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Abstract: Background: Long thought “relics” of evolution, not until recently have pseudogenes
been of medical interest regarding regulation in cancer. Often, these regulatory roles
are a direct byproduct of their close sequence homology to protein coding genes.
Novel pseudogene-gene functional associations can be identified through the
integration of biomedical data, such as sequence homology, functional pathways, gene
expression, pseudogene expression, and miRNA expression. However, not all of the
information has been integrated, and the vast majority of previous pseudogene studies
relied on 1:1 pseudogene-parent gene relationships without leveraging other
homologous genes/pseudogenes. Results: We produce pseudogene-gene (PGG)
families that expand beyond the current 1:1 paradigm. Firstly, we construct expansive
PGG databases by i) CUDAlign GPU accelerated local alignment of all pseudogenes to
gene families (totaling 1.6 billion individual local alignments and more than 40,000
GPU hours) and ii) BLAST-based assignment of pseudogenes to gene families.
Secondly, we create an open-source web application (PseudoFuN) to search for
integrative functional relationships of sequence homology, miRNA expression, gene
expression, pseudogene expression, and gene ontology. We produce four “flavors” of
databases (>462,000,000 pseudogene-gene pairwise alignments and 133,770 PGG
families) that can be queried and downloaded using PseudoFuN. These databases are
consistent with previous 1:1 pseudogene-gene annotation and also are much more
powerful including millions of de novo pseudogene-gene associations. For example,
we find multiple known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-
SOX15- PPP4R1L) miRNA-gene-pseudogene associations in prostate cancer.
PseudoFuN provides a “one stop shop” for identifying and visualizing thousands of
potential regulatory relationships related to pseudogenes in TCGA cancers.
Conclusions: Thousands of new pseudogene-gene associations can be explored in the
context of miRNA-gene-pseudogene co-expression and differential expression with a
simple-to-use online tool by bioinformaticians and oncologists alike.
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Response to Reviewers: Response Letter (We recommend reading the pdf version Giga_reviews_20181212.pdf
for clearer format.)

We thank the reviewers for their insightful comments and believe that after addressing
each comment the manuscript is stronger. Please see the reviewers’ comments and
our responses below to see specifically how all of the concerns were addressed. We
have highlighted all our answers in red color. We also highlight in red color all the
changes in the main text.

    Reviewer #1: The role of pseudogenes in the modulation of gene regulation is a
burgeoning field that is ideally placed to benefit from integrative approaches that utilise
"big data" that is currently available. A user friendly tool such as PseudoFun is
therefore of use as a possible discovery mechanism for new relationships. Not having
used PsuedoFun at this stage, it is difficult to fully evaluate its performance, though the
approach described appears useful and the presentation of new relationships such as
that suggested between PPP4RiL, SOX15 and miR-375 highlight a potential to identify
new avenues for further investigation. I have only minor suggestions for improvement
in presentation.
    1) In Figure 5 (and much of the supplementary figures presented in a similar
fashion), is the miRNA associated directly targeting the gene/pseudogene. Visually,
only a correlative expression relationship is indicated.

Answer: We appreciate the reviewer’s feedback. In Figure 5 (currently Figure 4), the
miRNAs associated with gene/pseudogene were determined by not only expression
correlation but also miRNA target prediction databases: Miranda, PicTar and
TargetScan. We downloaded the predictions from http://gdac.broadinstitute.org.
According to the reviewer’s comment, we have improved the miRNA section on the
TCGA Expression panel of the website. The website now allows the user to select how
many algorithms predict regulation of the gene/pseudogene by the miRNA. This value
is used as a threshold for the displayed miRNAs. The default is 0 meaning that the
miRNA and gene/pseudogene are significantly negatively correlated indicative of
possible regulation. The value can be changed from 0-3 indicating the number of
algorithms (Miranda, PicTar, and TargetScan) predict regulation of gene/pseudogene
by the specified miRNA.

    2) Figure 4 does little to add clarity. If the goal is to highlight regulatory relationships,
the ENSTxxx labelling does not lend for easy interpretation and the miRNAs are not
shown. If the intended purpose is to illustrate a style at which data is outputted,
perhaps this is better served by a user friendly series of screenshots illustrating a
beginning to end data query - result flow?

Answer: We agree with the reviewer that containing only ENSTxxx labelling does not
facilitate illustration. We use easy-to-interpret gene names and links to other gene
databases (e.g. GeneCards, Ensembl) to improve the usability of our PseudoFuN
website (https://integrativeomics.shinyapps.io/pseudofun_app/), and we have improved
the visualization according the reviewers’ suggestions. The old Figure 4 is not from our
public PseudoFuN version, instead it is from our supercomputer version located on the
Ohio Supercomputer Center clusters and is meant mainly for research purposes. Since
it is not exactly the version we mainly presented in the main text, which has much more
user-friendly interface with interpretable gene names, we moved the old Figure 4 to the
supplementary materials so that it does not detract from the usability of the main
application freely available online.

    3) In Figure 5 and some supplementary figures, co-expression visually is not well
represented by the colour scheme. ie: the tumour relationship between PPP4R1L and
SOX15. The stats support this, the visual representation less so. Perhaps blanking out

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



the 1:1 same gene : same gene diagonal would allow re-setting of the colour scheme
to better represent co-expression?

Answer: This insightful comment by the reviewer caused us to rethink our visualization.
We changed the same gene/pseudogene correlation (1.0) along the diagonal line in
the heatmap to NaN so that the visualization ignores those values. This allows the
range of color for the other correlations to be more diverse and more informative to the
users.

    4) In paragraph 2 of the results, I was unclear what the "alignment score above 54"
means... What degree of alignment is this? I found understanding this to be hard to
gauge. Relating to this, could the authors comment more extensively on their findings
of tremendous levels of alignment for some pseudogenes?

Answer: We agree with the reviewer that we should more fully explain the alignment
scores in the manuscript and as a result explain in more detail what the alignment
scores represent in paragraph 2 of the results:
“We evaluate alignment of pseudogenes to genes using the Smith-Watermann local
pairwise alignment score56 between a pseudogene and a gene. These scores indicate
the highest score possible for two sequences based on their specific dynamic
programing matrix which is solved by the Smith-Watermann algorithm. The cutoffs we
use, 18, 54, 135, and 198, indicate the 97.50th, 99.0th, 99.90th and 99.99th percentiles
of alignment scores in our alignment matrix between all pseudogenes and consensus
sequences.”

We have also performed more in-depth analysis on the high homology pseudogenes
and described these findings in more detail in paragraph 2-3 of Results. Specifically,
we found zinc finger pseudogenes and other domain binding patterns in the highest
homology pseudogenes. We found large bodies of evidence that the high homology
pseudogenes have either direct or indirect relationships with zinc finger genes.
In Results paragraph 2:
“Another feature of note is that there are some pseudogenes that align to many gene
families (e.g., 9 pseudogenes, UBE2Q2P1, RP11-313J2.1, TPTEP1, BMS1P1, CTD-
2245F17.3, SCAND2P, GTF2IP7, WHAMMP3, IGLV3-2, have alignment scores above
54 in 15,000 gene families and 571 pseudogenes, see Supplementary Table 2, have
alignment scores above 54 in 1,000 gene families).”
In Results paragraph 3:
“Of the 9 highest homology pseudogenes (Supplementary Table 2), one, RP11-
313J2.1, is a zinc finger pseudogene and two, CTD-2245F17.3 and SCAND2P, are
located in the promoters of zinc finger genes. Four pseudogenes in the 9 highest
homology pseudogenes (RP11-313J2.1, CTD-2245F17.3, SCAND2P, and
WHAMMP3) also have 92-96% sequence identity with zinc finger genes (ZNF72P,
ZNF518A, ZNF37A and ZNF788P/ZNF20 respectively) when BLAST searched against
the human genome. Of the 571 highest homology pseudogenes (Supplementary Table
2), we found 27 zinc finger pseudogenes. Using EnrichR59 we identified enrichment in
GO Molecular Function GO:0004430 1-phosphatdylinositol 4-kinase activity (Fisher’s
exact test p-value = 0.001), and enrichment for GO Biological Process GO:0070475
rRNA base methylation (Fisher’s exact test p-value = 0.003). In the ARCHS4
database60 324 transcription factors were significantly co-expressed (Benjamini-
Hochberg adjusted Fisher’s exact test p-value < 0.05) with members of the 571 highest
homology pseudogenes. Of those 324 transcription factors, 228 were zinc finger
genes. These findings show that the highest homology pseudogenes, like zinc finger
genes, likely contain repetitive elements that align to many genomic loci.”

    Reviewer #2: The authors have presented an overview of their new analysis and
data resource to identify novel pseudogene-gene network interactions that could lead
to new hypothesis around their role in regulation of cancer using TCGA cancer
expression data and miRNA expression. The unique element of this analysis is using a
consensus sequence representing gene families and examining the local alignment of
pseudogenes against this consensus to identify new potential interactions.

    The major criticism of the paper is that a thorough benchmarking evaluation of their
different alignment cutoffs has not been clearly presented, to guide the user when
interpreting the network data and deciding which pseudogene appearing in the
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different networks is worth looking into more depth or reject as being a  false positive
result. This probably could be done with their validated use cases example taken for
the literature such as PTEN /PTENP1 etc.

Answer: The reviewer brings up an important point and as a result we include a
benchmarking analysis for 31 gene-pseudogene groups that are involved in cancer.
We extracted the benchmark dataset from PMID: 26442270, PMID: 22726445, and
PMID: 29240947. PMID:26442270 is a review of well documented pseudogenes and
their functions by a well-known researcher Dr. Poliseno. PMID: 22726445 is a Cell
article detailing expressed pseudogenes across 13 human cancers and their targets.
PMID: 29240947 is a bench science paper about FTH1 regulation by its pseudogenes.
This article also describes some of the other pseudogene-gene relationships described
by the previous two papers.

We use this benchmarking experiment in place of Figure 4 because it contains much
more information. We derived these associations from well-known studies on the
subject and found that we can identify 87% of the groups using all databases, 65%
using consensus sequences, and identify 3 benchmark gene-pseudogene pairs using
consensus sequences that did not appear using BLAST. The examples found by the
consensus sequence method but not by BLAST show that the CUDAlign method is
useful. Since best practice would have a researcher try multiple databases, a
researcher will identify most of the benchmarks. We believe it is also worth noting that
we identified these relationships independently of known relationships. As a result,
there will inevitably be subtle differences due to the data and methods used during the
generation of different flavors of databases.

Benchmarking table
GeneBLASTCUDAlign18CUDAlign54CUDAlign135CUDAlign198PMID
PTENYesNoNoNoNo26442270
TUSCNoNoNoNoNo26442270
INTS6YesNoNoNoNo26442270
OCT4YesYesYesYesYes26442270
HMGA1YesYesYesYesYes26442270
CYP4Z1NoNoNoNoNo26442270
BRAFYesNoNoNoNo26442270
KLK4NoNoNoNoNo22726445
ATP8A2NoYesYesNoNo22726445
CXADRNoYesYesYesYes22726445
CALM2YesYesYesYesYes22726445
TOMM40YesYesYesYesYes22726445
NONOYesYesYesYesYes22726445
PERPNoYesYesYesYes22726445
DUSP8YesYesNoNoNo22726445
YES1YesYesNoNoNo22726445
GJA1YesNoNoNoNo22726445
AURKAYesYesYesYesYes22726445
RHOBNoNoNoNoNo22726445
HMGB1YesYesYesYesYes22726445
EIF4A1YesYesNoNoNo22726445
EIF4HYesYesYesYesYes22726445
SNRP6YesYesYesYesYes22726445
RAB1YesNoNoNoNo22726445
VDAC1YesYesNoNoNo22726445
RCC2YesNoNoNoNo22726445
PTMAYesYesYesYesYes22726445
NDUFA9YesYesYesYesYes22726445
CES7YesNoNoNoNo22726445
EPCAMYesYesYesYesYes22726445
FTH1YesYesYesYesYes29240947
Hits24/3120/3116/3115/3115/31
Total hits27/31

1)     Pg 10 highlighted 9 pseudogenes aligned to 15000 gene families and could
highlight potential errors in the annotation or if they are collagen-like pseudogenes or
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znf-pseudogenes with repetitive features that align everywhere would be interesting to
highlight and give a list of the genes in a table.

