{0.0001-5.0000} represent cost values 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5, while
fld{1-10} represent cross validation folds 1-10. Nodes represent processes, while edges represent data dependencies. The labels on the edge heads and tails
represent ports. Solid lines represent data dependencies via �les, while dashed lines represent data dependencies via parameters, which are not persisted to �le,
only transmitted via RAM.

based on an earlier study [47].
In short, this work�ow trains predictive models using the

LIBLINEAR software [48] with molecules represented by the
signature descriptor [49]. For linear SVM a cost parameter
needs to be tuned, and we tested 15 values (0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5) in a
10-fold cross-validated parameter sweep. Five di�erent train-
ing set sizes (500, 1000, 2000, 4000, 8000) were tested and
evaluated with a test set size of 1000. The raw data set con-
sists of 10,000 logarithmic solubility values chosen randomly
from a dataset extracted from PubChem [50] according to de-
tails in [27]. The work�ow is schematically shown in �gure 5
and was plotted using SciPipe’s built-in plotting function. The
�gure has been modi�ed for clarity by collapsing the individual
branches of the parameter sweeps and cross validation folds, as

well as by manually making the layout more compact.
The implementation in SciPipe was done by creating

components which are de�ned in separate �les (named
comp_COMPONENTNAME in the repository), which can thus be reused
in other work�ows. This shows how SciPipe can successfully
be used to create work�ows based on reusable, externally de-
�ned components.
The fact that SciPipe supports parametrization of work�ow

steps with values obtained during the work�ow run, meant
that the full work�ow could be kept in a single work�ow def-
inition, in one �le. This also made it possible to create audit
logs for the full work�ow execution for the �nal output �les,
and to create the automatically plotted work�ow graph shown
in �gure 5. This is in contrast to the SciLuigi implementation,
where the parameter sweep to �nd the optimal cost, and the �-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lampa et al. | 9

nal training, had to be implemented in separate work�ow �les
(wffindcost.py and wfmm.py in [51]), and executed as a large
number of completely separate work�ow runs (one for each
dataset size) which meant that logging became fragmented
into a large number of disparate log �les.

Genomics cancer-analysis pipeline

Sarek [52] is an open-source analysis pipeline to detect germ-
line or somatic variants from whole genome sequencing, de-
veloped by the National Genomics Infrastructure and National
Bioinformatics Infrastructure Sweden which are both plat-
forms at Science for Life Laboratory.
To test and demonstrate the applicability of SciPipe to ge-

nomics use cases the pre-processing part of the Sarek pipeline
was implemented in SciPipe. See �gure 6 for a directed pro-
cess graph of the work�ow, plotted with SciPipe’s work�ow
plotting function.
The test data in the test work�ow consists of multiple sam-

ples of normal and tumor pairs. The work�ow starts with
aligning each sample to a reference genome using BWA [38]
and forwarding the results to Samtools [53] which saves the
result as a sorted BAM �le. After each sample has been aligned,
Samtools is again used, to merge the normal- and tumor sam-
ples into a one BAM [53] �le for tumor samples, and one for
normal. Picard [54] is then used to mark duplicate reads in
both the normal- and tumor sample BAM �les, whereafter
GATK [55] is used to recalibrate the quality scores of all reads.
The outcome of the work�ow is two BAM �les; one contain-
ing all the normal samples and one containing all the tumor
samples.
Genomics tools and pipelines have their own set of require-

ments, which was shown by the fact that some aspects of SciP-
ipe had to be modi�ed in order to ease development of this
pipeline. In particular, many genomics tools produce addi-
tional output �les apart from those speci�ed on the command-
line. One example of this is the extra �les produced by BWA
when indexing a reference genome in FASTA format. The bwa
index command produces some �ve �les, which are not explic-
itly de�ned on the command-line (with the extensions of .bwt,
.pac, .ann, .amb and .sa). Based on this realization, SciPipe was
amended with a folder-based execution mechanism which ex-
ecutes each task in a temporary folder, that keeps all output
�les separate from the main output directory until the whole
task has completed. This ensures that also �les that are not ex-
plicitly de�ned and handled by SciPipe, are also captured and
handled in an atomic manner, so that �nished and un�nished
output �les are always properly separated.
Furthermore, agile development of genomic tools often re-

quires being able to see the full command that is used to ex-
ecute a tool, because of the many options that are available
to many bioinformatics tools. This work�ow was thus imple-
mented with ad-hoc commands, which are de�ned in-line in
the work�ow. The ability to do this shows that SciPipe sup-
ports di�erent ways of de�ning components, depending on
what �ts the use case best.
The successful implementation of this genomics pipeline in

SciPipe, thus both ensures and shows that SciPipe is works well
for tools common in genomics.

