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 17	

Abstract 18	

Background: Long thought “relics” of evolution, not until recently have pseudogenes been of 19	

medical interest regarding regulation in cancer. Often, these regulatory roles are a direct 20	

byproduct of their close sequence homology to protein coding genes. Novel pseudogene-gene 21	

functional associations can be identified through the integration of biomedical data, such as 22	

sequence homology, functional pathways, gene expression, pseudogene expression, and 23	

miRNA expression. However, not all of the information has been integrated, and the vast 24	

majority of previous pseudogene studies relied on 1:1 pseudogene-parent gene relationships 25	
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without leveraging other homologous genes/pseudogenes. Results: We produce pseudogene-1	

gene (PGG) families that expand beyond the current 1:1 paradigm. Firstly, we construct 2	

expansive PGG databases by i) CUDAlign GPU accelerated local alignment of all pseudogenes 3	

to gene families (totaling 1.6 billion individual local alignments and more than 40,000 GPU 4	

hours) and ii) BLAST-based assignment of pseudogenes to gene families. Secondly, we create 5	

an open-source web application (PseudoFuN) to search for integrative functional relationships 6	

of sequence homology, miRNA expression, gene expression, pseudogene expression, and 7	

gene ontology. We produce four “flavors” of databases (>462,000,000 pseudogene-gene 8	

pairwise alignments and 133,770 PGG families) that can be queried and downloaded using 9	

PseudoFuN. These databases are consistent with previous 1:1 pseudogene-gene annotation 10	

and also are much more powerful including millions of de novo pseudogene-gene associations. 11	

We find multiple known (e.g., miR20a-PTEN-PTENP1) and novel (e.g., miR375-SOX15- 12	

PPP4R1L) miRNA-gene-pseudogene associations in prostate cancer. PseudoFuN provides a 13	

“one stop shop” for identifying and visualizing thousands of potential regulatory relationships 14	

related to pseudogenes in TCGA cancers. Conclusions: Thousands of new pseudogene-gene 15	

associations can be explored in the context of miRNA-gene-pseudogene coexpression and 16	

differential expression with a simple-to-use online tool by bioinformaticians and oncologists 17	

alike. 18	

 19	

Keywords: Pseudogenes, database, functional prediction, gene regulation, network analysis, 20	

high performance computing, graphics processing unit, competing endogenous RNA 21	
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Background 1	

Pseudogenes were previously considered unimportant relics of evolution that played an unclear 2	

role in biological processes1. However, more pseudogenes have been discovered to be involved 3	

in gene regulation2-4. These regulatory relationships between pseudogenes and genes have 4	

increasingly been explored, such as the transcriptional regulation of PTEN by pseudogene 5	

PTENP1 in several cancer conditions5. PTEN acts as a tumor suppressor gene, which is 6	

underexpressed in gastric cancer. However by overexpressing PTENP1 in gastric cancer, both 7	

PTEN underexpression and cell proliferation are mitigated via the regulatory relationship 8	

between PTEN and PTENP16. Relationships between these pseudogenes and their parent 9	

genes have been found to play critical roles indicating functional potentials of these 10	

pseudogenes7,8. This point can most clearly be seen in the importance of sequence homology 11	

between pseudogenes and coding genes plays in competing endogenous RNA (ceRNA) 12	

networks9,10. In ceRNA networks the pseudogenes act as decoy targets for the miRNAs 13	

targeting a protein-coding gene. In short, researchers have made huge strides in understanding 14	

pseudogenes from genomic variation to functional potentials11,12, and from “deciphering” the 15	

mechanism of ceRNA networks13 to experimental validation14. 16	

 17	

With this progress, there has been renewed interest in pseudogenes, especially in relation to 18	

cancer15.  This interest has even uncovered biomarkers in human cancer including but not 19	

limited to SUMO1P3 upregulation as a diagnostic biomarker in gastric cancer and OCT4-pg4 20	

expression as a prognostic biomarker in hepatocellular carcinoma (HCC)16-18. Pseudogene 21	

expression has been used to stratify tumor subtypes in 7 distinct cancer types19. However, due 22	

to the close sequence homology between pseudogenes and their parent genes, identifying the 23	

expression profile unique to a pseudogene or highly homologous gene can be challenging. 24	

Efforts have been made to address these technical challenges in estimating pseudogene 25	

expression using modified alignment and quantification techniques20.  Perhaps more intriguingly 26	
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is that pseudogenes can be somatically acquired in cancer development effectively 1	

“representing a new class of mutations” that can be either activating or inactivating mutations 2	

which function as an “on/off switch”21,22. Specific pseudogenes have been implicated in specific 3	

cancers. For example, FTH1 regulates tumorgenesis in prostate cancer23, TP73-AS1 regulates 4	

proliferation in esophageal squamous cell carcinoma24, and NKAPP1/MSTO2P/RPLP0P2 is 5	

associated with poor prognosis in lung adenocarcinoma25. 6	

 7	

For these reasons, having a complete understanding of these pseudogene-gene relationships is 8	

important. While studying these relationships, a common conception is to only consider the 9	

pseudogenes in relation to their parent genes with highest homology7-9,26. There have also been 10	

pioneer studies probing pseudogene functions through aligning them to parent proteins 11	

