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used OmicsSIMLA to simulate a multi-omics dataset for breast cancer under a
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existing multi-omics analysis methods in terms of disease classification accuracy and
run time.

Conclusions

Our results demonstrated that complex disease mechanisms can be simulated by
OmicsSIMLA, and a random forest-based method showed the highest prediction
accuracy when the multi-omics data were properly normalized. OmicsSIMLA can be
downloaded at https://omicssimla.sourceforge.io.
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Abstract 

Background 

An integrative multi-omics analysis approach that combines multiple types of omics data 

including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and 

microbiomics, has become increasing popular for understanding the pathophysiology of 

complex diseases. Although many multi-omics analysis methods have been developed for 

complex disease studies, there is no simulation tool that simulates multiple types of omics 

data and models their relationships with disease status. Without such a tool, it is difficult to 

evaluate the multi-omics analysis methods on the same scale and to estimate the sample size 

or power when planning a new multi-omics disease study.  

Results 

We developed a multi-omics data simulator OmicsSIMLA, which simulates genomics (i.e., 

SNPs and copy number variations), epigenomics (i.e., whole-genome bisulphite sequencing), 

transcriptomics (i.e., RNA-seq), and proteomics (i.e., normalized reverse phase protein array) 

data at the whole-genome level. Furthermore, the relationships between different types of 

omics data, such as meQTLs (SNPs influencing methylation), eQTLs (SNPs influencing gene 

expression), and eQTM (methylation influencing gene expression), were modeled. More 

importantly, the relationships between these multi-omics data and the disease status were 

modeled as well. We used OmicsSIMLA to simulate a multi-omics dataset for breast cancer 
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under a hypothetical disease model, and used the data to compare the performance among 

existing multi-omics analysis methods in terms of disease classification accuracy and run 

time.  

Conclusions 

Our results demonstrated that complex disease mechanisms can be simulated by 

OmicsSIMLA, and a random forest-based method showed the highest prediction accuracy 

when the multi-omics data were properly normalized. OmicsSIMLA can be downloaded at 

https://omicssimla.sourceforge.io. 

 

Keywords 

Multi-omics data, complex disease study, simulation tool 

 

Introduction 

Complex diseases such as hypertension, type 2 diabetes, and autism are caused by multiple 

genetic and environmental factors [1]. Genome-wide association studies have identified many 

genetic variants (i.e., SNPs) associated with the complex diseases. However, it remains 

difficult to understand the roles of the associated SNPs in the molecular pathophysiology of 

the disease and how the SNPs interact with other SNPs in a biological network [2]. With the 

advancement of high-throughput sequencing technology such as next-generation sequencing 
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(NGS) and massive parallel technology such as mass spectrometry, multiple types of omics 

data (i.e., multi-omics data) including genomics, epigenomics, transcriptomics, proteomics, 

metabolomics, and microbiomics are rapidly generated [3]. As a single type of data generally 

cannot capture the complexity of molecular events causing the disease, an integrative 

approach to combining the multi-omics data would be ideal to help elucidate the 

pathophysiology of the disease [2].  

 

Integrative methods to combine multi-omics data for disease studies have been developed 

rapidly [4-8]. They can be generally classified into two categories: multi-staged and meta-

dimensional approaches [9]. The multi-staged approach aims to first identify relationships 

between the multi-omics data, and then test the associations between the multi-omics data 

and the phenotype. For example, Jennings et al. [7] constructed a Bayesian hierarchical 

model consisting of two stages. The first stage partitioned gene expression into factors 

accounted by methylation, copy number variation (CNV), and other unknown causes. These 

factors were subsequently used as predictors for clinical outcomes in the second stage model. 

One advantage of this approach is that the causal relationships between multi-omics data can 

be modeled. In contrast, the meta-dimensional approach combines the multi-omics data 

simultaneously. Raw or the transformed data from the multi-omics data are combined into a 

single matrix for the analysis. This approach allows for a more flexible inference of the 
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relationships among the multi-omics data, without the assumptions of the causal relationships 

between these data. 

 

Although many multi-omics analysis methods for disease studies are available, they were 

generally evaluated by simulations with data generated specifically to the methods. To 

compare the performance among these methods, it is necessary to use the same simulated 

multi-omics dataset with disease status. However, current simulation tools for disease studies 

mainly focused on simulating a certain type of omics data. For example, more than 25 

simulators are available for simulating genetic data with phenotypic trait, according to the 

Genetic Simulation Resources website (https://popmodels.cancercontrol.cancer.gov/gsr/). 