RNA-seq / transcriptomics pipeline

To test the ability of SciPipe to work with software used in
transcriptomics, some of the initial steps of a generic RNA-
sequencing work�ow were also implemented in SciPipe. Com-
mon steps that are needed in transcriptomics is to run quality
controls and generate reports of the analysis steps.

The RNA-seq case study pipeline implemented for this pa-
per uses FastQC [56] to evaluate the quality of the raw data
being used in the analysis before aligning the data using
STAR [57]. After the alignment is done it is evaluated using
QualiMap [58], while the Subread package [59] is used to do a
feature counting.
The �nal step of the work�ow is to combine all the previous

steps for a composite analysis using MultiQC [60], which will
summarize the quality of both the raw data and the result of
the alignment into a single quality report. See �gure 7 for a
directed process graph of the work�ow, plotted with SciPipe’s
work�ow plotting function.
The successful implementation of this transcriptomics

work�ow in SciPipe ensures that SciPipe works well for dif-
ferent types of bioinformatics work�ows and is not limited to
one speci�c sub-�eld of bioinformatics.

Conclusions

SciPipe is a programming library that provides a way to write
complex and dynamic pipelines in bioinformatics, cheminfor-
matics, and more generally in data science and machine learn-
ing pipelines involving command-line applications.
Dynamic scheduling allows parametrizing new tasks with

values obtained during the work�ow run, and the Flow-based
programming principles of separate network de�nition and
named ports allow creating a library of reusable components.
By having access to the full power of the Go programming lan-
guage to de�ne work�ows, existing tooling is leveraged.
Scipipe adopts state-of-the art strategies for achieving

atomic writes, caching of intermediate �les and a data-centric
audit log feature that allows identifying the full execution
trace for each output, that can be exported into either human-
readable HTML or TeX/PDF formats, or executable Bash-
scripts.
SciPipe also provides some features not commonly found in

many tools such as support for streaming via Unix named pipes,
ability to run push-based work�ows up to a speci�c stage of
the work�ow, and �exible support for �le naming of interme-
diate data �les generated by work�ows. SciPipe work�ows can
also be compiled into standalone executables, making deploy-
ment of pipelines maximally easy, requiring only Bash and any
external command-line tools used, to be present on the target
machine.
By being a small library without required external depen-

dencies apart from the Go tool chain and Bash, SciPipe is ex-
pected to be possible to be maintained and developed in the
future even without a large team or organization backing it.
The applicability of SciPipe for cheminformatics, genomics

and transcriptomics pipelines has been demonstrated with case
study work�ows in these �elds.

Methods

The Go Programming Language

The Go Programming Language (referred to as just "Go") was
developed by Robert Griesemer, Rob Pike and Ken Thompson
at Google, to provide a statically typed and compiled language
that makes it easier to build highly concurrent programs, that
can also make good use of multiple CPU cores (i.e. “paral-
lel program”), than what is the case in widespread compiled
languages like C++ [61]. It tries to provide this by provid-
ing a small, simple language, with concurrency primitives —
go-routines and channels — built-in to the language. Go-
routines, which are so called light-weight threads, are auto-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 | GigaScience, 2018, Vol. XX, No. X