(corresponding to the parent genes) and then to parent protein domains7,27,28.  12	

 13	

The conventional idea of single parent genes may not be comprehensive enough to model the 14	

complex phylogenetic relationships involving multiple genes and pseudogenes in a homolog 15	

family. While pseudogenes diverged from their parent genes distantly in the past, only the 16	

daughter protein-coding genes other than the original parent gene may now exist. The result is 17	

that aligning to the true phylogenetic parent gene itself may not be possible. For this reason, we 18	

advocate the use of homologous gene families rather than single parent genes to compare 19	

against pseudogenes. By viewing the homologies as a weighted network instead of a single 20	

scalar value we believe that new relationships can be uncovered. 21	

 22	

We build the pseudogene-gene (PGG) family databases using two methods: i) CUDAlign29 23	

based-local alignment of all pseudogenes to gene families (totaling 1.6 billion individual local 24	

alignments and more than 40,000 GPU hours). By aligning all pseudogenes to all gene families 25	

(CUDAlign), we can study underlying sequence homology and more easily set cutoffs to assign 26	
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pseudogenes to gene families. ii) BLAST 30-based assignment of pseudogenes to gene families. 1	

This provides a fast heuristic search option. BLAST derivative methods have been commonly 2	

used to find parent genes in previous pseudogene studies31,32. Using these two methods we 3	

show that these pseudogenes are usually assigned to the gene family of their parent genes but 4	

are often not exclusively so. Besides, most pseudogenes can be categorized into processed 5	

pseudogenes and unprocessed pseudogenes depending on whether they came from 6	

retrotranscription of mRNAs11,33,34. We take these differences into account using both of our 7	

methods (CUDAlign and BLAST). 8	

 9	

Furthermore, we make these data publically downloadable from GitHub35. We also create an R 10	

Shiny web application called PseudoFuN36 that supports querying the PGG databases, 11	

interactive visualization and functional analysis of the PGG networks, and visualization of 12	

pseudogene-gene co-expression and miRNA binding using The Cancer Genome Atlas and 13	

GTEx (Genotype-Tissue Expression) project derived public data20,37,38. Besides, we provide 14	

another interactive web app hosted by the Ohio Supercomputer Center39 (OSC), which supports 15	

querying novel sequences against any of our PGG databases and visualization of the resulting 16	

PGG networks. 17	

 18	

The PGG databases can be used to study pseudogene-gene-miRNA co-expression indicative of 19	

ceRNA networks across the entire Cancer Genome Atlas. With these diverse tools provided by 20	

PseudoFuN, it is possible to generate hypotheses regarding i) the regulatory roles of 21	

pseudogenes across tumor and normal tissue, ii) pseudogene-gene relationships through de 22	

novo reassignment of pseudogenes to gene families and iii) functional annotation of 23	

pseudogenes. We expect these databases and tools to have more use in cancer studies. 24	

 25	

Methods 26	
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Construction of Pseudogene-Gene (PGG) Database 1	

To generate these gene families, we use two methods: i) CUDAlign-based local alignment of 2	

pseudogenes against consensus sequences representing gene families, and ii) BLAST-based 3	

search of pseudogene sequences against all gene sequences (Figure 1). These two 4	

approaches can be thought of as heuristic but different processes. The local sequence 5	

alignment approach is heuristic in that only two gene sequences are used from each gene 6	

family to reduce the search space. These sequences are the most similar and representative 7	

sequences to all the other gene sequences in the family. The BLAST-based approach is 8	

heuristic in that not all sequences are fully aligned during the process due to the seed-and-9	

extend steps of BLAST40. The result is that not every relationship between pseudogene and 10	

gene family is recorded which is an advantage in runtime but a disadvantage in studying 11	

underlying sequence homology. 12	

 13	

i) CUDAlign-based local alignment of gene families 14	

Gene homolog families were generated using the Ensembl biomart gene homolog database41,42. 15	

The pairs of homologous genes were separated into connected components using python 16	

networkx package43. These connected component sub-graphs are considered gene families in 17	

this study. To reduce the number of alignments that needed to be performed, we selected 18	

consensus genes from each family that would be used to represent the entire family.  19	