Answer: We agree with the reviewer on this point and as a result further elaborate
upon the high homology pseudogenes, and described these findings in more detail in
paragraph 2-3 of Results. Specifically, we found zinc finger pseudogenes and other
domain binding patterns in the highest homology pseudogenes. We found large bodies
of evidence that the high homology pseudogenes have either direct or indirect
relationships with zinc finger genes.
In Results paragraph 2:
“Another feature of note is that there are some pseudogenes that align to many gene
families (e.g., 9 pseudogenes, UBE2Q2P1, RP11-313J2.1, TPTEP1, BMS1P1, CTD-
2245F17.3, SCAND2P, GTF2IP7, WHAMMP3, IGLV3-2, have alignment scores above
54 in 15,000 gene families and 571 pseudogenes, see Supplementary Table 2, have
alignment scores above 54 in 1,000 gene families).”
In Results paragraph 3:
“Of the 9 highest homology pseudogenes (Supplementary Table 2), one, RP11-
313J2.1, is a zinc finger pseudogene and two, CTD-2245F17.3 and SCAND2P, are
located in the promoters of zinc finger genes. Four pseudogenes in the 9 highest
homology pseudogenes (RP11-313J2.1, CTD-2245F17.3, SCAND2P, and
WHAMMP3) also have 92-96% sequence identity with zinc finger genes (ZNF72P,
ZNF518A, ZNF37A and ZNF788P/ZNF20 respectively) when BLAST searched against
the human genome. Of the 571 highest homology pseudogenes (Supplementary Table
2), we found 27 zinc finger pseudogenes. Using EnrichR59 we identified enrichment in
GO Molecular Function GO:0004430 1-phosphatdylinositol 4-kinase activity (Fisher’s
exact test p-value = 0.001), and enrichment for GO Biological Process GO:0070475
rRNA base methylation (Fisher’s exact test p-value = 0.003). In the ARCHS4
database60 324 transcription factors were significantly co-expressed (Benjamini-
Hochberg adjusted Fisher’s exact test p-value < 0.05) with members of the 571 highest
homology pseudogenes. Of those 324 transcription factors, 228 were zinc finger
genes. These findings show that the highest homology pseudogenes, like zinc finger
genes, likely contain repetitive elements that align to many genomic loci.”

2)     Fig 3 show the different CUDAlign cutoff and overlap with Pseudogene.org.
However there is no detailed explanation why there are over 3500 pseudogenes are
not detected by this method of alignment using blast or CDUAlign and is there anything
specific about these pseudogenes, are they all 1:1 relationship with parent gene?

Answer: The reviewer identifies an important area, which we have been working on
since the initial submission. We have found that a significant portion of these
pseudogenes/genes that are in the newer version of the Pseudogenes.org database
are not contained in our GENCODEv25 annotation. These missing genes and
pseudogenes account for 1030 of the 2458 pseudogene-gene pairs that are in
Pseudogenes.org but not in our databases. If these are excluded we recreate 85% of
the Pseudogenes.org pseudogene-gene pairs (1:1 relationships). Furthermore this
85% accuracy is similar to our benchmarking accuracy (87%) on genes whose
annotation will likely not change drastically between annotation builds. Alternatively,
since these genes and pseudogenes were from a different annotation version the
sequences themselves could be slightly different causing differences between our
database and Pseudogenes.org. These results can be found in the Results section
“Direct comparison to pseudogene parents”.
In Results paragraph 5:
“Our databases also generate a larger pool of possible interactions. It is worth noting
that 391 pseudogenes and 152 genes in the new Pseudogene.org (GENCODEv10)
are not present in the GENCODEv25 annotation used in our analysis. These genes
and pseudogenes together account for 1030 edges that were used in our comparison.
Accounting for these differences in the annotation, we are able to reconstruct 85% of
the pseudogene-gene relationships in the new Pseudogene.org database. Since these
associations were generated without prior pseudogene-gene relationship information
and the annotations have changed slightly since Pseudogenes.org, our methods prove
to independently identify known and unknown pseudogene-gene relationships at a high
rate.”

3)     For the use case example, I do not fully understand why the CDUAlign18 was
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used for PPPARIL identification in sox15 and not detected in the CDUAlign54 or
CDUAlign135. Looking at the sox15 network using CDUAlign135 an alternative
pseudogene PIN2 pseudogene can be found. Can the authors explain why this is not
also considered as potential regulator and why it does not appear in the TGCA
expression panel with the rest of the sox genes ?

Answer: We thank the reviewer for their insight and have further evaluated the SOX15
network in response. RP11-506B6.5, the pseudogene located next to PIN2, is retained
in the more stringent databases (e.g, CUDAlign135) and as such should also be
considered. However, RP11-506B6.5 lacks enough annotation from existing literature
to make it a promising candidate. The PPPARIL gene has more supporting literature
and is a larger more complex pseudogene containing 19 exons opposed to 1 exon in
RP11-506B6.5.

4)     Since the usability of the web app is highlighted in the paper, I would recommend
a direct link from the Ensembl Identifiers to Ensembl rather than Genecards eg
ENST00000428294 does not have a Genecard entry but is classified as a transcribed
unprocessed pseudogene by GENCODE/Ensembl.

Answer: We thank the reviewer for this suggestion and as a result have added this
functionality to the website. When a user selects a network node, a tab for GeneCards
and a tab for Ensembl appears for the specified gene/pseudogene.

5)     Also the network in the webapp would be easier to navigate if the HGNC identifier
was used as default name rather than the ENSG ID (as this should be relatively easy
to code) and therefore recommend figure 4 be redrawn as looks extremely hard to
interpret.

Answer: We appreciate these suggestions and have focused on our main application
that is available online (https://integrativeomics.shinyapps.io/pseudofun_app/). In this
web application HGNC identifiers are used throughout. The old Figure 4 is from
another application we developed for research purposes through the Ohio
Supercomputer Center. As a result, we moved the old Figure 4 to the supplementary
material so that it does not detract from the usability of the main application (which has
much more improved user-friendly visualization) freely available online.

6)      Fig 4 should have details of the CDU align cut off used in the legend for the
network graphs similar to fig 3

Answer: We thank the reviewers for their concerns and have added this information to
Figure 4, which has been moved to the supplementary material as Supplementary
Figure 2. We feel that this figure is of less importance after running the benchmarking
experiment, shown in Table 2.

    Minor issues:
    *   Pg12 line 12 "regulation" typo

    *   Pg 16 sentence should have "network" inserted before gene on line

Answer: We appreciate the help from the reviewer for identifying language errors in the
manuscript and have made the changes.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given

Yes
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in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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without leveraging other homologous genes/pseudogenes. Results: We produce pseudogene-1	

gene (PGG) families that expand beyond the current 1:1 paradigm. Firstly, we construct 2	
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of sequence homology, miRNA expression, gene expression, pseudogene expression, and 7	

gene ontology. We produce four “flavors” of databases (>462,000,000 pseudogene-gene 8	

pairwise alignments and 133,770 PGG families) that can be queried and downloaded using 9	

PseudoFuN. These databases are consistent with previous 1:1 pseudogene-gene annotation 10	

and also are much more powerful including millions of de novo pseudogene-gene associations. 11	

For example, we find multiple known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-12	

SOX15- PPP4R1L) miRNA-gene-pseudogene associations in prostate cancer. PseudoFuN 13	

provides a “one stop shop” for identifying and visualizing thousands of potential regulatory 14	

relationships related to pseudogenes in TCGA cancers. Conclusions: Thousands of new 15	
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oncologists alike. 18	
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Background 1	

Pseudogenes were previously considered unimportant relics of evolution that played an unclear 2	

role in biological processes1. However, more pseudogenes have been discovered to be involved 3	

in gene regulation2-4. These regulatory relationships between pseudogenes and genes have 4	

increasingly been explored, such as the transcriptional regulation of PTEN by pseudogene 5	

PTENP1 in several cancer conditions5. PTEN acts as a tumor suppressor gene, which is 6	

underexpressed in gastric cancer. However by overexpressing PTENP1 in gastric cancer, both 7	

PTEN underexpression and cell proliferation are mitigated via the regulatory relationship 8	

between PTEN and PTENP16. Relationships between these pseudogenes and their parent 9	

genes have been found to play critical roles indicating functional potentials of these 10	

pseudogenes7,8. This point can most clearly be seen in the importance of sequence homology 11	

between pseudogenes and coding genes plays in competing endogenous RNA (ceRNA) 12	

networks9,10. In ceRNA networks the pseudogenes act as decoy targets for the miRNAs 13	

targeting a protein-coding gene. In short, researchers have made huge strides in understanding 14	

pseudogenes from genomic variation to functional potentials11,12, and from “deciphering” the 15	

mechanism of ceRNA networks13 to experimental validation14. 16	

 17	

With this progress, there has been renewed interest in pseudogenes, especially in relation to 18	

cancer15.  This interest has even uncovered biomarkers in human cancer including but not 19	

limited to SUMO1P3 upregulation as a diagnostic biomarker in gastric cancer and OCT4-pg4 20	

expression as a prognostic biomarker in hepatocellular carcinoma (HCC)16-18. Pseudogene 21	

expression has been used to stratify tumor subtypes in 7 distinct cancer types19. However, due 22	

to the close sequence homology between pseudogenes and their parent genes, identifying the 23	

expression profile unique to a pseudogene or highly homologous gene can be challenging. 24	

Efforts have been made to address these technical challenges in estimating pseudogene 25	

expression using modified alignment and quantification techniques20.  Perhaps more intriguingly 26	
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is that pseudogenes can be somatically acquired in cancer development effectively 1	

“representing a new class of mutations” that can be either activating or inactivating mutations 2	

which function as an “on/off switch”21,22. Specific pseudogenes have been implicated in specific 3	

cancers. For example, FTH1 regulates tumorigenesis in prostate cancer23, TP73-AS1 regulates 4	

proliferation in esophageal squamous cell carcinoma24, and pseudogenes NKAPP1, MSTO2P 5	

and RPLP0P2 are associated with poor prognosis in lung adenocarcinoma25. 6	

 7	

For these reasons, having a complete understanding of these pseudogene-gene relationships is 8	

important. While studying these relationships, a common conception is to only consider the 9	

pseudogenes in relation to their parent genes with highest homology7-9,26. There have also been 10	

pioneer studies probing pseudogene functions through aligning them to parent proteins 11	

(corresponding to the parent genes) and then to parent protein domains7,27,28.  12	

 13	

The conventional idea of single parent genes may not be comprehensive enough to model the 14	

complex phylogenetic relationships involving multiple genes and pseudogenes in a homolog 15	

family. While pseudogenes diverged from their parent genes distantly in the past, only the 16	

daughter protein-coding genes other than the original parent gene may now exist. The result is 17	

that aligning to the true phylogenetic parent gene itself may not be possible. For this reason, we 18	

advocate the use of homologous gene families rather than single parent genes to compare 19	

against pseudogenes. By viewing the homologies as a weighted network instead of a single 20	

scalar value we believe that new relationships can be uncovered. 21	

 22	

We build the pseudogene-gene (PGG) family databases using two methods: i) CUDAlign29 23	

based-local alignment of all pseudogenes to gene families (totaling 1.6 billion individual local 24	

alignments and more than 40,000 GPU hours). By aligning all pseudogenes to all gene families 25	

(CUDAlign), we can study underlying sequence homology and more easily set cutoffs to assign 26	
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pseudogenes to gene families. ii) BLAST 30-based assignment of pseudogenes to gene families. 1	

This provides a fast heuristic search option. BLAST derivative methods have been commonly 2	

used to find parent genes in previous pseudogene studies31,32. Using these two methods we 3	

show that these pseudogenes are usually assigned to the gene family of their parent genes but 4	

are often not exclusively so. Besides, most pseudogenes can be categorized into processed 5	

pseudogenes and unprocessed pseudogenes depending on whether they came from 6	

retrotranscription of mRNAs11,33,34. We take these differences into account using both of our 7	

methods (CUDAlign and BLAST). 8	

 9	

Furthermore, we make these data publicly downloadable from GitHub35. We also create an R 10	

Shiny web application called PseudoFuN36 that supports querying the PGG databases, 11	

interactive visualization and functional analysis of the PGG networks, and visualization of 12	

pseudogene-gene co-expression and miRNA binding (including binding prediction with 13	

Miranda37, PicTar38, and TargetScan39) using The Cancer Genome Atlas and GTEx (Genotype-14	