reads_fastq2_normal_idx4
align_samples_normal_idx4

reads2
out

reads_fastq1_tumor_idx6

align_samples_tumor_idx6

reads1

out

stream_to_substream_tumor

in

bam

realign_create_targets realign_indelsintervals
intervals

align_samples_tumor_idx7

in

bam

merge_bams_tumor

mark_dupes_tumor

bam

mergedbam

recalibrate_tumor
print_reads_tumorrecaltable

recaltable

align_samples_normal_idx1

stream_to_substream_normal

in
bam

reads_fastq1_normal_idx2

align_samples_normal_idx2
reads1
out

reads_fastq2_normal_idx7

align_samples_normal_idx7reads2

out

reads_fastq2_tumor_idx5

align_samples_tumor_idx5reads2

out

reads_fastq1_normal_idx4

reads1out

reads_fastq2_tumor_idx1

align_samples_tumor_idx1

reads2

out

reads_fastq2_tumor_idx3

align_samples_tumor_idx3

reads2

out

reads_fastq2_tumor_idx7

reads2

out

mark_dupes_normal

bamnormal
bam

bamnormal
bam

reads_fastq1_tumor_idx1

reads1

out

in

bam

in

bam

download_apps untgz_appstgzapps

reads_fastq2_normal_idx2

reads2

out

in

bam

reads_fastq2_normal_idx8

align_samples_normal_idx8
reads2
out

in

bam

bamtumor

bam bamtumor

bam

untardone

done

untardone

done

untardone

done

untardone

done
untardone

done

untardone

done

untardone

done

align_samples_tumor_idx2

untardone

done

untardone

done

untardone

done

untardone

done

recalibrate_normal
print_reads_normal

recaltable
recaltable

bams

substream

reads_fastq1_tumor_idx2

reads1

out

inbam

reads_fastq1_tumor_idx3
reads1out

merge_bams_normal

bams

substream

in

bam

reads_fastq1_normal_idx8

reads1
out

bam

mergedbam

reads_fastq2_tumor_idx6

reads2

out

reads_fastq1_tumor_idx7

reads1

out

realbam

realbamtumor realbam
realbamtumor

realbamrealbamnormal

realbam

realbamnormal

in

bam

reads_fastq1_normal_idx7
reads1
out

in
bam

reads_fastq1_tumor_idx5
reads1

out

reads_fastq1_normal_idx1
reads1
out

reads_fastq2_normal_idx1
reads2out

reads_fastq2_tumor_idx2 reads2out

Figure 6. Directed graph of work�ow processes in the Genomics / Cancer Analysis pre-processing pipeline, plotted with SciPipe’s work�ow plotting function.
Nodes represent processes, while edges represent data dependencies. The labels on the edge heads and tails represent ports.

align_samples_SRR3222409

count_features_SRR3222409bam_alignedbam_aligned

create_index_SRR3222409bam_aligned
bam_aligned

qc_alignment_SRR3222409

bam_aligned
bam_aligned

collect_substream_SRR3222409

fastqc
substream

featcnt_s2ssin
feature_counts

indexindex

create_multiqc_report

download_apps untgz_appstgzapps

fastqFile_align_SRR3222409_1.chr11.fq.gz reads1
out

fastqFile_align_SRR3222409_2.chr11.fq.gz

reads2
out

fastqFile_fastqc_SRR3222409_1

fastqc_sample_SRR3222409_1

reads
out

fastqFile_fastqc_SRR3222409_2

fastqc_sample_SRR3222409_2
reads

out

in
done

in
done count_features

substream

untardone
done

untardone
done

Figure 7. Directed graph of work�ow processes in the RNA-Seq Pre-processing work�ow, plotted with SciPipe’s work�ow plotting function. Nodes represent
processes, while edges represent data dependencies. The labels on the edge heads and tails represent ports.

matically mapped, or multiplexed, onto physical threads in the
operating system. This means that very large numbers of go-
routines can be created while maintaining a low number of
operating system threads, such as one per CPU core on the
computer at hand. This makes Go an ideal choice for prob-
lems where many asynchronously running processes need to
be handled at the same time, or “concurrently”, and for mak-
ing e�cient use of multi-core CPUs.
The Go compiler is statically linking all its code as part of

the compilation. This means that all dependent libraries are
compiled into the executable �le. Because of this, SciPipe work-
�ows can be compiled into self-contained executable �les with-
out external dependencies apart from the Bash shell and any ex-
ternal command line tools used by the work�ow. This makes
deploying Go programs (and SciPipe work�ows) to production
very easy.
Go programs are very performant, often an order of magni-

tude faster than interpreted languages like Python, and in the
same order of magnitude as the fastest languages, like C, C++
and Java [62].