 20	

The consensus sequences were selected by aligning every member of the gene family to every 21	

other member using local alignment with CUDAlign29. The two members of the family with the 22	

largest sum alignment scores across all other family members were selected as the consensus 23	

sequences to increase the number of candidate sequences. If only one member existed in the 24	

family, then that member was the consensus sequence. Using the list of these consensus 25	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 7	

sequences we then aligned every consensus sequences to every pseudogene in the human 1	

genome GRCh38 annotated by GENCODE Release 2544. 2	

 3	

Specifically the pseudogenes are split up into processed, unprocessed and other (unclear 4	

whether processed or unprocessed), based on their mechanisms of formation45. We performed 5	

different alignment procedures for processed and unprocessed pseudogenes respectively. The 6	

processed pseudogenes were aligned to all of the consensus gene transcripts with the highest 7	

local alignment score recorded. The unprocessed pseudogenes were aligned to the full genomic 8	

sequences of each of the consensus genes with the highest local alignment score recorded. 9	

Theoretically unprocessed pseudogenes can align to both exonic and intronic regions of DNA, 10	

while processed pseudogene can only align to exonic regions. In our previous database we did 11	

not perform this two-procedure strategy in part to reduce the runtime of the problem46. These 12	

changes make the database much more complete and biologically relevant. The other 13	

pseudogenes were aligned to both the transcripts and the genomic sequence recording the 14	

highest score.  15	

 16	

These scores, one for each combination of pseudogene to gene family, were stored for further 17	

analysis. Pseudogenes were assigned to families using a cutoff score (i.e., percentiles of the 18	

alignment scores per PGG alignment matrix) and a maximum number of assignments (i.e., the 19	

top four alignments above a cutoff). If greater than top four alignments were used, the PGG 20	

families were too large to calculate the pairwise alignment matrix. The resulting sets of 21	

pseudogenes and genes are called pseudogene-gene (PGG) families. This method was used to 22	

allow a pseudogene to be assigned multiple families as well as prevent pseudogenes from 23	

being assigned families if their alignment score was low. We used the 99th percentile cutoff 24	

(corresponding alignment score 54), 99.9th percentile cutoff (135), and the 99.99th percentile 25	

cutoff (198) to generate three resultant databases named CUDAlign54, CUDAlign135, and 26	
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CUDAlign198 respectively. All these flavors of databases are available for search in our web 1	

apps. 2	

 3	

ii) BLAST-based generation of PGG families 4	

In contrast to the local alignment of every combination of pseudogene to gene family, PGG 5	

families were also created by assigning the pseudogenes to the family containing its closest 6	

BLAST search match. This approach was used to contrast with the CUDAlign method, which 7	

uses up to the top 4 matches. The pseudogenes were separated into processed, unprocessed 8	

and other. Then, all genes in the GENCODE Release 25 annotation were used to generate 9	

genomic, transcript, and combined BLAST databases (blastdb). The processed pseudogenes 10	

would be blasted against transcript blastdb, unprocessed against the genomic sequence 11	

blastdb, and the rest pseudogenes were blasted against the combined genomic/transcript 12	

blastdb. The pseudogene was assigned to the gene family containing the best match from the 13	

BLAST search. 14	

 15	

Comparison between PGG families and pseudogene-parent gene pairs 16	

We also conduct a comparison to the Pseudogene.org resource47. In this comparison, we 17	

consider pseudogenes and parent gene pairs from pseudogene.org psiDr31 database (old)48 and 18	

on GENCODE Release 10 from pseudogene.org psiCube11 database (new)49. From our 19	

databases, we consider every combination of pseudogene to gene within a PGG family as a 20	

pair (for example, a family with 3 genes and 2 pseudogenes would have 𝐶!! = 6 pairs). Since we 21	

have multiple flavors of PGG databases including the BLAST-based version and the CUDAlign-22	

based versions, we compare the intersections between two Pseudogene.org versions and our 23	

BLAST/CUDAlign-based versions. We show the intersections of pseudogene-gene pairs in 24	

Venn Diagrams. 25	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 9	

 1	

Development of PseudoFuN web applications 2	

Aside from generating different flavors of the PGG databases, we assemble them into an online 3	

R Shiny application called PseudoFuN36 which supports gene and pseudogene symbol queries 4	

against out PGG databases, generates dynamic networks, produces Gene Ontology50 (GO) 5	

tables and additional functional analysis features (Table 1). The functionalities, such as 6	

calculating the gene co-expression for any resultant PGG network in any of the TCGA51 cancers 7	

types, are important for ceRNA network hypothesis generation in human cancers. For more 8	

information, please visit the PseudoFuN website and follow the README and tutorial. 9	

 10	

Additionally we create another web app hosted by the Ohio Supercomputer Center (OSC) 11	

OnDemand52 platform. This application has multiple functionalities including the query of 12	

Ensembl gene ID or a novel sequence against one selected flavor of our databases. For each of 13	

these features we provide a simple-to-use interface that allows users to select which database 14	

to query, allows download of the query hits, and allows users to interactively explore the PGG 15	

family networks including GO information. 16	

 17	

Use cases in multiple cancers 18	

Furthermore three use cases are provided to show the potential utility of PseudoFuN to 19	

researchers and oncologists looking for functional relationships between pseudogenes, genes, 20	

and miRNAs. Use Case I validates known pseudogene-gene functional relationships. Use Case 21	