Tissue Expression) project derived public data20,40,41. Besides, we provide another interactive 15	

web application hosted by the Ohio Supercomputer Center42 (OSC), which supports querying 16	

novel sequences against any of our PGG databases and visualization of the resulting PGG 17	

networks. 18	

 19	

The PGG databases can be used to study pseudogene-gene-miRNA co-expression indicative of 20	

ceRNA networks across the entire Cancer Genome Atlas. With these diverse tools provided by 21	

PseudoFuN, it is possible to generate hypotheses regarding i) the regulatory roles of 22	

pseudogenes across tumor and normal tissue, ii) pseudogene-gene relationships through de 23	

novo reassignment of pseudogenes to gene families and iii) functional annotation of 24	

pseudogenes. We expect these databases and tools to have more use in cancer studies. 25	

 26	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 6	

Methods 1	

Construction of Pseudogene-Gene (PGG) Database 2	

To generate these gene families, we use two methods: i) CUDAlign-based local alignment of 3	

pseudogenes against consensus sequences representing gene families, and ii) BLAST-based 4	

search of pseudogene sequences against all gene sequences (Figure 1). These two 5	

approaches can be thought of as heuristic but different processes. The local sequence 6	

alignment approach is heuristic in that only two gene sequences are used from each gene 7	

family to reduce the search space. These sequences are the most similar and representative 8	

sequences to all the other gene sequences in the family. The BLAST-based approach is 9	

heuristic in that not all sequences are fully aligned during the process due to the seed-and-10	

extend steps of BLAST43. The result is that not every relationship between pseudogene and 11	

gene family is recorded which is an advantage in runtime but a disadvantage in studying 12	

underlying sequence homology. 13	

 14	

i) CUDAlign-based local alignment of gene families 15	

Gene homolog families were generated using the Ensembl biomart gene homolog database44,45. 16	

The pairs of homologous genes were separated into connected components using python 17	

networkx package46. These connected component sub-graphs are considered gene families in 18	

this study. To reduce the number of alignments that needed to be performed, we selected 19	

consensus genes from each family that would be used to represent the entire family.  20	

 21	

The consensus sequences were selected by aligning every member of the gene family to every 22	

other member using local alignment with CUDAlign29. The two members of the family with the 23	

largest sum alignment scores across all other family members were selected as the consensus 24	

sequences to increase the number of candidate sequences. If only one member existed in the 25	

family, then that member was the consensus sequence. Using the list of these consensus 26	
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sequences we then aligned every consensus sequence to every pseudogene in the human 1	

genome GRCh38 annotated by GENCODE Release 25 (GENCODEv25)47. 2	

 3	

Specifically the pseudogenes are split up into processed, unprocessed and other (unclear 4	

whether processed or unprocessed), based on their mechanisms of formation48. We performed 5	

different alignment procedures for processed and unprocessed pseudogenes respectively. The 6	

processed pseudogenes were aligned to all consensus gene transcripts with the highest local 7	

alignment score recorded. The unprocessed pseudogenes were aligned to the full genomic 8	

sequences of each of the consensus genes with the highest local alignment score recorded. 9	

Theoretically unprocessed pseudogenes can align to both exonic and intronic regions of DNA, 10	

while processed pseudogene can only align to exonic regions. In our previous database we did 11	

not perform this two-procedure strategy in part to reduce the runtime of the problem49. These 12	

changes make the database much more complete and biologically relevant. The other 13	

pseudogenes were aligned to both the transcripts and the genomic sequence recording the 14	

highest score.  15	

 16	

These scores, one for each combination of pseudogene to gene family, were stored for further 17	

analysis. Pseudogenes were assigned to families using a cutoff score (i.e., percentiles of the 18	

alignment scores per PGG alignment matrix) and a maximum number of assignments (i.e., the 19	

top four alignments above a cutoff). If greater than top four alignments were used, the PGG 20	

families were too large to calculate the pairwise alignment matrix. The resulting sets of 21	

pseudogenes and genes are called pseudogene-gene (PGG) families. This method was used to 22	

allow a pseudogene to be assigned multiple families as well as prevent pseudogenes from 23	

being assigned families if their alignment score was low. We used the 99th percentile cutoff 24	

(corresponding alignment score 54), 99.9th percentile cutoff (135), and the 99.99th percentile 25	

cutoff (198) to generate three resultant databases named CUDAlign54, CUDAlign135, and 26	
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CUDAlign198 respectively. A fourth database that is less stringent, CUDAlign18, is also 1	

included in the web applications using a 97.5th percentile cutoff (18). All these flavors of 2	

databases are available for search in our web applications. 3	

 4	

ii) BLAST-based generation of PGG families 5	

In contrast to the local alignment of every combination of pseudogene to gene family, PGG 6	

families were also created by assigning the pseudogenes to the family containing its closest 7	

BLAST search match. This approach was used to contrast with the CUDAlign method, which 8	

uses up to the top 4 matches. The pseudogenes were separated into processed, unprocessed 9	

and other. Then, all genes in the GENCODE Release 25 annotation were used to generate 10	

genomic, transcript, and combined BLAST databases (BlastDB). The processed pseudogenes 11	

would be BLAST searched against transcript BlastDB, unprocessed against the genomic 12	

sequence BlastDB, and the rest pseudogenes were BLAST searched against the combined 13	

genomic/transcript BlastDB. The pseudogene was assigned to the gene family containing the 14	

best match from the BLAST search. 15	

 16	

Comparison between PGG families and pseudogene-parent gene pairs 17	

We also conduct a comparison to the Pseudogene.org resource50. In this comparison, we 18	

consider pseudogenes and parent gene pairs from pseudogene.org psiDr31 database (old)51 and 19	

on GENCODE Release 10 from pseudogene.org psiCube11 database (new)52. From our 20	

databases, we consider every combination of pseudogene to gene within a PGG family as a 21	

pair (for example, a family with 3 genes and 2 pseudogenes would have 𝐶"# = 6 pairs). Since we 22	

have multiple flavors of PGG databases including the BLAST-based version and the CUDAlign-23	

based versions, we compare the intersections between two Pseudogene.org versions and our 24	
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BLAST/CUDAlign-based versions. We show the intersections of pseudogene-gene pairs in 1	

Venn Diagrams. 2	

 3	

Development of PseudoFuN web applications 4	

Aside from generating different flavors of the PGG databases, we assemble them into an online 5	

R Shiny application called PseudoFuN36 which supports gene and pseudogene symbol queries 6	

against out PGG databases, generates dynamic networks, produces Gene Ontology53 (GO) 7	

tables and additional functional analysis features (Table 1). The functionalities, such as 8	

calculating the gene co-expression for any resultant PGG network in any of the TCGA54 cancers 9	

types, are important for ceRNA network hypothesis generation in human cancers. For more 10	

information, please visit the PseudoFuN website and follow the README and tutorial. 11	

 12	

Additionally we create another web application hosted by the Ohio Supercomputer Center 13	

(OSC) OnDemand55 platform. This application has multiple functionalities including the query of 14	

Ensembl gene ID or a novel sequence against one selected flavor of our databases. For each of 15	

these features we provide a simple-to-use interface that allows users to select which database 16	

to query, allows download of the query hits, and allows users to interactively explore the PGG 17	

family networks including GO information. 18	

 19	

Use cases in multiple cancers 20	

Furthermore three use cases are provided to show the potential utility of PseudoFuN to 21	

researchers and oncologists looking for functional relationships between pseudogenes, genes, 22	

and miRNAs. Use Case I validates known pseudogene-gene functional relationships. Use Case 23	

II identifies high confidence novel miRNA-pseudogene-gene relationships. Use Case III is 24	

primarily focused on agreement with a validation study. We focused on pseudogenes/genes that 25	

were differentially expressed in low RARG/low TACC1/high miR-96 compared to the reverse in 26	
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prostate cancer cell lines and also differentially expressed in our PGG networks in TCGA 1	

prostate cancer samples. 2	

 3	

Results 4	

Local alignment of gene families 5	

We performed 1.6 billion local alignments between all pseudogenes and all gene family 6	

consensus sequences. The process required over 40,000 GPU hours on the Oakley cluster at 7	

the OSC. The highest scores for each gene family and pseudogene were stored in a 8	

17,273x26,754 matrix of pseudogene-to-gene-family alignment scores (~462 million elements). 9	

From this matrix, we are able to explore global pseudogene-gene family homology relationships 10	

and assign pseudogenes to one or more gene families with high sequence homology. 11	

 12	

As one might expect, the number of pseudogenes with high alignments (defined as above a 13	

percentile threshold) to many gene families is relatively low. It can be seen that the majority of 14	

pseudogenes will align to one gene family in the CUDAlign databases (Figure 2). We evaluate 15	

alignment of pseudogenes to genes using the Smith-Watermann local pairwise alignment 16	

score56 between a pseudogene and a gene. These scores indicate the highest score possible 17	

for two sequences based on their specific dynamic programing matrix which is solved by the 18	

Smith-Watermann algorithm. The cutoffs we use, 18, 54, 135, and 198, indicate the 97.50th, 19	

99.0th, 99.90th and 99.99th percentiles of alignment scores in our alignment matrix between all 20	

pseudogenes and consensus sequences. Another feature of note is that there are some 21	

pseudogenes that align to many gene families (e.g., 9 pseudogenes, UBE2Q2P1, RP11-22	

313J2.1, TPTEP1, BMS1P1, CTD-2245F17.3, SCAND2P, GTF2IP7, WHAMMP3, IGLV3-2, 23	

have alignment scores above 54 in 15,000 gene families and 571 pseudogenes, see 24	

Supplementary Table 2, have alignment scores above 54 in 1,000 gene families).  25	

 26	
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In contrast to previous belief in single gene-pseudogene homology, some pseudogenes are 1	

related to many genes. It is worth considering that these high homology pseudogenes (e.g., 2	

FTLP10 with 3,006 gene family pairwise alignments over a 54 threshold) may have a role in 3	

regulating major biological processes57 and disease58. Of the 9 highest homology pseudogenes 4	

(Supplementary Table 2), one, RP11-313J2.1, is a zinc finger pseudogene and two, CTD-5	

2245F17.3 and SCAND2P, are located in the promoters of zinc finger genes. Four 6	

pseudogenes in the 9 highest homology pseudogenes (RP11-313J2.1, CTD-2245F17.3, 7	

SCAND2P, and WHAMMP3) also have 92-96% sequence identity with zinc finger genes 8	

(ZNF72P, ZNF518A, ZNF37A and ZNF788P/ZNF20 respectively) when BLAST searched 9	

against the human genome. Of the 571 highest homology pseudogenes (Supplementary Table 10	

2), we found 27 zinc finger pseudogenes. Using EnrichR59 we identified enrichment in GO 11	

Molecular Function GO:0004430 1-phosphatdylinositol 4-kinase activity (Fisher’s exact test p-12	

value = 0.001), and enrichment for GO Biological Process GO:0070475 rRNA base methylation 13	

(Fisher’s exact test p-value = 0.003). In the ARCHS4 database60 324 transcription factors were 14	

significantly co-expressed (Benjamini-Hochberg adjusted Fisher’s exact test p-value < 0.05) 15	

with members of the 571 highest homology pseudogenes. Of those 324 transcription factors, 16	

228 were zinc finger genes. These findings show that the highest homology pseudogenes, like 17	

zinc finger genes, likely contain repetitive elements that align to many genomic loci. 18	

 19	

BLAST generation of PGG families 20	

The BLAST generated database was larger than the CUDAlign generated databases with 21	

68,578 total connections. This database was also much simpler to compute with since it was not 22	

an exhaustive search. These conclusions make it a simple method to quickly estimate the 23	

pseudogene-to-gene relationships. 24	

 25	

Direct comparison to pseudogene parents 26	
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We compare our databases to the previous pseudogene-parent gene databases retrieved from 1	

Pseudogene.org resources (Figure 3). It shows that our methods reconstruct most of the 2	

pseudogene-parent-gene relationships identified by Pseudogene.org. The overall consistency of 3	

our databases (BLAST and CUDAlign) with both Pseudogenes.org databases (new and old) 4	

was 75% (i.e., all our databases combined). Individually, the BLAST-based database contained 5	

61% of the Pseudogene.org relationships (both new and old) and the CUDAlign 54 cutoff 6	

contained 60% of the Pseudogene.org relationships (both new and old). Our databases also 7	

generate a larger pool of possible interactions. It is worth noting that 391 pseudogenes and 152 8	

genes in the new Pseudogene.org (GENCODE Release 10) are not present in the GENCODE 9	