Data�ow and Flow-based programming

Data�ow is a programming paradigm oriented around the idea
of independent, asynchronously running processes, that only
talk to each other by passing data between each other. This
data passing can happen in di�erent ways, such as via data�ow
variables, or via �rst-in-�rst-out channels.
Flow-Based Programming (FBP) [63] is a paradigm for pro-

gramming developed by John Paul Morrison at IBM in the late
60s / early 70s, to provide a composable way to assemble pro-
grams to be run at mainframe computers at customers such as
large banks.
It is a specialized version of data�ow, adding the ideas

of separate network de�nition, named ports, channels with
bounded bu�ers and information packets (representing the
data) with de�ned lifetimes. Just as in data�ow, the idea is
to divide a program into independent processing units called
“processes”, which are allowed to communicate with the out-
side world and other processes solely via message passing. In
FBP, this is always done over channels with bounded bu�ers
which are connected to named ports on the processes. Impor-
tantly, the network of processes and channels is in FBP de-
scribed “separate” from the process implementations, mean-
ing that the network of processes and channels can be recon-
nected freely without changing the internals of processes.
This strict separation of the processes, the separation of

network structure from processing units, and the loosely-
coupled nature of its only way of communication with the out-
side world (message passing over channels) makes �ow-based
programs extremely composable, and naturally component-
oriented. Any process can always be replaced with any other
process that supports the same format of the information pack-
ets on its in-ports and out-ports.
Furthermore, since the processes run asynchronously, FBP

is, just like Go, very well suited to make e�cient use of multi-
core CPUs, where each processing unit can suitably be placed
in its own thread or co-routine to spread out on the avail-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lampa et al. | 11

able CPU-cores on the computer. FBP has a natural connec-
tion to work�ow systems, where the computing network in an
FBP program can be likened to the network of dependencies
between data and processing components in a work�ow [27].
SciPipe leverages the principles of separate network de�nition
and named ports on processes. SciPipe has also taken some
inspiration for its API design from the GoFlow [64] Go-based
�ow-based programming framework.

Availability of supporting source code and re-
quirements

• Project name: SciPipe
• Documentation and project home page: http://scipipe.org
• Source code repository: https://github.com/scipipe/scipipe
• Persistent source code archive:
https://doi.org/10.5281/zenodo.1157941

• Case study work�ows:
https://github.com/pharmbio/scipipe-demo

• Operating system(s): Linux, Unix, Mac
• Other requirements: Go 1.9 or later, Bash, GraphViz (for
work�ow graph plotting), LaTeX (for PDF generation)

• License: MIT

Availability of supporting data

• The raw data for the machine learning cheminformatics
demonstration pipeline is available at:
https://doi.org/10.5281/zenodo.1324443

• The applications for the machine learning in drug discovery
case study is available at:
https://doi.org/10.6084/m9.�gshare.3985674.v1

• The raw data and tools for the genomics and transcrip-
tomics work�ows are available at:
https://doi.org/10.5281/zenodo.1324426

Declarations

List of abbreviations

• API: Application programming interface
• CPU: Central processing unit (the core part of every com-
puter)

• CWL: Common Work�ow Language
• DSL: Domain-speci�c language
• EVM: Erlang virtual machine
• FBP: Flow-based programming
• HDFS: Hadoop distributed �le system
• HPC: High-performance computing
• RAM: Random access memory
• SVM: Support vector machine

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work has been supported by the Swedish strategic research
programme eSSENCE, the Swedish e-Science Research Centre
(SeRC), National Bioinformatics Infrastructure Sweden (NBIS),
and the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 654241 for the Phe-
noMeNal project.

Authors’ Contributions

OS and SL conceived the project and the idea of component-
based work�ow design. SL came up with the idea of using Go
and Flow-based programming principles to implement a work-
�ow library, designed and implemented the SciPipe library, and
implemented case study work�ows. MD contributed to the
API design and implemented case study work�ows. JA imple-
mented the TeX/PDF reporting function and contributed to case
study work�ows. OS supervised the project. All authors read
and approved the manuscript.

Acknowledgments

We thank Egon Elbre, Johan Dahlberg and Johan Viklund for
valuable feedback and suggestions regarding the work�ow API.
We thank Rolf Lampa for valuable suggestions on the audit log
feature. We also thank colleagues at pharmb.io and on the SciL-
ifeLab slack for helpful feedback on the API, and users on the
Flow-based programming mailing list for encouraging feed-
back.