II identifies high confidence novel miRNA-pseudogene-gene relationships. Use Case III is 22	

primarily focused on agreement with a validation study. We focused on pseudogenes/genes that 23	

were differentially expressed in low RARG/low TACC1/high miR-96 compared to the reverse in 24	

prostate cancer cell lines and also differentially expressed in our PGG networks in TCGA 25	

prostate cancer samples. 26	
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 1	

Results 2	

Local alignment of gene families 3	

We performed 1.6 billion local alignments between all pseudogenes and all gene family 4	

consensus sequences. The process required over 40,000 GPU hours on the Oakley cluster at 5	

the OSC. The highest scores for each gene family and pseudogene were stored in a 6	

17,273x26,754 matrix of pseudogene-to-gene-family alignment scores (~462 million elements). 7	

From this matrix, we are able to explore global pseudogene-gene family homology relationships 8	

and assign pseudogenes to one or more gene families with high sequence homology. 9	

 10	

As one might expect, the number of pseudogenes with high alignments (defined as above a 11	

percentile threshold) to many gene families is relatively low. It can be seen that the majority of 12	

pseudogenes will align to one gene family in the CUDAlign databases (Figure 2). Another 13	

feature of note is that there are some pseudogenes that align to many gene families (e.g., 9 14	

pseudogenes have alignment scores above 54 in 15,000 gene families and 571 pseudogenes 15	

have alignment scores above 54 in 1,000 gene families). In contrast to previous belief in single 16	

gene-pseudogene homology, some pseudogenes are related to many genes. It is worth 17	

considering that these high homology pseudogenes (e.g., FTLP10 with 3,006 gene family 18	

pairwise alignments over a 54 threshold) may have a role in regulating major biological 19	

processes53 and disease54. 20	

 21	

BLAST generation of PGG families 22	

The BLAST generated database was larger than the CUDAlign generated databases with 23	

68,578 total connections. This database was also much simpler to compute with since it was not 24	

an exhaustive search. These conclusions make it a simple method to quickly estimate the 25	

pseudogene-to-gene relationships. 26	
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 1	

Direct comparison to pseudogene parents 2	

We compare our databases to the previous pseudogene-parent gene databases retrieved from 3	

Pseudogene.org resources (Figure 3). It shows that our methods reconstruct most of the 4	

pseudogene-parent-gene relationships identified by Pseudogene.org. The overall consistency of 5	

our databases (BLAST and CUDAlign) with both Pseudogenes.org databases (new and old) 6	

was 75% (i.e., all our databases combined). Individually, the BLAST-based database contained 7	

61% of the Pseudogene.org relationships (both new and old) and the CUDAlign 54 cutoff 8	

contained 60% of the Pseudogene.org relationships (both new and old). Our databases also 9	

generate a larger pool of possible interactions. 10	

 11	

Development of a pseudogene query tool 12	

The R Shiny application is a comprehensive hypothesis generating tool that is freely available 13	

on the internet36. This tool provides a wide array of functionality that a researcher can access 14	

quickly and download results as the raw data for more in-depth analysis. These features are 15	

outlined in detail in Table 1. 16	

 17	

Use Cases: Assisting functional study of ceRNA networks in cancer 18	

To illustrate the utility of our databases and tools we present three use cases. 19	

 20	

Use Case I: To validate known pseudogene-gene relationships we query pseudogenes or 21	

genes of interest individually, e.g., PTENP1, or KRASP1, FTH1P1, GBP1P1. We query a 22	

gene/pseudogene name one at a time, PseudoFuN will return the top PGG network(s) that 23	

contain the query (Figure 4). PTENP1 is a processed pseudogene homologous to PTEN, a 24	

tumor suppressor gene. PTENP1 is selectively lost in cancer and may regulate PTEN 25	

expression as a miRNA decoy target5,6. We have observed differential co-expression patterns of 26	
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	 12	

PGG families in tumor vs. normal for PTENP1 network in multiple cancers including prostate 1	

cancer (Supplementary Figure 2B,C). We identified known miRNAs (hsa-miR-20a in prostate 2	

cancer55) targeting PTEN PGG network nodes providing insights into ceRNA regulation 3	

(Supplementary Figure 2D). These insights are important since some pseudogenes 4	

competitively bind to miRNAs thus regulate gene expression. We also identify hsa-miR103a-3p 5	

as potentially targeting both PTEN and PTENP1 (Supplementary Figure 2D). The ceRNA 6	

network regulatory relationship is governed by effect modulation of miRNA on gene expression 7	

by pseudogene expression (Supplementary Figure 1A,C,E). This leads to a correlation between 8	

pseudogene (miRNA decoy targets) and gene (miRNA targets) expression (Supplementary 9	

Figure 1D). That means both these pseudogenes and homologous genes competitively bind to 10	

miRNAs. KRAS-KRASP1 regulatory network was also identified by our database (Figure 4). 11	