Release 25 annotation used in our analysis. These genes and pseudogenes together account 10	

for 1030 edges that were used in our comparison. Accounting for these differences in the 11	

annotation, we are able to reconstruct 85% of the pseudogene-gene relationships in the new 12	

Pseudogene.org database. Since these associations were generated without prior pseudogene-13	

gene relationship information and the annotations have changed slightly since 14	

Pseudogenes.org, our methods prove to independently identify known and unknown 15	

pseudogene-gene relationships at a high rate. 16	

 17	

Development of a pseudogene query tool 18	

The R Shiny application is a comprehensive hypothesis generating tool that is freely available 19	

on the internet36. This tool provides a wide array of functionality that a researcher can access 20	

quickly and download results as the raw data for more in-depth analysis. These features are 21	

outlined in detail in Table 1. 22	

 23	

Use Cases: Assisting functional study of ceRNA networks in cancer 24	

To illustrate the utility of our databases and tools we present three use cases. 25	

 26	
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Use Case I: To validate known pseudogene-gene relationships, we first identified 31 benchmark 1	

pseudogene-gene relationships from three studies15,16,23 and query our databases. These 2	

studies represent prominent regulatory pseudogenes in cancers by established laboratories. We 3	

query a gene/pseudogene name one at a time and PseudoFuN will return the top PGG 4	

network(s) that contain the query (Table 2). In general, we found that our databases together 5	

were able to identify 87% of the benchmarking cases (Table 2) and the CUDAlign versions were 6	

able to identify 65% of the benchmarking cases. Perhaps most importantly, three of the cases 7	

identified by CUDAlign (ATP8A2, CXADR, PERP) were not identified by the more traditional 8	

BLAST approach (Table 2) showing that consensus sequence alignment can identify some 9	

overlooked relationships. Next, individual benchmark cases were evaluated in more detail 10	

(Supplementary Figure 2). 11	

 12	

PTENP1 is a processed pseudogene homologous to PTEN, a tumor suppressor gene. PTENP1 13	

is selectively lost in cancer and may regulate PTEN expression as a miRNA decoy target5,6. We 14	

have observed differential co-expression patterns of PGG families in tumor vs. normal for 15	

PTENP1 network in multiple cancers including breast cancer (Supplementary Figure 3B,C). We 16	

identified known miRNAs (has-miR-93 targets PTEN in breast cancer61) targeting PTEN PGG 17	

network nodes providing insights into ceRNA regulation (Supplementary Figure 3D). These 18	

insights are important since some pseudogenes competitively bind to miRNAs thus regulate 19	

gene expression. We also identify hsa-miR-103a-3p, known to regulate PTEN in endometrial62 20	

and colorectal cancers63, in breast cancer (Supplementary Figure 3D). The miRNA hsa-miR-21	

20a, known to regulate PTEN by the ceRNA mechanism in prostate cancer64, was also 22	

identified in breast cancer. The ceRNA network regulatory relationship is governed by effect 23	

modulation of miRNA on gene expression by pseudogene expression (Supplementary Figure 24	

1A,C,E). This leads to a correlation between pseudogene (miRNA decoy targets) and gene 25	

(miRNA targets) expression (Supplementary Figure 1D). That means both these pseudogenes 26	
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and homologous genes competitively bind to miRNAs. KRAS-KRASP1 regulatory network was 1	

also identified by our database (Supplementary Figure 2). KRAS and KRASP1 are known to be 2	

involved in ceRNA network regulation5,10,64. PseudoFuN query of KRAS identified co-expression 3	

patterns in prostate cancer consistent with ceRNA network regulation by hsa-miR-145, a known 4	

modulator of KRAS in prostate cancer65. The FTH1 query also resulted in the identification of 5	

pseudogenes (FTH1P2, FTH1P8, FTH1P11, FTH1P16) that regulate FTH1 in prostate cancer23 6	

as well novel miRNAs that may be involved in ceRNA network regulation of FTH1 in prostate 7	

cancer. GBP1 is an IFN-α induced transcript that is involved in immune response in prostate 8	

cancer66. The GBP1 involved PGG network also contained the pseudogene GBP1P1 which may 9	

have a ceRNA regulatory role in breast cancer67 and in some neurodegenerative diseases68. 10	

 11	

Use Case II: We wanted to identify possible gene-miRNA relationships of interest within our 12	

database. We chose to study these relationships with respect to miR-96, a known cancer 13	

regulator microRNA in prostate cancer69. Through differential expression analysis between 14	

tumors in the TCGA-PRAD cohort with lower expression of RARG and TACC1 (also a miR-96 15	

target) and high expression miR-96 (low RARG/low TACC1/high miR-96), compared to the 16	

reverse, we previously identified altered SOX15 gene expression is significantly associated with 17	

worse disease-free survival. We visualized expression patterns of SOX15 PGG families, and 18	

corresponding miRNA associations. miR-96 is included as a validation.  19	

 20	

Interestingly we identified the pseudogene PPP4R1L as a potential member of a SOX15 ceRNA 21	

network (Figure 4A). PPP4R1L and SOX15 are both significantly differentially expressed 22	

between tumor and normal controls (Bonferroni corrected p-value = 3.42×10-7, 2.01×10-14 23	

respectively, Figure 4E). PPP4R1L and SOX15 are significantly co-expressed (Pearson 24	

correlation coefficient (PCC)=0.51, p-value<2.2×10-16) in tumor tissue but much less correlated 25	

in normal controls in prostate cancer (PCC=0.24, p-value=0.09, Figure 4B,C). Positively 26	
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correlated expression is an assumption when determining ceRNA network relationships70 1	

(Supplementary Figure 1). Both SOX15 and PPP4R1L are likely regulated by hsa-miR-375 2	

based on the TCGA prostate cancer dataset. hsa-miR-375 is associated with docetaxel 3	

resistance in prostate cancer71,72 and PPP4R1L knock-down in HeLa cells induces taxol 4	

resistance73. These findings are intriguing since taxol and docetaxel are closely related chemical 5	

compounds. PPP4R1L is also located in a region associated with high mutation rates in cancer 6	

cell lines73 which could be indicative of mutational “on/off switches” in pseudogene regulation.  7	

 8	

Use Case III: We were most interested in the deferentially expressed (DE) genes (and related 9	

pseudogenes) that both appeared in our PGG database and were contained in networks with 10	

genes differentially expressed in low RARG/low TACC1/high miR-96 compared to vice versa. 11	

We searched the DE genes in our PGG database, and identified the top networks with enriched 12	

number of DE genes. As a result, parent genes HTR7, CNN2, MSN and TAGLN2 are 13	

differentially expressed; they generate pseudogenes, which are specifically expressed in 14	

prostate cancer samples16. These four parent genes are also detected in our 5 top PGG families 15	

involving miR-96 regulated (direct or indirect) DE genes. We identified HTR7P1 pseudogene in 16	

the same PGG family as HTR7 gene, which is potentially regulated by hsa-miR-607 and has-17	

miR-3654 in the TCGA prostate cancer dataset (Supplementary Figure 4). 11 CNN2 18	

pseudogenes (CNN2P1-CCN2P4, CNN2P6-CNN2P12) were identified in the CNN2 PGG family 19	

along with TAGLN2 and TAGLN2P1. TAGLN2P1 is differentially expressed between the tumor 20	

and normal samples in the prostate dataset (Supplementary Figure 5, Bonferroni corrected p-21	

value = 6.23×10-4). MSN and MSNP1 were in the same PGG family and hsa-miR-96 potentially 22	

regulates MSN in the TCGA prostate cancer dataset (Supplementary Figure 5). In addition, 23	

although our DE genes were detected from prostate cancer, we further compared them with DE 24	

pseudogenes identified in four other cancer types and we observed interesting results (see 25	

Supplementary Materials - Potential regulatory roles in cancer). 26	
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 1	

Discussion 2	

We identify 133,770 PGG families that have significant potential to reveal important information 3	

about regulatory pseudogene-gene relationships in health and disease. Within these families we 4	

identify both new and existing regulatory networks that contain pseudogenes such as PTENP1, 5	

KRAS1P, FTH1P8/11/16, and GBP1P1 (Figure 4). Since all genes and all pseudogenes are 6	

included in our database there are thousands of opportunities to identify new regulatory 7	

relationships. These thousands of opportunities can be easily stratified using gene name, 8	

pseudogene name and cancer type. Our PseudoFuN web application makes it a simple and 9	

intuitive process to query pseudogenes (or genes) to identify which gene families they may be 10	

regulating as well as the functions that are attributed to the members of the network. We also 11	

have an application hosted by the OSC that allows the querying of novel sequences against our 12	

database. 13	

 14	

From these networks, we can also identify possible relationships of differentially expressed 15	

pseudogenes in various cancers. For instance, both PPP4R1L pseudogene and SOX15 are 16	

differentially expressed in prostate cancer and associated with hsa-miR-375. These types of 17	

relationships should be further evaluated along with more complex regulation with multiple 18	

miRNAs, pseudogenes, and genes. It is experimentally shown that SOX15 is regulated by hsa-19	

miR-9669. It may be important to include hsa-miR-96 in the hsa-miR-375-SOX15-PPP4R1L 20	

potential ceRNA network. Aside from PGG family specific differential pseudogene expression, 21	

the PseudoFuN application allows for comprehensive differential pseudogene expression 22	

(DPgE) analysis in any of the TCGA cancer datasets. 23	

 24	

The use of this database also has utility in integrative analysis where the databases can be 25	

used as a mask for other data modalities. Some examples would be using the nodes (genes 26	
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and pseudogenes) in each of the PGG families as groups in gene expression experiments. 1	

Similarly, these groups could be used for feature reduction when visualizing data. We hope 2	

researchers can use these relationships we have identified to reduce large numbers of 3	

candidate associations down to numbers that can be easily validated and generate new 4	

candidates when querying novel sequences. For instance, miRNA-gene pairs filtered through 5	

the sets of PGG families would identify high priority ceRNA candidates. 6	

 7	

Conclusions 8	

We generate multiple large databases of pseudogene gene family relationships and the tools to 9	

study them for use by biomedical researchers. These databases are more comprehensive than 10	

previous pseudogene-gene databases by including many more homology relationships in PGG 11	

families, thus more powerful for experiment validation and knowledge discovery. These 12	

databases are useful in identifying pseudogene-gene regulatory relationships in 32 cancer types 13	

and show high similarity with known pseudogene-gene relationships. Aside from the known 14	

relationships we identify many unknown relationships. Furthermore, these databases and 15	

associated analyses can be easily accessed online or through the OSC OnDemand platform, 16	

allowing for novel hypotheses to be assessed quickly by biomedical researchers. We find 17	

evidence of both known regulatory pseudogene-gene relationships and novel hypothesized 18	

relationships that we plan to validate. PseudoFuN is a comprehensive, dynamic tool that allows 19	

any bioinformatician or oncologist to find novel regulatory pseudogenes within their cancer or 20	

gene network of interest. 21	

 22	

Availability of Supporting Data 23	

We have made the PGG family data publicly downloadable from GitHub35. We also created an 24	

R Shiny web application called PseudoFuN36 that supports querying the PGG databases, 25	
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interactive visualization and functional analysis of the PGG networks, and visualization of 1	

pseudogene-gene co-expression and miRNA binding. Apache License 2.0 is associated with 2	

PseudoFuN (R Shiny web application). Besides, we provide another interactive web application 3	

hosted on Ohio Supercomputer Center (OSC) OnDemand, which supports querying novel 4	

sequences against any of our PGG databases and visualization of the resulting PGG networks. 5	

 6	

Additional Files 7	

There is an additional Supplementary Materials file containing additional information on the data 8	

and additional analyses. It includes the following figures and tables: 9	

Supplementary Figure 1. Example of ceRNA network regulation of gene expression. A) A 10	

graphical view of how pseudogene expression can regulate gene expression. B) A cellular view 11	

of ceRNA network regulation. C) Equations used to model the correlation between gene and 12	

pseudogene expression in a ceRNA network. D) The distribution of the gene-pseudogene 13	

correlations based on the models in C. E) The effect that pseudogene expression has on the 14	

miRNA induced change in gene expression. 15	

Supplementary Figure 2. PseudoFuN online output for PTEN PGG family. A) Interactive 16	

graph visualization of the PTEN PGG network. B) TCGA prostate co-expression matrix for 17	

PTEN PGG family genes and pseudogenes across normal samples. C) TCGA prostate co-18	

expression matrix for PTEN PGG family genes and pseudogenes across tumor samples. D) 19	