References

1. Gehlenborg N, O’donoghue SI, Baliga NS, Goesmann A, Hi-
bbs MA, Kitano H, et al. Visualization of omics data for
systems biology. Nature methods 2010;7(3s):S56.

2. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim
D. Methods of integrating data to uncover genotype–
phenotype interactions. Nature Reviews Genetics
2015;16(2):85.

3. Marx V. Biology: The big challenges of big data. Nature
2013;498(7453):255–260.

4. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron
MJ, et al. Big data: Astronomical or genomical? PLoS
Biology 2015;13(7):1–11.

5. Spjuth O, Bongcam-Rudlo� E, Hernández GC, Forer L, Gio-
vacchini M, Guimera RV, et al. Experiences with work�ows
for automating data-intensive bioinformatics. Biology Di-
rect 2015;10(1).

6. Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus
R, Mangan M, et al. In: Galaxy: A Web-Based Genome
Analysis Tool for Experimentalists Hoboken: John Wiley &
Sons, Inc.; 2010. .

7. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L,
Shah P, et al. Galaxy: A platform for interactive large-scale
genome analysis. Genome Res 2005;15(10):1451–1455.

8. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L,
Shah P, et al. Galaxy: a platform for interactive large-scale
genome analysis. Genome Res 2005;15.

9. Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bell-
gard MI. Yabi: An online research environment for grid,
high performance and cloud computing. Source Code Biol
Med 2012;7(1):1–10.

10. Köster J, Rahmann S. Snakemake—a scalable bioinformat-
ics work�ow engine. Bioinformatics 2012;28(19):2520–
2522.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 | GigaScience, 2018, Vol. XX, No. X

11. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo
E, Notredame C. Next�ow enables reproducible computa-
tional work�ows. Nature Biotech 2017;35(4):316–319.

12. Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running
and managing bioinformatics pipelines. Bioinformatics
2012;28(11):1525–1526.

13. Brandt J, Bux M, Leser U. Cuneiform: a Functional
Language for Large Scale Scienti�c Data Analysis. In:
EDBT/ICDT Workshops; 2015. p. 7–16.

14. Novella JA, Emami Khoonsari P, Herman S, Whitenack D,
Capuccini M, Burman J, et al. Container-based bioinfor-
matics with Pachyderm. bioRxiv 2018;.

15. Bernhardsson E, Freider E, Rouhani A, spotify/luigi -
GitHub;. https://github.com/spotify/luigi, [Online; Ac-
cessed 3-July-2018].

16. Gorgolewski K, Burns C, Madison C, Clark D, Halchenko
Y, Waskom M, et al. Nipype: A Flexible, Lightweight and
Extensible Neuroimaging Data Processing Framework in
Python. Frontiers in Neuroinformatics 2011;5:13.

17. Gil Y, Ratnakar V. Dynamically Generated Metadata and
Replanning by Interleaving Work�ow Generation and Ex-
ecution. In: Semantic Computing (ICSC), 2016 IEEE Tenth
International Conference on IEEE; 2016. p. 272–276.

18. Rensin DK. Kubernetes-scheduling the future at cloud
scale 2015;.

19. Dahlberg J, Hermansson J, Sturlaugsson S, Larsson P. Ar-
teria: An automation system for a sequencing core facility.
bioRxiv 2017;.

20. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J,
Heuer M, et al. Common Work�ow Language, v1.0 2016
7;.

21. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J,
Novak A, et al. Toil enables reproducible, open source,
big biomedical data analyses. Nature biotechnology
2017;35(4):314.

22. Gaurav KaushiK and Sinisa Ivkovic and Janko Simonovic
and Nebojsa Tijanic and Brandi Davis-Dusenbery and
Deniz Kural. In: Rabix: an open-source work�ow executor
supporting recomputability and interoperability of work-
�ow descriptions;. p. 154–165.

23. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher
A, Joseph AD, et al. Adam: Genomics formats and pro-
cessing patterns for cloud scale computing. University of
California, Berkeley Technical Report, No UCB/EECS-2013
2013;207:2013.

24. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave
A, et al. Apache Spark: A Uni�ed Engine for Big Data Pro-
cessing. Commun ACM 2016 Oct;59(11):56–65.

25. Chansler R, Kuang H, Radia S, Shvachko K. The Hadoop
Distributed File System. In: 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST
2010)(MSST), vol. 00; 2010. p. 1–10.

26. Brandt J, Reisig W, Leser U. Computation semantics of the
functional scienti�c work�ow language Cuneiform. Jour-
nal of Functional Programming 2017;27:e22.

27. Lampa S, Alvarsson J, Spjuth O. Towards agile large-scale
predictive modelling in drug discovery with �ow-based
programming design principles. Journal of Cheminformat-
ics 2016;8(1):67.

28. Lampa S, SciPipe source code repository at GitHub;. https:
//github.com/scipipe/scipipe, [Online; Accessed 4-July-
2018].

29. Lampa S, Czygan M, Alvarsson J. scipipe/scipipe 2018 Jul;.
30. Douglas Crockford, JSON website;. http://json.org/, [On-

line; Accessed 16-July-2018].
31. Lampa e, SciPipe documentation;. http://scipipe.org,

[Online; Accessed 5-July-2018].
32. Gil Y, Garijo D. Towards Automating Data Narratives. Pro-

ceedings of the 22nd International Conference on Intelli-
gent User Interfaces - IUI ’17 2017;(February):565–576.

33. Carvalho LAMC, Essawy BT, Garijo D, Medeiros CB, Gil Y.
Requirements for Supporting the Iterative Exploration of
Scienti�cWork�ow Variants. 2017Workshop on Capturing
Scienti�c Knowledge (SciKnow) 2017;.

34. Breitenlohner P, The Thanh H, pdfTeX;. http://www.
tug.org/applications/pdftex, [Online; Accessed 25-July-
2018].

35. Missier P, Belhajjame K, Cheney J. The W3C PROV Fam-
ily of Speci�cations for Modelling Provenance Metadata.
In: Proceedings of the 16th International Conference on
Extending Database Technology EDBT ’13, New York, NY,
USA: ACM; 2013. p. 773–776.

36. Consortium WWW, et al. JSON-LD 1.0: a JSON-based seri-
alization for linked data 2014;.

37. Chirigati F, Rampin R, Shasha D, Freire J. ReproZip: Com-
putational Reproducibility With Ease. In: Proceedings of
the 2016 International Conference on Management of Data
SIGMOD ’16, New York, NY, USA: ACM; 2016. p. 2085–
2088.

38. Li H, Durbin R. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics 2009
15 Jul;25(14):1754–1760.

39. Dahlö M, Sco�eld DG, Schaal W, Spjuth O. Track-
ing the NGS revolution: managing life science research
on shared high-performance computing clusters. Giga-
Science 2018;7(5):giy028.

40. Lampa S, Alvarsson J, Arvidsson Mc Shane S, Berg A,
Ahlberg E, Spjuth O. Predicting O�-Target Binding Pro-
�les With Con�dence Using Conformal Prediction. Fron-
tiers in Pharmacology 2018;9:1256.

41. UPPMAX Sta�, The Rackham Cluster; (Accessed: 2019-
03-03). http://www.uppmax.uu.se/resources/systems/
the-rackham-cluster.

42. Yoo AB, Jette MA, Grondona M. SLURM: Simple linux util-
ity for resource management. In: Job Scheduling Strate-
gies for Parallel Processing Springer; 2003. p. 44–60.

43. Lyman, Cole, kleuren-scipipe-work�ow; (Ac-
cessed: 2019-03-03). https://github.com/Colelyman/
kleuren-scipipe-workflow.

44. Amstutz, Peter and Crusoe, Michael R and Tijanić, Nebojša,
Common Work�ow Language (CWL) Command Line Tool
Description, v1.0.2; (Accessed: 2019-03-03). https://www.
commonwl.org/v1.0/CommandLineTool.html.

45. Hayot-Sasson V, Glatard T, Rousseau ME, Evans AC, Kiar
G, Beck N, et al. Boutiques: a �exible framework to inte-
grate command-line applications in computing platforms.
GigaScience 2018 03;7(5).