KRAS and KRASP1 are known to be involved in ceRNA network regualtion5,10,55. PseudoFuN 12	

query of KRAS identified co-expression patterns in prostate cancer consistent with ceRNA 13	

network regulation by hsa-miR-145, a known modulator of KRAS in prostate cancer56. The 14	

FTH1 query also resulted in the identification of pseudogenes (FTH1P2, FTH1P8, FTH1P11, 15	

FTH1P16) that regulate FTH1 in prostate cancer23 as well novel miRNAs that may be involved 16	

in ceRNA network regulation of FTH1 in prostate cancer. GBP1 is an IFN-α induced transcript 17	

that is involved in immune response in prostate cancer57. The GBP1 involved PGG network also 18	

contained the pseudogene GBP1P1 which may have a ceRNA regulatory role in breast cancer58 19	

and in some neurodegenerative diseases59. 20	

 21	

Use Case II: We wanted to identify possible gene-miRNA relationships of interest within our 22	

database. We chose to study these relationships with respect to miR-96, a known cancer 23	

regulator microRNA in prostate cancer60. Through differential expression analysis between 24	

tumors in the TCGA-PRAD cohort with lower expression of RARG and TACC1 (also a miR-96 25	

target) and high expression miR-96 (low RARG/low TACC1/high miR-96), compared to the 26	
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reverse, we previously identified altered SOX15 gene expression is significantly associated with 1	

worse disease free survival. We visualized expression patterns of SOX15 PGG families, and 2	

corresponding miRNA associations. miR-96 is included as a validation.  3	

 4	

Interestingly we identified the pseudogene PPP4R1L as a potential member of a SOX15 ceRNA 5	

network (Figure 5A). PPP4R1L and SOX15 are both significantly differentially expressed 6	

between tumor and normal controls (Bonferroni corrected p-value = 3.42×10-7, 2.01×10-14 7	

respectively, Figure 5E). PPP4R1L and SOX15 are significantly co-expressed (Pearson 8	

correlation coefficient (PCC)=0.51, p-value<2.2×10-16) in tumor tissue but much less correlated 9	

in normal controls in prostate cancer (PCC=0.24, p-value=0.09, Figure 5B,C). Positively 10	

correlated expression is an assumption when determining ceRNA network relationships61 11	

(Supplementary Figure 1). Both SOX15 and PPP4R1L are likely regulated by hsa-miR-375 12	

based on the TCGA prostate cancer dataset. hsa-miR-375 is associated with docetaxel 13	

resistance in prostate cancer62,63 and PPP4R1L knock-down in HeLa cells induces taxol 14	

resistance64. These findings are intriguing since taxol and docetaxel are closely related chemical 15	

compounds. PPP4R1L is also located in a region associated with high mutation rates in cancer 16	

cell lines64 which could be indicative of mutational “on/off switches” in pseudogene regulation.  17	

 18	

Use Case III: We were most interested in the deferentially expressed (DE) genes (and related 19	

pseudogenes) that both appeared in our PGG database and were contained in networks with 20	

genes differentially expressed in low RARG/low TACC1/high miR-96 compared to vice versa. 21	

We searched the DE genes in our PGG database, and identified the top networks with enriched 22	

number of DE genes. As a result, parent genes HTR7, CNN2, MSN and TAGLN2 are 23	

differentially expressed; they generate pseudogenes, which are specifically expressed in 24	

prostate cancer samples16. These four parent genes are also detected in our 5 top PGG families 25	

involving miR-96 regulated (direct or indirect) DE genes. We identified HTR7P1 pseudogene in 26	
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the same PGG family as HTR7 gene, which is potentially regulated by hsa-miR-607 and has-1	

miR-3654 in the TCGA prostate cancer dataset (Supplementary Figure 3). 11 CNN2 2	

pseudogenes (CNN2P1-CCN2P4, CNN2P6-CNN2P12) were identified in the CNN2 PGG family 3	

along with TAGLN2 and TAGLN2P1. TAGLN2P1 is differentially expressed between the tumor 4	

and normal samples in the prostate dataset (Supplementary Figure 4, Bonferroni corrected p-5	

value = 6.23×10-4). MSN and MSNP1 were in the same PGG family and hsa-miR-96 potentially 6	

regulates MSN in the TCGA prostate cancer dataset (Supplementary Figure 4). In addition, 7	

although our DE genes were detected from prostate cancer, we further compared them with DE 8	

pseudogenes identified in four other cancer types and we observed interesting results (see 9	

Supplementary Materials - Potential regulatory roles in cancer). 10	

 11	

Discussion 12	

We identify 133,770 PGG families that have significant potential to reveal important information 13	

about regulatory pseudogene-gene relationships in health and disease. Within these families we 14	

identify both new and existing regulatory networks that contain pseudogenes such as PTENP1, 15	