Negatively correlated miRNAs for all members of the PTEN PGG family. E) Differential gene 20	

and pseudogene expression for tumor and normal samples for each member of the PTEN PGG 21	

family in the prostate cancer TCGA dataset. 22	

Supplementary Figure 3. PseudoFuN online output for HTR7 PGG family. A) Interactive 23	

graph visualization of the HTR7 PGG network. B) TCGA breast cancer co-expression matrix for 24	

HTR7 PGG family genes and pseudogenes across normal samples. C) TCGA breast cancer co-25	
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expression matrix for HTR7 PGG family genes and pseudogenes across tumor samples. D) 1	

Negatively correlated miRNAs for all members of the HTR7 PGG family in breast cancer. E) 2	

Differential gene and pseudogene expression for tumor and normal samples for each member 3	

of the HTR7 PGG family in the breast cancer TCGA dataset. 4	

Supplementary Figure 4. PseudoFuN online output for CNN2/TAGLN2 PGG family. A) 5	

Interactive graph visualization of the CNN2/TAGLN2 PGG network. B) TCGA prostate co-6	

expression matrix for CNN2/TAGLN2 PGG family genes and pseudogenes across normal 7	

samples. C) TCGA prostate co-expression matrix for CNN2/TAGLN2 PGG family genes and 8	

pseudogenes across tumor samples. D) Negatively correlated miRNAs for all members of the 9	

CNN2/TAGLN2 PGG family. E) Differential gene and pseudogene expression for tumor and 10	

normal samples for each member of the CNN2/TAGLN2 PGG family in the prostate cancer 11	

TCGA dataset. 12	

Supplementary Figure 5. PseudoFuN online output for MSN PGG family. A) Interactive 13	

graph visualization of the MSN PGG network. B) TCGA prostate co-expression matrix for MSN 14	

PGG family genes and pseudogenes across normal samples. C) TCGA prostate co-expression 15	

matrix for MSN PGG family genes and pseudogenes across tumor samples. D) Negatively 16	

correlated miRNAs for all members of the MSN PGG family. E) Differential gene and 17	

pseudogene expression for tumor and normal samples for each member of the MSN PGG 18	

family in the prostate cancer TCGA dataset. 19	

Supplementary Figure 6. The PGG families in our network with the most DE genes after 20	

miR-96 treatment. The line weights indicate the sequence homology between members of the 21	

PGG family. Red nodes indicate miR-96 targets. Yellow nodes with names indicate other genes 22	

contained in the PGG family. Yellow nodes without names are pseudogenes contained within 23	

the network. 24	
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Supplementary Figure 7. The user interface of the OSC OnDemand web application. A) is 1	

the main query page where a user can search either sequences or Ensembl gene IDs. B) is a 2	

representative output of one of the gene searches. This includes an interactive network and the 3	

GO information. 4	

Supplementary Figure 8. GBP1P1 DE in TCGA prostate cancer (information retrieved from 5	

Han et al.). 6	

Supplementary Table 1. DE parent gene/pseudogenes potentially regulated by miR-96 in 7	

prostate cancer vs. TCGA derived DE pseudogenes.  8	

Abbreviations 9	

PseudoFuN: Pseudogene Functional Networks 10	

PGG: Pseudogene-Gene (i.e., PGG families) 11	

TCGA: The Cancer Genome Atlas 12	

ceRNA: Competing Endogenous RiboNucleic Acid 13	

HCC: HepatoCellular Carcinoma 14	

BLAST: Basic Local Alignment and Search Tool 15	

OSC: Ohio Supercomputer Center 16	

GO: Gene Ontology 17	

DE: Differential Expression 18	

DGE: Differential Gene Expression 19	

DPgE: Differential Pseudogene Expression 20	
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Figure Captions 1	

Figure 1. Workflow for both CUDAlign and BLAST databases. Left side PGG families are 2	

produced using the BLAST matches. Right side PGG families are produced using the 3	

pseudogene-gene-family alignment matrix with percentile cutoffs using CUDAlign.	4	

Figure 2. The number pseudogenes that align to gene families. The x-axis is the number of 5	

gene families, which have an alignment score above a specified cutoff (the different colored 6	

lines). The y-axis is the number of pseudogenes with an alignment score higher than the cutoff 7	

to the number of gene families on the x-axis. The inset grey box is a closer view of the low 8	

range gene family numbers (1-10) to show more granular patterns.	9	

Figure 3. Comparison of database members. The top 6 plots are comparisons between the 10	

CUDAlign databases using different cutoffs, the BLAST database, and the Pseudogene.org 11	

parent genes. The bottom row shows intra-database comparisons, left: Pseudogene.org, 12	

middle: CUDAlign databased of different alignment score cutoffs, right: relative size of all 13	

databases.	14	

Figure 4. PseudoFuN online output for SOX15 PGG family. A) Interactive graph visualization 15	

of the SOX15 PGG network. B) TCGA prostate co-expression matrix for SOX15 PGG family 16	

genes and pseudogenes across normal samples. C) TCGA prostate co-expression matrix for 17	

SOX15 PGG family genes and pseudogenes across tumor samples. D) Negatively correlated 18	

miRNAs for all members of the SOX15 PGG family. E) Differential gene and pseudogene 19	

expression for tumor and normal samples for each member of the SOX15 PGG family in the 20	

prostate cancer TCGA dataset. 21	

Tables 22	

Table 1 Summary of features that are freely available at the PseudoFuN website. 23	

PseudoFuN features Additional description 
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Interactive visualization of PGG family 
networks including the query 
pseudogene/gene 

Users can query any single gene or 
pseudogene symbol, e.g., PTENP1. 
Nodes are colored by sub-clusters within 
the network. 

Functional enrichment analysis of PGG 
family 

Functional enrichment can be conducted 
on the genes within the PGG family on 
Biological Process, Molecular Function or 
Cellular Components annotations. The GO 
functional enrichment is calculated with: 
1. Fisher’s exact test74 
2. Kolmogorov-Smirnov (KS) Classic75 
3. Kolmogorov-Smirnov (KS) Elim75 

Genomic loci mapping of PGG family  The genes in the PGG family can be 
mapped back to the genome using a circus 
plot to identify potential loci of interest. 

Data download for all of the figures 
 

Users can also download results including: 
1. the differential pseudogene expression 
(DPgE) table for all pseudogenes in the 
selected cancer 
2. the gene and pseudogene expression 
3. miRNA correlation table 

Links to other gene databases for more 
information 

By directly clicking the node in the network, 
users can open the GeneCards and 
Ensembl websites44,76 for detailed gene 
information. 

Gene/pseudogene co-expression analysis 
across the entire TCGA 

Once a PGG family has been identified the 
gene/pseudogene co-expression matrix is 
calculated across one of the 32 available 
TCGA cancer types. 

Tumor vs. normal differential expression of 
genes/pseudogenes across all TCGA 
cancer types 

The gene/pseudogene differential 
expression is calculated for all members of 
the selected PGG family. There is also an 
option to run differential expression on a 
specified cancer for all pseudogenes which 
can be viewed or downloaded as a table. 

Predicted miRNA targets involved in the 
PGG families across all TCGA cancer 
types 

The miRNA targets involved in the 
selected cancer and PGG family are 
displayed to show which miRNAs could 
regulate the PGG family members. This is 
by using the miRNA correlation tables from 
the TCGA. 

Differential Pseudogene Expression 
(DPgE) Analysis 

Differential pseudogene expression is 
calculated for each of the pseudogenes in 
TCGA cancers using dreamBase 
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expression information20. The online tool 
allows for manipulation and download of 
the table.  

 1	

Table 2. Benchmarking analysis of PseudoFuN databases. Genes indicate the gene with 2	
which the pseudogenes are associated in the literature. BLAST and CUDAlign columns 3	
indicate the specific databases. PMID indicates the literature from which the gene-psuedogene 4	
relationship was derived. Yellow highlighting indicates gene-pseudogene relationships found 5	
using BLAST but not CUDAlign. Green highlighting indicate indicates gene-pseudogene 6	
relationships found by CUDAlign but not by BLAST. Orange highlighting indicate where neither 7	
type of database identified the benchmark gene-pseudogene relationship. Benchmark totals are 8	
included at the bottom of the table. 9	

Gene BlastDB CUDAlign18 CUDAlign54 CUDAlign135 CUDAlign198 PMID 
PTEN Yes No No No No 26442270 
TUSC No No No No No 26442270 
INTS6 Yes No No No No 26442270 
OCT4 Yes Yes Yes Yes Yes 26442270 
HMGA1 Yes Yes Yes Yes Yes 26442270 
CYP4Z1 No No No No No 26442270 
BRAF Yes No No No No 26442270 
KLK4 No No No No No 22726445 
ATP8A2 No Yes Yes No No 22726445 
CXADR No Yes Yes Yes Yes 22726445 
CALM2 Yes Yes Yes Yes Yes 22726445 
TOMM40 Yes Yes Yes Yes Yes 22726445 
NONO Yes Yes Yes Yes Yes 22726445 
PERP No Yes Yes Yes Yes 22726445 
DUSP8 Yes Yes No No No 22726445 
YES1 Yes Yes No No No 22726445 
GJA1 Yes No No No No 22726445 
AURKA Yes Yes Yes Yes Yes 22726445 
RHOB No No No No No 22726445 
HMGB1 Yes Yes Yes Yes Yes 22726445 
EIF4A1 Yes Yes No No No 22726445 
EIF4H Yes Yes Yes Yes Yes 22726445 
SNRP6 Yes Yes Yes Yes Yes 22726445 
RAB1 Yes No No No No 22726445 
VDAC1 Yes Yes No No No 22726445 
RCC2 Yes No No No No 22726445 
PTMA Yes Yes Yes Yes Yes 22726445 
NDUFA9 Yes Yes Yes Yes Yes 22726445 
CES7 Yes No No No No 22726445 
EPCAM Yes Yes Yes Yes Yes 22726445 
FTH1 Yes Yes Yes Yes Yes 29240947 
Hits 24/31 20/31 16/31 15/31 15/31 

 

Total hits 27/31 
     

 10	

11	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 25	

References 1	

	 1.	 Vanin	EF:	Processed	pseudogenes:	characteristics	and	evolution.	Annu	Rev	2	
Genet	19:253-72,	1985	3	
	 2.	 Mighell	AJ,	Smith	NR,	Robinson	PA,	et	al:	Vertebrate	pseudogenes.	FEBS	Lett	4	
468:109-14,	2000	5	
	 3.	 Pink	RC,	Wicks	K,	Caley	DP,	et	al:	Pseudogenes:	pseudo-functional	or	key	6	
regulators	in	health	and	disease?	RNA	17:792-8,	2011	7	
	 4.	 Chan	JJ,	Tay	Y:	Noncoding	RNA:RNA	Regulatory	Networks	in	Cancer.	Int	J	Mol	8	
Sci	19,	2018	9	
	 5.	 Poliseno	L,	Salmena	L,	Zhang	J,	et	al:	A	coding-independent	function	of	gene	10	
and	pseudogene	mRNAs	regulates	tumour	biology.	Nature	465:1033-8,	2010	11	
	 6.	 Zhang	R,	Guo	Y,	Ma	Z,	et	al:	Long	non-coding	RNA	PTENP1	functions	as	a	12	
ceRNA	to	modulate	PTEN	level	by	decoying	miR-106b	and	miR-93	in	gastric	cancer.	13	
Oncotarget	8:26079-26089,	2017	14	
	 7.	 Lam	HY,	Khurana	E,	Fang	G,	et	al:	Pseudofam:	the	pseudogene	families	15	
database.	Nucleic	Acids	Res	37:D738-43,	2009	16	
	 8.	 Zheng	D,	Gerstein	MB:	A	computational	approach	for	identifying	17	
pseudogenes	in	the	ENCODE	regions.	Genome	Biol	7	Suppl	1:S13	1-10,	2006	18	
	 9.	 An	Y,	Furber	KL,	Ji	S:	Pseudogenes	regulate	parental	gene	expression	via	19	
ceRNA	network.	J	Cell	Mol	Med	21:185-192,	2017	20	
	 10.	 Poliseno	L,	Pandolfi	PP:	PTEN	ceRNA	networks	in	human	cancer.	Methods	21	
77-78:41-50,	2015	22	
	 11.	 Sisu	C,	Pei	B,	Leng	J,	et	al:	Comparative	analysis	of	pseudogenes	across	three	23	
phyla.	Proc	Natl	Acad	Sci	U	S	A	111:13361-6,	2014	24	
	 12.	 Zhang	Y,	Li	S,	Abyzov	A,	et	al:	Landscape	and	variation	of	novel	25	
retroduplications	in	26	human	populations.	PLoS	Comput	Biol	13:e1005567,	2017	26	
	 13.	 Cesana	M,	Daley	GQ:	Deciphering	the	rules	of	ceRNA	networks.	Proc	Natl	27	
Acad	Sci	U	S	A	110:7112-3,	2013	28	
	 14.	 Chiu	HS,	Martinez	MR,	Bansal	M,	et	al:	High-throughput	validation	of	ceRNA	29	
regulatory	networks.	BMC	Genomics	18:418,	2017	30	
	 15.	 Poliseno	L,	Marranci	A,	Pandolfi	PP:	Pseudogenes	in	Human	Cancer.	Front	31	
Med	(Lausanne)	2:68,	2015	32	
	 16.	 Kalyana-Sundaram	S,	Kumar-Sinha	C,	Shankar	S,	et	al:	Expressed	33	
pseudogenes	in	the	transcriptional	landscape	of	human	cancers.	Cell	149:1622-34,	2012	34	
	 17.	 Mei	D,	Song	H,	Wang	K,	et	al:	Up-regulation	of	SUMO1	pseudogene	3	35	
(SUMO1P3)	in	gastric	cancer	and	its	clinical	association.	Med	Oncol	30:709,	2013	36	
	 18.	 Wang	L,	Guo	ZY,	Zhang	R,	et	al:	Pseudogene	OCT4-pg4	functions	as	a	natural	37	
micro	RNA	sponge	to	regulate	OCT4	expression	by	competing	for	miR-145	in	38	
hepatocellular	carcinoma.	Carcinogenesis	34:1773-81,	2013	39	
	 19.	 Han	L,	Yuan	Y,	Zheng	S,	et	al:	The	Pan-Cancer	analysis	of	pseudogene	40	
expression	reveals	biologically	and	clinically	relevant	tumour	subtypes.	Nat	Commun	41	
5:3963,	2014	42	
	 20.	 Zheng	LL,	Zhou	KR,	Liu	S,	et	al:	dreamBase:	DNA	modification,	RNA	43	
regulation	and	protein	binding	of	expressed	pseudogenes	in	human	health	and	disease.	44	
Nucleic	Acids	Res	46:D85-D91,	2018	45	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 26	