46. Lampa S, Dahlö M, Alvarsson J, Spjuth O, SciPipe Demon-
stration work�ows source code repository at GitHub;.
https://github.com/pharmbio/scipipe-demo, [Online; Ac-
cessed 26-July-2018].

47. Alvarsson J, Lampa S, Schaal W, Andersson C, Wikberg JES,
Spjuth O. Large-scale ligand-based predictive modelling
using support vector machines. Journal of Cheminformat-
ics 2016;8.

48. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLIN-
EAR: A Library for Large Linear Classi�cation. Journal of
Machine Learning Research 2008;9(2008):1871–1874.

49. Faulon JL, Visco DP, Pophale RS. The signature molecular
descriptor. 1. Using extended valence sequences in QSAR
and QSPR studies. Journal of chemical information and
computer sciences 2003;43(3):707–720.

50. National Center for Biotechnology Information. PubChem
BioAssay Database 2017;.

51. Lampa S, Alvarsson J, Spjuth O, SciLuigi Case study
work�ow - GitHub;. https://github.com/pharmbio/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/spotify/luigi
https://github.com/scipipe/scipipe
https://github.com/scipipe/scipipe
http://json.org/
http://scipipe.org
http://www.tug.org/applications/pdftex
http://www.tug.org/applications/pdftex
http://www.uppmax.uu.se/resources/systems/the-rackham-cluster
http://www.uppmax.uu.se/resources/systems/the-rackham-cluster
https://github.com/Colelyman/kleuren-scipipe-workflow
https://github.com/Colelyman/kleuren-scipipe-workflow
https://www.commonwl.org/v1.0/CommandLineTool.html
https://www.commonwl.org/v1.0/CommandLineTool.html
https://github.com/pharmbio/scipipe-demo
https://github.com/pharmbio/bioimg-sciluigi-casestudy
https://github.com/pharmbio/bioimg-sciluigi-casestudy

Lampa et al. | 13

bioimg-sciluigi-casestudy, [Online; Accessed 30-July-
2018].

52. Science for Life Laboratory, Sarek - An open-source anal-
ysis pipeline to detect germline or somatic variants from
whole genome sequencing; (Accessed: 2018/06/01). http:
//opensource.scilifelab.se/projects/sarek/.

53. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N,
et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 2009;25(16):2078–2079.

54. Broad Institute, Picard Tools; (Accessed: 2018/06/01).
http://broadinstitute.github.io/picard/.

55. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K,
Kernytsky A, et al. The Genome Analysis Toolkit: a MapRe-
duce framework for analyzing next-generation DNA se-
quencing data. Genome Res 2010 Sep;20(9):1297–1303.

56. Andrews S, FastQC - A quality control tool for high
throughput sequence data; (Accessed: 2018/06/01). https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/.

57. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C,
Jha S, et al. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 2013;29(1):15–21.

58. Okonechnikov K, Conesa A, García-Alcalde F. Qual-
imap 2: advanced multi-sample quality control for
high-throughput sequencing data. Bioinformatics
2016;32(2):292–294.

59. Liao Y, Smyth GK, Shi W. featureCounts: an e�cient gen-
eral purpose program for assigning sequence reads to ge-
nomic features. Bioinformatics 2014;30(7):923–930.

60. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: sum-
marize analysis results for multiple tools and samples in
a single report. Bioinformatics 2016;32(19):3047–3048.

61. Go development team, Go FAQ: History of the project;.
https://golang.org/doc/faq#history.

62. Go development team, Go FAQ: Performance;. https://
golang.org/doc/faq#Performance.

63. Morrison JP. Flow-Based Programming: A new approach
to application development. 2nd ed. Charleston: Self-
published via CreateSpace; 2010.

64. Sibirov V, GoFlow source code repository at GitHub;. https:
//github.com/trustmaster/goflow, [Online; Accessed 16-
July-2018].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/pharmbio/bioimg-sciluigi-casestudy
http://opensource.scilifelab.se/projects/sarek/
http://opensource.scilifelab.se/projects/sarek/
http://broadinstitute.github.io/picard/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://golang.org/doc/faq#history
https://golang.org/doc/faq#Performance
https://golang.org/doc/faq#Performance
https://github.com/trustmaster/goflow
https://github.com/trustmaster/goflow