KRAS1P, FTH1P8/11/16, and GBP1P1 (Figure 4). Since all genes and all pseudogenes are 16	

included in our database there are thousands of opportunities to identify new regulatory 17	

relationships. These thousands of opportunities can be easily stratified using gene name, 18	

pseudogene name and cancer type. Our web application makes it a simple and intuitive process 19	

to query pseudogenes (or genes) to identify which gene families they may be regulating as well 20	

as the functions that are attributed to the members of the network. We also have an application 21	

hosted by the OSC that allows the querying of novel sequences against our database. 22	

 23	

From these networks, we can also identify possible relationships of differentially expressed 24	

pseudogenes in various cancers. For instance, both PPP4R1L pseudogene and SOX15 are 25	

differentially expressed in prostate cancer and associated with hsa-miR-375. These types of 26	
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relationships should be further evaluated along with more complex regulation with multiple 1	

miRNAs, pseudogenes, and genes. It is experimentally shown that SOX15 is regulated by hsa-2	

miR-9660. It may be important to include hsa-miR-96 in the hsa-miR-375-SOX15-PPP4R1L 3	

potential ceRNA network. Aside from PGG family specific differential pseudogene expression, 4	

the PseudoFuN app allows for comprehensive differential pseudogene expression (DPgE) 5	

analysis in any of the TCGA cancer datasets. 6	

 7	

The use of this database also has utility in integrative analysis where the databases can be 8	

used as a mask for other data modalities. Some examples would be using the nodes (genes 9	

and pseudogenes) in each of the PGG families as groups in gene expression experiments. 10	

Similarly, these groups could be used for feature reduction when visualizing data. We hope 11	

researchers can use these relationships we have identified to reduce large numbers of 12	

candidate associations down to numbers that can be easily validated and generate new 13	

candidates when querying novel sequences. For instance, miRNA-gene pairs filtered through 14	

the sets of PGG families would identify high priority ceRNA candidates. 15	

 16	

Conclusions 17	

We generate multiple large databases of pseudogene gene family relationships and the tools to 18	

study them for use by biomedical researchers. These databases are more comprehensive than 19	

previous pseudogene-gene databases by including many more homology relationships in PGG 20	

families, thus more powerful for experiment validation and knowledge discovery. These 21	

databases are useful in identifying pseudogene-gene regulatory relationships in 32 cancer types 22	

and show high similarity with known pseudogene-gene relationships. Aside from the known 23	

relationships we identify many unknown relationships. Furthermore, these databases and 24	

associated analyses can be easily accessed online or through the OSC OnDemand platform, 25	

allowing for novel hypotheses to be assessed quickly by biomedical researchers. We find 26	
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evidence of both known regulatory pseudogene-gene relationships and novel hypothesized 1	

relationships that we plan to validate. PseudoFuN is a comprehensive, dynamic tool that allows 2	

any bioinformatician or oncologist to find novel regulatory pseudogenes within their cancer or 3	

gene of interest. 4	

 5	

Availability of Supporting Data 6	

We have made the PGG family data publically downloadable from GitHub35. We also created an 7	

R Shiny web application called PseudoFuN36 that supports querying the PGG databases, 8	

interactive visualization and functional analysis of the PGG networks, and visualization of 9	

pseudogene-gene co-expression and miRNA binding. Besides, we provide another interactive 10	

web app hosted on Ohio Supercomputer Center (OSC) OnDemand, which supports querying 11	

novel sequences against any of our PGG databases and visualization of the resulting PGG 12	

networks. 13	

 14	

Additional Files 15	

There is an additional Supplementary Materials file containing additional information on the data 16	

and additional analyses. It includes the following figures and tables: 17	

Supplementary Figure 1. Example of ceRNA network regulation of gene expression. A) A 18	

graphical view of how pseudogene expression can regulate gene expression. B) A cellular view 19	

of ceRNA network regulation. C) Equations used to model the correlation between gene and 20	

pseudogene expression in a ceRNA network. D) The distribution of the gene-pseudogene 21	

correlations based on the models in C. E) The effect that pseudogene expression has on the 22	

miRNA induced change in gene expression. 23	

Supplementary Figure 2. PseudoFuN online output for PTEN PGG family. A) Interactive 24	

graph visualization of the PTEN PGG network. B) TCGA prostate co-expression matrix for 25	
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PTEN PGG family genes and pseudogenes across normal samples. C) TCGA prostate co-1	

expression matrix for PTEN PGG family genes and pseudogenes across tumor samples. D) 2	

Negatively correlated miRNAs for all members of the PTEN PGG family. E) Differential gene 3	

and pseudogene expression for tumor and normal samples for each member of the PTEN PGG 4	

family in the prostate cancer TCGA dataset. 5	

Supplementary Figure 3. PseudoFuN online output for HTR7 PGG family. A) Interactive 6	

graph visualization of the HTR7 PGG network. B) TCGA prostate co-expression matrix for 7	