	 21.	 Cooke	SL,	Shlien	A,	Marshall	J,	et	al:	Processed	pseudogenes	acquired	1	
somatically	during	cancer	development.	Nat	Commun	5:3644,	2014	2	
	 22.	 Shukla	R,	Upton	KR,	Munoz-Lopez	M,	et	al:	Endogenous	retrotransposition	3	
activates	oncogenic	pathways	in	hepatocellular	carcinoma.	Cell	153:101-11,	2013	4	
	 23.	 Chan	JJ,	Kwok	ZH,	Chew	XH,	et	al:	A	FTH1	gene:pseudogene:microRNA	5	
network	regulates	tumorigenesis	in	prostate	cancer.	Nucleic	Acids	Res	46:1998-2011,	2018	6	
	 24.	 Zang	W,	Wang	T,	Wang	Y,	et	al:	Knockdown	of	long	non-coding	RNA	TP73-7	
AS1	inhibits	cell	proliferation	and	induces	apoptosis	in	esophageal	squamous	cell	8	
carcinoma.	Oncotarget	7:19960-74,	2016	9	
	 25.	 Wei	Y,	Chang	Z,	Wu	C,	et	al:	Identification	of	potential	cancer-related	10	
pseudogenes	in	lung	adenocarcinoma	based	on	ceRNA	hypothesis.	Oncotarget	8:59036-11	
59047,	2017	12	
	 26.	 Milligan	MJ,	Lipovich	L:	Pseudogene-derived	lncRNAs:	emerging	regulators	of	13	
gene	expression.	Front	Genet	5:476,	2014	14	
	 27.	 Bateman	A,	Birney	E,	Durbin	R,	et	al:	The	Pfam	protein	families	database.	15	
Nucleic	Acids	Res	28:263-6,	2000	16	
	 28.	 Finn	RD,	Mistry	J,	Schuster-Bockler	B,	et	al:	Pfam:	clans,	web	tools	and	17	
services.	Nucleic	Acids	Res	34:D247-51,	2006	18	
	 29.	 Chirag	Jain	SK:	Fine-grained	GPU	parallelization	of	pairwise	local	sequence	19	
alignment.	Presented	at	the	21st	International	Conference	on	High	Performance	Computing	20	
(HiPC,	2014	21	
	 30.	 Soroceanu	L,	Matlaf	L,	Khan	S,	et	al:	Cytomegalovirus	Immediate-Early	22	
Proteins	Promote	Stemness	Properties	in	Glioblastoma.	Cancer	Res	75:3065-76,	2015	23	
	 31.	 Pei	B,	Sisu	C,	Frankish	A,	et	al:	The	GENCODE	pseudogene	resource.	Genome	24	
Biology	13:R51,	2012	25	
	 32.	 Zhang	Z,	Carriero	N,	Zheng	D,	et	al:	PseudoPipe:	an	automated	pseudogene	26	
identification	pipeline.	Bioinformatics	22:1437-1439,	2006	27	
	 33.	 Lynch	M,	Conery	JS:	The	evolutionary	fate	and	consequences	of	duplicate	28	
genes.	Science	290:1151-5,	2000	29	
	 34.	 Baertsch	R,	Diekhans	M,	Kent	WJ,	et	al:	Retrocopy	contributions	to	the	30	
evolution	of	the	human	genome.	BMC	Genomics	9:466,	2008	31	
	 35.	 Zhang	Y:	PseudoFuN	GitHub.	32	
https://github.com/yanzhanglab/PseudoFuN_app,	2018	33	
	 36.	 Johnson	TS,	Li	S,	Franz	E,	et	al:	PseudoFuN.	34	
https://integrativeomics.shinyapps.io/pseudofun_app/,	2018	35	
	 37.	 Miranda	KC,	Huynh	T,	Tay	Y,	et	al:	A	pattern-based	method	for	the	36	
identification	of	MicroRNA	binding	sites	and	their	corresponding	heteroduplexes.	Cell	37	
126:1203-17,	2006	38	
	 38.	 Krek	A,	Grun	D,	Poy	MN,	et	al:	Combinatorial	microRNA	target	predictions.	39	
Nat	Genet	37:495-500,	2005	40	
	 39.	 Agarwal	V,	Bell	GW,	Nam	JW,	et	al:	Predicting	effective	microRNA	target	sites	41	
in	mammalian	mRNAs.	Elife	4,	2015	42	
	 40.	 Grossman	RL,	Heath	AP,	Ferretti	V,	et	al:	Toward	a	Shared	Vision	for	Cancer	43	
Genomic	Data.	N	Engl	J	Med	375:1109-12,	2016	44	
	 41.	 Carithers	LJ,	Moore	HM:	The	Genotype-Tissue	Expression	(GTEx)	Project.	45	
Biopreserv	Biobank	13:307-8,	2015	46	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 27	

	 42.	 Center	OS:	Ohio	Supercomputer	Center.	Columbus	OH,	Ohio	Supercomputer	1	
Center,	1987	2	
	 43.	 Altschul	SF,	Gish	W,	Miller	W,	et	al:	Basic	local	alignment	search	tool.	J	Mol	3	
Biol	215:403-10,	1990	4	
	 44.	 Zerbino	DR,	Achuthan	P,	Akanni	W,	et	al:	Ensembl	2018.	Nucleic	Acids	Res	5	
46:D754-D761,	2018	6	
	 45.	 Ensembl:	Ensembl	Biomart.	ensembl.org/biomart/martview,	2018	7	
	 46.	 Hagberg	A,	Swart	P,	S	Chult	D:	Exploring	network	structure,	dynamics,	and	8	
function	using	NetworkX,	Los	Alamos	National	Lab.(LANL),	Los	Alamos,	NM	(United	9	
States),	2008	10	
	 47.	 Harrow	J,	Frankish	A,	Gonzalez	JM,	et	al:	GENCODE:	the	reference	human	11	
genome	annotation	for	The	ENCODE	Project.	Genome	Res	22:1760-74,	2012	12	
	 48.	 Echols	N,	Harrison	P,	Balasubramanian	S,	et	al:	Comprehensive	analysis	of	13	
amino	acid	and	nucleotide	composition	in	eukaryotic	genomes,	comparing	genes	and	14	
pseudogenes.	Nucleic	Acids	Res	30:2515-23,	2002	15	
	 49.	 Johnson	TS,	Li	S,	Kho	JR,	et	al:	Network	analysis	of	pseudogene-gene	16	
relationships:	from	pseudogene	evolution	to	their	functional	potentials.	Pac	Symp	17	
Biocomput	23:536-547,	2018	18	
	 50.	 Karro	JE,	Yan	Y,	Zheng	D,	et	al:	Pseudogene.org:	a	comprehensive	database	19	
and	comparison	platform	for	pseudogene	annotation.	Nucleic	Acids	Res	35:D55-60,	2007	20	
	 51.	 pseudogenes.org:	psiDr.	pseudogenes.org/psidr/similarity.dat	21	
	 52.	 pseudogenes.org:	psiCube.	http://pseudogene.org/psicube/	22	
	 53.	 Ashburner	M,	Ball	CA,	Blake	JA,	et	al:	Gene	Ontology:	tool	for	the	unification	23	
of	biology.	Nature	genetics	25:25,	2000	24	
	 54.	 Cancer	Genome	Atlas	Research	N,	Weinstein	JN,	Collisson	EA,	et	al:	The	25	
Cancer	Genome	Atlas	Pan-Cancer	analysis	project.	Nat	Genet	45:1113-20,	2013	26	
	 55.	 Hudak	D,	Johnson	D,	Chalker	A,	et	al:	Open	OnDemand:	A	web-based	client	27	
portal	for	HPC	centers.		28	
	 56.	 Smith	TF,	Waterman	MS:	Identification	of	common	molecular	subsequences.	J	29	
Mol	Biol	147:195-7,	1981	30	
	 57.	 Carmona	U,	Li	L,	Zhang	L,	et	al:	Ferritin	light-chain	subunits:	key	elements	for	31	
the	electron	transfer	across	the	protein	cage.	Chem	Commun	(Camb)	50:15358-61,	2014	32	
	 58.	 Wu	T,	Li	Y,	Liu	B,	et	al:	Expression	of	Ferritin	Light	Chain	(FTL)	Is	Elevated	in	33	
Glioblastoma,	and	FTL	Silencing	Inhibits	Glioblastoma	Cell	Proliferation	via	the	34	
GADD45/JNK	Pathway.	PLoS	ONE	11:e0149361,	2016	35	
	 59.	 Kuleshov	MV,	Jones	MR,	Rouillard	AD,	et	al:	Enrichr:	a	comprehensive	gene	36	
set	enrichment	analysis	web	server	2016	update.	Nucleic	Acids	Res	44:W90-7,	2016	37	
	 60.	 Lachmann	A,	Torre	D,	Keenan	AB,	et	al:	Massive	mining	of	publicly	available	38	
RNA-seq	data	from	human	and	mouse.	Nat	Commun	9:1366,	2018	39	
	 61.	 Li	N,	Miao	Y,	Shan	Y,	et	al:	MiR-106b	and	miR-93	regulate	cell	progression	by	40	
suppression	of	PTEN	via	PI3K/Akt	pathway	in	breast	cancer.	Cell	Death	Dis	8:e2796,	2017	41	
	 62.	 Guo	C,	Song	WQ,	Sun	P,	et	al:	LncRNA-GAS5	induces	PTEN	expression	42	
through	inhibiting	miR-103	in	endometrial	cancer	cells.	J	Biomed	Sci	22:100,	2015	43	
	 63.	 Geng	L,	Sun	B,	Gao	B,	et	al:	MicroRNA-103	promotes	colorectal	cancer	by	44	
targeting	tumor	suppressor	DICER	and	PTEN.	Int	J	Mol	Sci	15:8458-72,	2014	45	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	 28	

	 64.	 Yang	C,	Wu	D,	Gao	L,	et	al:	Competing	endogenous	RNA	networks	in	human	1	
cancer:	hypothesis,	validation,	and	perspectives.	Oncotarget	7:13479-90,	2016	2	
	 65.	 Cui	SY,	Wang	R,	Chen	LB:	MicroRNA-145:	a	potent	tumour	suppressor	that	3	
regulates	multiple	cellular	pathways.	J	Cell	Mol	Med	18:1913-26,	2014	4	
	 66.	 Persano	L,	Moserle	L,	Esposito	G,	et	al:	Interferon-alpha	counteracts	the	5	
angiogenic	switch	and	reduces	tumor	cell	proliferation	in	a	spontaneous	model	of	prostatic	6	
cancer.	Carcinogenesis	30:851-60,	2009	7	
	 67.	 Welch	JD,	Baran-Gale	J,	Perou	CM,	et	al:	Pseudogenes	transcribed	in	breast	8	
invasive	carcinoma	show	subtype-specific	expression	and	ceRNA	potential.	BMC	Genomics	9	
16:113,	2015	10	
	 68.	 Costa	V,	Esposito	R,	Aprile	M,	et	al:	Non-coding	RNA	and	pseudogenes	in	11	
neurodegenerative	diseases:	"The	(un)Usual	Suspects".	Front	Genet	3:231,	2012	12	
	 69.	 Long	MD,	Singh	PK,	Russell	JR,	et	al:	The	miR-96	and	RARgamma	signaling	13	
axis	governs	androgen	signaling	and	prostate	cancer	progression.	Oncogene,	2018	14	
	 70.	 Xu	J,	Feng	L,	Han	Z,	et	al:	Extensive	ceRNA-ceRNA	interaction	networks	15	
mediated	by	miRNAs	regulate	development	in	multiple	rhesus	tissues.	Nucleic	Acids	Res	16	
44:9438-9451,	2016	17	
	 71.	 Costa-Pinheiro	P,	Ramalho-Carvalho	J,	Vieira	FQ,	et	al:	MicroRNA-375	plays	a	18	
dual	role	in	prostate	carcinogenesis.	Clin	Epigenetics	7:42,	2015	19	
	 72.	 Wang	Y,	Lieberman	R,	Pan	J,	et	al:	miR-375	induces	docetaxel	resistance	in	20	
prostate	cancer	by	targeting	SEC23A	and	YAP1.	Mol	Cancer	15:70,	2016	21	
	 73.	 MacKeigan	JP,	Murphy	LO,	Blenis	J:	Sensitized	RNAi	screen	of	human	kinases	22	
and	phosphatases	identifies	new	regulators	of	apoptosis	and	chemoresistance.	Nat	Cell	Biol	23	
7:591-600,	2005	24	
	 74.	 F.R.S.	RAF:	Tests	of	significance	in	harmonic	analysis.	Proceedings	of	the	25	
Royal	Society	of	London.	Series	A	125:54,	1929	26	
	 75.	 Alexa	A	RJ:	Gene	set	enrichment	analysis	with	topGO.	27	
http://www.bioconductor.org,	Bioconductor,	2009	28	
	 76.	 Stelzer	G,	Rosen	N,	Plaschkes	I,	et	al:	The	GeneCards	Suite:	From	Gene	Data	29	
Mining	to	Disease	Genome	Sequence	Analyses.	Curr	Protoc	Bioinformatics	54:1	30	1-1	30	30	
33,	2016	31	
 32	

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



pseudogene 
assignments 

gene family 
consensus 
sequences 

family  
alignments

pseudogene- 
gene family 

alignment matrices 
pseudogenes

genesGRCh38 GENCODEv25 split genes and  
pseudogenes Biomart gene homology

gene families

processed,
unprocessed,

other

select  
consensus
sequences

processed 
pseudogenes 

unprocessed 
pseudogenes 

other 
pseudogenes 

CUDAlignBLAST

genes BLAST 
database 

pseudogene-
consensus gene 

alignments 

pseudogene- 
gene families 

pseudogene 
assignment 

family  
alignments

pseudogene- 
gene family 

alignment matrices 

BLAST gene
matches 

pseudogene- 
gene families 

Figure 1 Click here to access/download;Figure;Figure1_pressrdy.pdf

https://www.editorialmanager.com/giga/download.aspx?id=55881&guid=a76bb045-6dd3-4048-ae9e-f7ba73347d10&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=55881&guid=a76bb045-6dd3-4048-ae9e-f7ba73347d10&scheme=1


0 20 40 60 80 100

0
50

00
10

00
0

15
00

0

Scores above threshold

Nu
m

be
r p

se
ud

og
en

es
97.5% cutoff
99% cutoff
99.9% cutoff
99.99% cutoff
99.999% cutoff

2 4 6 8 10

0
50

00
10

00
0

15
00

0

Scores above threshold

Nu
m

be
r p

se
ud

og
en

es

97.5% cutoff
99% cutoff
99.9% cutoff
99.99% cutoff
99.999% cutoff

Figure 2 Click here to access/download;Figure;Figure2_pressrdy.pdf

https://www.editorialmanager.com/giga/download.aspx?id=55882&guid=d4fbf74c-639e-4f10-8477-3050fda4bd41&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=55882&guid=d4fbf74c-639e-4f10-8477-3050fda4bd41&scheme=1


BlastDB	

CUDAlign54	

2881	
3120	

CUDAlign135	

BlastDB	

BlastDB	

CUDAlign198	

21645	

4017	

1248	

1176	

1745	

3520	

15749	470	 2974	
239	 22688	

2291	

CUDAlign54	

BlastDB	 BlastDB	 BlastDB	

CUDAlign135	 CUDAlign198	

3413	
3707	

1542	

20844	

1439	
4818	

4194	

2166	

597	

2818	

303	
12091	

3542	15075	

2183	

Pseudo-	
gene.org(old)	

Pseudo-	
gene.org(old)	

Pseudo-	
gene.org(old)	

2458	

Pseudo-	
gene.org(new)	

Pseudo-	
gene.org(new)	

Pseudo-	
gene.org(new)	

Pseudo-	
gene.org(new)	

Pseudo-	
gene.org(old)	

8624	 10370	

BlastDB	
68578	

33253	

41668	

16015	

47564	

8800	

50654	

32990	

41374	

15418	

47143	 50127	

8736	

CUDAlign54	
60091	 CUDAlign135	

35284	

24672	

CUDAlign198	

Pseudo-	
gene.org(old)	

869	 2615	

Pseudo-	
gene.org(new)	

7755	

CUDAlign54	

60091	

CUDAlign135	

CUDAlign198	

24672	

10612	

Figure 3 Click here to access/download;Figure;Figure3_pressrdy.pdf

https://www.editorialmanager.com/giga/download.aspx?id=55883&guid=8d382586-f0b2-4ceb-ba4a-beb1a2993b69&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=55883&guid=8d382586-f0b2-4ceb-ba4a-beb1a2993b69&scheme=1


A	

B	 C	

D	

E	

Expression	

Figure 4 Click here to access/download;Figure;Figure4_pressrdy.pdf

https://www.editorialmanager.com/giga/download.aspx?id=55884&guid=636f08a9-0056-408d-8e93-feb898082b3f&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=55884&guid=636f08a9-0056-408d-8e93-feb898082b3f&scheme=1


  

Supplementary Material

Click here to access/download
Supplementary Material

PseudoFuN_suppl_Giga_20181212.pdf

https://www.editorialmanager.com/giga/download.aspx?id=55873&guid=c9d92f4d-98aa-4cb0-be48-605fb4b4b0f4&scheme=1


 
 

December 12, 2018 
 
 
 
 
 
Dear Editor, 
 
We would like to submit our revision of the manuscript “PseudoFuN: Deriving functional potentials of 
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Response Letter 
 
We thank the reviewers for their insightful comments and believe that after addressing each comment 
the manuscript is stronger. Please see the reviewers’ comments and our responses below to see 
specifically how all of the concerns were addressed. We have highlighted all our answers in red color. 
We also highlight in red color all the changes in the main text. 
 
    Reviewer #1: The role of pseudogenes in the modulation of gene regulation is a burgeoning field that is 
ideally placed to benefit from integrative approaches that utilise "big data" that is currently available. A 
user friendly tool such as PseudoFun is therefore of use as a possible discovery mechanism for new 
relationships. Not having used PsuedoFun at this stage, it is difficult to fully evaluate its performance, 
though the approach described appears useful and the presentation of new relationships such as that 
suggested between PPP4RiL, SOX15 and miR-375 highlight a potential to identify new avenues for further 
investigation. I have only minor suggestions for improvement in presentation. 
    1) In Figure 5 (and much of the supplementary figures presented in a similar fashion), is the miRNA 
associated directly targeting the gene/pseudogene. Visually, only a correlative expression relationship is 
indicated. 
 
We appreciate the reviewer’s feedback. In Figure 5 (currently Figure 4), the miRNAs associated with 
gene/pseudogene were determined by not only expression correlation but also miRNA target 
prediction databases: Miranda, PicTar and TargetScan. We downloaded the predictions from 
http://gdac.broadinstitute.org. According to the reviewer’s comment, we have improved the miRNA 
section on the TCGA Expression panel of the website. The website now allows the user to select how 
many algorithms predict regulation of the gene/pseudogene by the miRNA. This value is used as a 
threshold for the displayed miRNAs. The default is 0 meaning that the miRNA and gene/pseudogene 
are significantly negatively correlated indicative of possible regulation. The value can be changed from 
0-3 indicating the number of algorithms (Miranda, PicTar, and TargetScan) predict regulation of 
gene/pseudogene by the specified miRNA. 
 
    2) Figure 4 does little to add clarity. If the goal is to highlight regulatory relationships, the ENSTxxx 
labelling does not lend for easy interpretation and the miRNAs are not shown. If the intended purpose is 
to illustrate a style at which data is outputted, perhaps this is better served by a user friendly series of 
screenshots illustrating a beginning to end data query - result flow? 
 
We agree with the reviewer that containing only ENSTxxx labelling does not facilitate illustration. We 
use easy-to-interpret gene names and links to other gene databases (e.g. GeneCards, Ensembl) to 
improve the usability of our PseudoFuN website 
(https://integrativeomics.shinyapps.io/pseudofun_app/), and we have improved the visualization 
according the reviewers’ suggestions. The old Figure 4 is not from our public PseudoFuN version, 
instead it is from our supercomputer version located on the Ohio Supercomputer Center clusters and is 
meant mainly for research purposes. Since it is not exactly the version we mainly presented in the main 
text, which has much more user-friendly interface with interpretable gene names, we moved the old 
Figure 4 to the supplementary materials so that it does not detract from the usability of the main 
application freely available online. 
 
    3) In Figure 5 and some supplementary figures, co-expression visually is not well represented by the 
colour scheme. ie: the tumour relationship between PPP4R1L and SOX15. The stats support this, the visual 
representation less so. Perhaps blanking out the 1:1 same gene : same gene diagonal would allow re-
setting of the colour scheme to better represent co-expression? 
 
This insightful comment by the reviewer caused us to rethink our visualization. We changed the same 
gene/pseudogene correlation (1.0) along the diagonal line in the heatmap to NaN so that the 
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visualization ignores those values. This allows the range of color for the other correlations to be more 
diverse and more informative to the users. 
 
    4) In paragraph 2 of the results, I was unclear what the "alignment score above 54" means... What 
degree of alignment is this? I found understanding this to be hard to gauge. Relating to this, could the 
authors comment more extensively on their findings of tremendous levels of alignment for some 
pseudogenes? 
 
We agree with the reviewer that we should more fully explain the alignment scores in the manuscript 
and as a result explain in more detail what the alignment scores represent in paragraph 2 of the results:  
“We evaluate alignment of pseudogenes to genes using the Smith-Watermann local pairwise alignment 
score56 between a pseudogene and a gene. These scores indicate the highest score possible for two 
sequences based on their specific dynamic programing matrix which is solved by the Smith-Watermann 
algorithm. The cutoffs we use, 18, 54, 135, and 198, indicate the 97.50th, 99.0th, 99.90th and 99.99th 
percentiles of alignment scores in our alignment matrix between all pseudogenes and consensus 
sequences.”  
 