HTR7 PGG family genes and pseudogenes across normal samples. C) TCGA prostate co-8	

expression matrix for HTR7 PGG family genes and pseudogenes across tumor samples. D) 9	

Negatively correlated miRNAs for all members of the HTR7 PGG family. E) Differential gene 10	

and pseudogene expression for tumor and normal samples for each member of the HTR7 PGG 11	

family in the prostate cancer TCGA dataset. 12	

Supplementary Figure 4. PseudoFuN online output for CNN2/TAGLN2 PGG family. A) 13	

Interactive graph visualization of the CNN2/TAGLN2 PGG network. B) TCGA prostate co-14	

expression matrix for CNN2/TAGLN2 PGG family genes and pseudogenes across normal 15	

samples. C) TCGA prostate co-expression matrix for CNN2/TAGLN2 PGG family genes and 16	

pseudogenes across tumor samples. D) Negatively correlated miRNAs for all members of the 17	

CNN2/TAGLN2 PGG family. E) Differential gene and pseudogene expression for tumor and 18	

normal samples for each member of the CNN2/TAGLN2 PGG family in the prostate cancer 19	

TCGA dataset. 20	

Supplementary Figure 5. PseudoFuN online output for MSN PGG family. A) Interactive 21	

graph visualization of the MSN PGG network. B) TCGA prostate co-expression matrix for MSN 22	

PGG family genes and pseudogenes across normal samples. C) TCGA prostate co-expression 23	

matrix for MSN PGG family genes and pseudogenes across tumor samples. D) Negatively 24	
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correlated miRNAs for all members of the MSN PGG family. E) Differential gene and 1	

pseudogene expression for tumor and normal samples for each member of the MSN PGG 2	

family in the prostate cancer TCGA dataset. 3	

Supplementary Figure 6. The PGG families in our network with the most DE genes after 4	

mir-96 treatment. The line weights indicate the sequence homology between members of the 5	

PGG family. Red nodes indicate mir96 targets. Yellow nodes with names indicate other genes 6	

contained in the PGG family. Yellow nodes without names are pseudogenes contained within 7	

the network. 8	

Supplementary Figure 7. The user interface of the OSC OnDemand web application. A) is 9	

the main query page where a user can search either sequences or ensemble gene IDs. B) is a 10	

representative output of one of the gene searches. This includes an interactive network and the 11	

GO information. 12	

Supplementary Figure 8. GBP1P1 DE in TCGA prostate cancer (information retrieved from 13	

Han et al.). 14	

Supplementary Table 1. DE parent gene/pseudogenes potentially regulated by miRr-96 in 15	

prostate cancer vs. TCGA derived DE pseudogenes.  16	

Abbreviations 17	

PseudoFuN: Pseudogene Functional Networks 18	

PGG: Pseudogene-Gene (i.e., PGG families) 19	

TCGA: The Cancer Genome Atlas 20	

ceRNA: Competing Endogenous RiboNucleic Acid 21	

HCC: HepatoCellular Carcinoma 22	

BLAST: Basic Local Alignment and Search Tool 23	

OSC: Ohio Supercomputer Center 24	
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GO: Gene Ontology 1	

DE: Differential Expression 2	

DGE: Differential Gene Expression 3	

DPgE: Differential Pseudogene Expression 4	
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Figure Captions 1	

Figure 1. Workflow for both CUDAlign and BLAST databases. Left side PGG families are 2	

produced using the BLAST matches. Right side PGG families are produced using the 3	

pseudogene-gene-family alignment matrix with percentile cutoffs using CUDAlign.	4	

Figure 2. The number pseudogenes that align to gene families. The x-axis is the number of 5	

gene families which have an alignment score above a specified cutoff (the different colored 6	

lines). The y-axis is the number of pseudogenes with an alignment score higher than the cutoff 7	

to the number of gene families on the x-axis. The inset grey box is a closer view of the low 8	

range gene family numbers (1-10) to show more granular patterns.	9	

Figure 3. Comparison of database members. The top 6 plots are comparisons between the 10	

CUDAlign databases using different cutoffs, the BLAST database, and the Pseudogene.org 11	

parent genes. The bottom row shows intra-database comparisons, left: Pseudogene.org, 12	

middle: CUDAlign databased of different alignment score cutoffs, right: relative size of all 13	

databases.	14	

Figure 4. Representative examples of our OSC OnDemand pseudogene query tool. 15	

Displayed are the network relationships from our databases for three common ceRNA network 16	

examples (queries: FTH1, KRAS, PTEN), and a relationship of interest (GBP1-GBP1P1).	17	

Figure 5. PseudoFuN online output for SOX15 PGG family. A) Interactive graph visualization 18	

of the SOX15 PGG network. B) TCGA prostate co-expression matrix for SOX15 PGG family 19	

genes and pseudogenes across normal samples. C) TCGA prostate co-expression matrix for 20	

SOX15 PGG family genes and pseudogenes across tumor samples. D) Negatively correlated 21	

miRNAs for all members of the SOX15 PGG family. E) Differential gene and pseudogene 22	

expression for tumor and normal samples for each member of the SOX15 PGG family in the 23	

prostate cancer TCGA dataset. 24	
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Tables 1	

Table 2. Summary of PseudoFuN features that are freely available at the PseudoFuN website. 2	

PseudoFuN features Additional description 
Interactive visualization of PGG family 
networks including the query 
pseudogene/gene 

Users can query any single gene or 
pseudogene symbol, e.g., PTENP1. 
Nodes are colored by sub-clusters within 
the network. 