We have also performed more in-depth analysis on the high homology pseudogenes and described 
these findings in more detail in paragraph 2-3 of Results. Specifically, we found zinc finger pseudogenes 
and other domain binding patterns in the highest homology pseudogenes. We found large bodies of 
evidence that the high homology pseudogenes have either direct or indirect relationships with zinc 
finger genes. 
In Results paragraph 2: 
“Another feature of note is that there are some pseudogenes that align to many gene families (e.g., 9 
pseudogenes, UBE2Q2P1, RP11-313J2.1, TPTEP1, BMS1P1, CTD-2245F17.3, SCAND2P, GTF2IP7, 
WHAMMP3, IGLV3-2, have alignment scores above 54 in 15,000 gene families and 571 pseudogenes, 
see Supplementary Table 2, have alignment scores above 54 in 1,000 gene families).” 
In Results paragraph 3: 
“Of the 9 highest homology pseudogenes (Supplementary Table 2), one, RP11-313J2.1, is a zinc finger 
pseudogene and two, CTD-2245F17.3 and SCAND2P, are located in the promoters of zinc finger genes. 
Four pseudogenes in the 9 highest homology pseudogenes (RP11-313J2.1, CTD-2245F17.3, SCAND2P, 
and WHAMMP3) also have 92-96% sequence identity with zinc finger genes (ZNF72P, ZNF518A, ZNF37A 
and ZNF788P/ZNF20 respectively) when BLAST searched against the human genome. Of the 571 highest 
homology pseudogenes (Supplementary Table 2), we found 27 zinc finger pseudogenes. Using EnrichR59 
we identified enrichment in GO Molecular Function GO:0004430 1-phosphatdylinositol 4-kinase activity 
(Fisher’s exact test p-value = 0.001), and enrichment for GO Biological Process GO:0070475 rRNA base 
methylation (Fisher’s exact test p-value = 0.003). In the ARCHS4 database60 324 transcription factors 
were significantly co-expressed (Benjamini-Hochberg adjusted Fisher’s exact test p-value < 0.05) with 
members of the 571 highest homology pseudogenes. Of those 324 transcription factors, 228 were zinc 
finger genes. These findings show that the highest homology pseudogenes, like zinc finger genes, likely 
contain repetitive elements that align to many genomic loci.” 
     
    Reviewer #2: The authors have presented an overview of their new analysis and data resource to 
identify novel pseudogene-gene network interactions that could lead to new hypothesis around their role 
in regulation of cancer using TCGA cancer expression data and miRNA expression. The unique element of 
this analysis is using a consensus sequence representing gene families and examining the local alignment 
of pseudogenes against this consensus to identify new potential interactions. 
     
    The major criticism of the paper is that a thorough benchmarking evaluation of their different 
alignment cutoffs has not been clearly presented, to guide the user when interpreting the network data 
and deciding which pseudogene appearing in the different networks is worth looking into more depth or 
reject as being a  false positive result. This probably could be done with their validated use cases example 
taken for the literature such as PTEN /PTENP1 etc. 



 
The reviewer brings up an important point and as a result we include a benchmarking analysis for 31 
gene-pseudogene groups that are involved in cancer. We extracted the benchmark dataset from PMID: 
26442270, PMID: 22726445, and PMID: 29240947. PMID:26442270 is a review of well documented 
pseudogenes and their functions by a well-known researcher Dr. Poliseno. PMID: 22726445 is a Cell 
article detailing expressed pseudogenes across 13 human cancers and their targets. PMID: 29240947 is 
a bench science paper about FTH1 regulation by its pseudogenes. This article also describes some of the 
other pseudogene-gene relationships described by the previous two papers. 
 
We use this benchmarking experiment in place of Figure 4 because it contains much more information. 
We derived these associations from well-known studies on the subject and found that we can identify 
87% of the groups using all databases, 65% using consensus sequences, and identify 3 benchmark gene-
pseudogene pairs using consensus sequences that did not appear using BLAST. The examples found by 
the consensus sequence method but not by BLAST show that the CUDAlign method is useful. Since best 
practice would have a researcher try multiple databases, a researcher will identify most of the 
benchmarks. We believe it is also worth noting that we identified these relationships independently of 
known relationships. As a result, there will inevitably be subtle differences due to the data and 
methods used during the generation of different flavors of databases. 
 
Benchmarking table 
Gene BLAST CUDAlign18 CUDAlign54 CUDAlign135 CUDAlign198 PMID 
PTEN Yes No No No No 26442270 
TUSC No No No No No 26442270 
INTS6 Yes No No No No 26442270 
OCT4 Yes Yes Yes Yes Yes 26442270 
HMGA1 Yes Yes Yes Yes Yes 26442270 
CYP4Z1 No No No No No 26442270 
BRAF Yes No No No No 26442270 
KLK4 No No No No No 22726445 
ATP8A2 No Yes Yes No No 22726445 
CXADR No Yes Yes Yes Yes 22726445 
CALM2 Yes Yes Yes Yes Yes 22726445 
TOMM40 Yes Yes Yes Yes Yes 22726445 
NONO Yes Yes Yes Yes Yes 22726445 
PERP No Yes Yes Yes Yes 22726445 
DUSP8 Yes Yes No No No 22726445 
YES1 Yes Yes No No No 22726445 
GJA1 Yes No No No No 22726445 
AURKA Yes Yes Yes Yes Yes 22726445 
RHOB No No No No No 22726445 
HMGB1 Yes Yes Yes Yes Yes 22726445 
EIF4A1 Yes Yes No No No 22726445 
EIF4H Yes Yes Yes Yes Yes 22726445 
SNRP6 Yes Yes Yes Yes Yes 22726445 
RAB1 Yes No No No No 22726445 
VDAC1 Yes Yes No No No 22726445 
RCC2 Yes No No No No 22726445 
PTMA Yes Yes Yes Yes Yes 22726445 
NDUFA9 Yes Yes Yes Yes Yes 22726445 
CES7 Yes No No No No 22726445 
EPCAM Yes Yes Yes Yes Yes 22726445 
FTH1 Yes Yes Yes Yes Yes 29240947 



Hits 24/31 20/31 16/31 15/31 15/31 
 

Total hits 27/31 
     

 
1)     Pg 10 highlighted 9 pseudogenes aligned to 15000 gene families and could highlight potential errors 
in the annotation or if they are collagen-like pseudogenes or znf-pseudogenes with repetitive features 
that align everywhere would be interesting to highlight and give a list of the genes in a table. 
 
We agree with the reviewer on this point and as a result further elaborate upon the high homology 
pseudogenes, and described these findings in more detail in paragraph 2-3 of Results. Specifically, we 
found zinc finger pseudogenes and other domain binding patterns in the highest homology 
pseudogenes. We found large bodies of evidence that the high homology pseudogenes have either 
direct or indirect relationships with zinc finger genes. 
In Results paragraph 2: 
“Another feature of note is that there are some pseudogenes that align to many gene families (e.g., 9 
pseudogenes, UBE2Q2P1, RP11-313J2.1, TPTEP1, BMS1P1, CTD-2245F17.3, SCAND2P, GTF2IP7, 
WHAMMP3, IGLV3-2, have alignment scores above 54 in 15,000 gene families and 571 pseudogenes, 
see Supplementary Table 2, have alignment scores above 54 in 1,000 gene families).” 
In Results paragraph 3: 
“Of the 9 highest homology pseudogenes (Supplementary Table 2), one, RP11-313J2.1, is a zinc finger 
pseudogene and two, CTD-2245F17.3 and SCAND2P, are located in the promoters of zinc finger genes. 
Four pseudogenes in the 9 highest homology pseudogenes (RP11-313J2.1, CTD-2245F17.3, SCAND2P, 
and WHAMMP3) also have 92-96% sequence identity with zinc finger genes (ZNF72P, ZNF518A, ZNF37A 
and ZNF788P/ZNF20 respectively) when BLAST searched against the human genome. Of the 571 highest 
homology pseudogenes (Supplementary Table 2), we found 27 zinc finger pseudogenes. Using EnrichR59 
we identified enrichment in GO Molecular Function GO:0004430 1-phosphatdylinositol 4-kinase activity 
(Fisher’s exact test p-value = 0.001), and enrichment for GO Biological Process GO:0070475 rRNA base 
methylation (Fisher’s exact test p-value = 0.003). In the ARCHS4 database60 324 transcription factors 
were significantly co-expressed (Benjamini-Hochberg adjusted Fisher’s exact test p-value < 0.05) with 
members of the 571 highest homology pseudogenes. Of those 324 transcription factors, 228 were zinc 
finger genes. These findings show that the highest homology pseudogenes, like zinc finger genes, likely 
contain repetitive elements that align to many genomic loci.” 
 
2)     Fig 3 show the different CUDAlign cutoff and overlap with Pseudogene.org. However there is no 
detailed explanation why there are over 3500 pseudogenes are not detected by this method of alignment 
using blast or CDUAlign and is there anything specific about these pseudogenes, are they all 1:1 
relationship with parent gene? 
 
The reviewer identifies an important area, which we have been working on since the initial submission. 
We have found that a significant portion of these pseudogenes/genes that are in the newer version of 
the Pseudogenes.org database are not contained in our GENCODEv25 annotation. These missing genes 
and pseudogenes account for 1030 of the 2458 pseudogene-gene pairs that are in Pseudogenes.org but 
not in our databases. If these are excluded we recreate 85% of the Pseudogenes.org pseudogene-gene 
pairs (1:1 relationships). Furthermore this 85% accuracy is similar to our benchmarking accuracy (87%) 
on genes whose annotation will likely not change drastically between annotation builds. Alternatively, 
since these genes and pseudogenes were from a different annotation version the sequences themselves 
could be slightly different causing differences between our database and Pseudogenes.org. These 
results can be found in the Results section “Direct comparison to pseudogene parents”. 
In Results paragraph 5: 
“Our databases also generate a larger pool of possible interactions. It is worth noting that 391 
pseudogenes and 152 genes in the new Pseudogene.org (GENCODEv10) are not present in the 
GENCODEv25 annotation used in our analysis. These genes and pseudogenes together account for 1030 
edges that were used in our comparison. Accounting for these differences in the annotation, we are 



able to reconstruct 85% of the pseudogene-gene relationships in the new Pseudogene.org database. 
Since these associations were generated without prior pseudogene-gene relationship information and 
the annotations have changed slightly since Pseudogenes.org, our methods prove to independently 
identify known and unknown pseudogene-gene relationships at a high rate.” 
 
3)     For the use case example, I do not fully understand why the CDUAlign18 was used for PPPARIL 
identification in sox15 and not detected in the CDUAlign54 or CDUAlign135. Looking at the sox15 network 
using CDUAlign135 an alternative pseudogene PIN2 pseudogene can be found. Can the authors explain 
why this is not also considered as potential regulator and why it does not appear in the TGCA expression 
panel with the rest of the sox genes ? 
 
We thank the reviewer for their insight and have further evaluated the SOX15 network in response. 
RP11-506B6.5, the pseudogene located next to PIN2, is retained in the more stringent databases (e.g, 
CUDAlign135) and as such should also be considered. However, RP11-506B6.5 lacks enough annotation 
from existing literature to make it a promising candidate. The PPPARIL gene has more supporting 
literature and is a larger more complex pseudogene containing 19 exons opposed to 1 exon in RP11-
506B6.5.  
 
4)     Since the usability of the web app is highlighted in the paper, I would recommend a direct link from 
the Ensembl Identifiers to Ensembl rather than Genecards eg ENST00000428294 does not have a 
Genecard entry but is classified as a transcribed unprocessed pseudogene by GENCODE/Ensembl. 
 
We thank the reviewer for this suggestion and as a result have added this functionality to the website. 
When a user selects a network node, a tab for GeneCards and a tab for Ensembl appears for the 
specified gene/pseudogene. 
 
5)     Also the network in the webapp would be easier to navigate if the HGNC identifier was used as 
default name rather than the ENSG ID (as this should be relatively easy to code) and therefore 
recommend figure 4 be redrawn as looks extremely hard to interpret. 
 
We appreciate these suggestions and have focused on our main application that is available online 
(https://integrativeomics.shinyapps.io/pseudofun_app/). In this web application HGNC identifiers are 
used throughout. The old Figure 4 is from another application we developed for research purposes 
through the Ohio Supercomputer Center. As a result, we moved the old Figure 4 to the supplementary 
material so that it does not detract from the usability of the main application (which has much more 
improved user-friendly visualization) freely available online. 
 
6)      Fig 4 should have details of the CDU align cut off used in the legend for the network graphs similar to 
fig 3 
 
We thank the reviewers for their concerns and have added this information to Figure 4, which has been 
moved to the supplementary material as Supplementary Figure 2. We feel that this figure is of less 
importance after running the benchmarking experiment, shown in Table 2. 
     
    Minor issues: 
    *   Pg12 line 12 "regulation" typo  
     
    *   Pg 16 sentence should have "network" inserted before gene on line 
 
We appreciate the help from the reviewer for identifying language errors in the manuscript and have 
made the changes. 
	