Functional enrichment analysis of PGG 
family 

Functional enrichment can be conducted 
on the genes within the PGG family on 
Biological Process, Molecular Function or 
Cellular Components annotations. The GO 
functional enrichment is calculated with: 
1. Fisher’s exact test65 
2. Kolmogorov-Smirnov (KS) Classic66 
3. Kolmogorov-Smirnov (KS) Elim66 

Genomic loci mapping of PGG family  The genes in the PGG family can be 
mapped back to the genome using a circus 
plot to identify potential loci of interest. 

Data download for all of the figures 
 

Users can also download results including: 
1. the differential pseudogene expression 
(DPgE) table for all pseudogenes in the 
selected cancer 
2. the gene and pseudogene expression 
3.  miRNA correlation table 

Links to other gene databases for more 
information 

By directly clicking the node in the network, 
users can open the GeneCards website67 
for detailed gene information. 

Gene/pseudogene co-expression analysis 
across the entire TCGA 

Once a PGG family has been identified the 
gene/pseudogene co-expression matrix is 
calculated across one of the 32 available 
TCGA cancer types. 

Tumor vs. normal differential expression of 
genes/pseudogenes across all TCGA 
cancer types 

The gene/pseudogene differential 
expression is calculated for all members of 
the selected PGG family. There is also an 
option to run differential expression on a 
specified cancer for all pseudogenes which 
can be viewed or downloaded as a table. 

Predicted miRNA targets involved in the 
PGG families across all TCGA cancer 
types 

The miRNA targets involved in the 
selected cancer and PGG family are 
displayed to show which miRNAs could 
regulate the PGG family members. This is 
by using the miRNA correlation tables from 
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the TCGA. 
Differential Pseudogene Expression 
(DPgE) Analysis 

Differential pseudogene expression is 
calculated for each of the pseudogenes in 
TCGA cancers using dreamBase 
expression information20. The online tool 
allows for manipulation and download of 
the table.  
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Sept	22,	2018	
	
Dear	Colleagues,	
	
We	are	excited	to	present	our	new	resource	PseudoFuN	
(https://integrativeomics.shinyapps.io/pseudofun_app/)	for	consideration	of	publication	in	
GigaScience.	Here	we	submit	the	manuscript	entitled	"PseudoFuN:	Deriving	functional	
potentials	of	pseudogenes	from	integrative	relationships	with	genes	and	miRNAs	across	32	
cancers".	
	
In	the	past	1.5	years,	we	have	been	working	on	generating	comprehensive	pseudogene-
gene	(PGG)	family	databases.	Unlike	previous	pseudogene-gene	databases	which	
conventionally	only	considered	the	1:1	pseudogene-parent	gene	pairs,	we	considered	all	the	
homologous	genes	and	pseudogenes	as	a	PGG	family.	We	believe	PGG	families	are	more	
comprehensive	in	modeling	evolutionary	relationship	and	functional	relationships	of	
pseudogenes	and	genes.	
	
These	PGG	families	can	be	used	as	input	to	study	gene-pseudogene-miRNA	co-expression	
indicative	of	ceRNA	networks	(e.g.,	across	the	entire	Cancer	Genome	Atlas),	individually	
downloaded	with	pairwise	sequence	homology,	mapped	to	functional	annotation,	and	
mapped	back	to	the	genomic	location.	With	these	databases	and	tools	provided	by	
PseudoFuN,	it	is	possible	to	generate	hypotheses	regarding	i)	the	regulatory	roles	of	
pseudogenes	across	tumor	and	normal	tissue,	ii)	pseudogene	gene	relationships	through	
our	de	novo	reassignment	of	pseudogenes	to	gene	families	and	iii)	functional	annotation	of	
pseudogenes.	We	expect	our	databases	and	tools	to	have	more	applications	in	cancer	
studies.	
	
Best,	
Yan	
	
--	
Yan	Zhang,	Ph.D.	
Assistant	Professor	
Department	of	Biomedical	Informatics	
College	of	Medicine	
The	Ohio	State	University	
310-B	Lincoln	Tower,	1800	Cannon	Drive,	Columbus,	OH	43210	
Phone:	(614)	688-9643	|	Email:	Yan.Zhang@osumc.edu	
https://medicine.osu.edu/bmi/people/yan_zhang/Pages/index.aspx	
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