Tools such as WGBSSuite [10] and pWGBSSimla [11] can simulate whole-genome 

bisulphite sequencing (WGBS) data in case-control samples. Moreover, tools such as 

Polyester [12] and SimSeq [13] simulate RNA-seq data with differential gene expression 

between two groups of samples. To our knowledge, there is currently no simulation tool that 

is capable of simulating a variety of omics data types and modeling the complex relationships 

between the data and the disease. Furthermore, sample size estimation when planning a 

multi-omics study to ensure sufficient power also becomes important [3]. This also requires a 

simulation tool that simulates realistic multi-omics data structures and models the 

architecture of the complex disease. 
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Here, we developed the multi-omics data simulator OmicsSIMLA, which simulates genomics 

data including SNPs and CNVs, epigenomics data such as the WGBS data, transcriptomics 

data (i.e., RNA-seq), and proteomics data such as the normalized reverse phase protein array 

(RPPA) data at a whole-genome level. Furthermore, the relationships between different types 

of omics data, such as meQTLs (SNPs influencing methylation), eQTLs (SNPs influencing 

gene expression), and eQTM (methylation influencing gene expression), were modeled. More 

importantly, the relationships between these multi-omics data and disease status were 

modeled as well. The disease models in OmicsSIMLA are flexible so that the main effects 

and/or interaction effects (either risk or protective) of SNPs and CNVs on the disease can be 

specified. Differential methylation and differential gene and protein expression between cases 

and controls can also be simulated. We demonstrated the usefulness of OmicsSIMLA by 

simulating a multi-omics dataset for breast cancer under a hypothetical disease model, and 

compared the performance among existing multi-omics analysis tools based on the data.  

 

Results 

Figure 1 shows the framework of OmicsSIMLA. The genomics data that can be simulated 

include SNPs and CNVs. Genotypes at SNPs in unrelated and/or family samples are 

simulated based on the SeqSIMLA2 algorithm [14]. CNV status (i.e., a deletion, normal, one 
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duplication or two duplications) on a chromosome is simulated based on the user-specified 

chromosomal regions and CNV frequencies. Affection status of each sample is determined by 

a logistic penetrance function conditional on the causal SNPs and CNVs, and/or the 

interactions among the causal SNPs. The epigenomics data are the methylated and total read 

counts at CpGs based on bisulphite sequencing, simulated using the pWGBSSimla algorithm 

incorporating methylation profiles for 29 human cell and tissue types [11]. Allele-specific 

methylation (ASM), in which paternal and maternal alleles have different methylation rates, 

and differentially methylated region (DMR), where the same CpGs in the region have 

different methylation rates among different cell types, can also be simulated. Furthermore, the 

transcriptomics data (i.e., RNA-seq read counts) are simulated with a parametric model 

assuming a negative-binomial distribution. Finally, the mass-action kinetic action model [15] 

is used to simulate proteomics data at a certain time point incorporating the gene expression 

data. Some SNPs can be specified as meQTLs and eQTLs, and some CpGs can be specified 

as eQTM. Allele-specific expression (ASE), which alleles in a gene have different expression 

levels, caused by cis-eQTL can also be simulated. The differential methylation, gene 

expression, and protein expression levels between cases and controls are simulated 

conditional on the affection status.  

 

Using OmicsSIMLA, we simulated a multi-omics dataset based on hypothetical pathways for 
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breast cancer as described in Ritchie et al. [9] and illustrated in Figure 2. The data included a 

deletion with a protective effect in the CYP1A1 gene, 3 common SNPs with risk effects in 

the CYP1B1 gene, 5 rare SNPs in the COMT gene, which had interaction effects with a 

meQTL for the XRCC1 gene, and 5 rare SNPs in the GSTM1 gene, which also had 

interaction effects with an eQTL affecting the gene and protein expression of the XRCC3 

gene. Finally, 5 rare SNPs in the GSTT1 gene also had interaction effects with a SNP in a 

regulatory region. A total of 2,022 SNPs in the four genes (i.e., CYP1B1, COMT, GSTM1, 

and GSTT1) and a regulatory region consisting of the meQTL, eQTL, and the SNP 

interacting with GSTT1, 1 CNV in CYP1A1, 688 CpGs in XRCC1, and gene and protein 

expression levels for 100 genes (including the expression for XRCC3 and 99 other 

hypothetical genes in the pathways) were simulated. More details about the simulations can 

be found in the Methods section.  

 

We compared the performance of three multi-omics data analysis methods for disease 

prediction using the area under the curve (AUC) measures. The three methods included the 

random forest-based method (RFomics), a graph-based integration method (CANetwork) [5], 

and a model-based integration method (ATHENA) [4]. The RFomics combines the 

preprocessed multi-omics data in a single matrix for constructing the prediction model. As 

described in the Methods section, a gene-based risk score is calculated based on SNPs for 
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each gene. Then the risk scores and other multi-omics data are normalized so that they can be 

evaluated on the same scale by the RF algorithm. In contrast, CANetwork calculates a graph 

matrix to measure the distance between samples using the composite association network 

algorithm [16], and the prediction model is created based on the distance matrix using the 

graph-based semi-supervised learning algorithm [17]. Finally, ATHENA creates a neural 

network model for each type of omics data and a final integrative model is generated based 

on these models.  

 

Table 1 shows the area under the curve (AUC) for the three methods under three scenarios. 

Scenario 1 had 500 cases and 500 controls in the training set, and 100 cases and 100 controls 

in the validation set. Scenario 2 had the same sample sizes as those in Scenario 1, but the 

multi-omics data had less strong effects on the disease compared to Scenario 1. The effects of 

the multi-omics data were the same in Scenarios 3 as those in Scenario 1, but Scenarios 3 had 

larger sample size (i.e., 1,500 cases and 1,500 controls in the training data and 500 cases and 

500 controls in the validation data). More details of the three scenarios are provided in the 

Methods section. Prediction models for the three methods were created based on the training 

dataset, and their prediction accuracies were evaluated by the validation dataset. As seen in 

Table 1, RFomics has the highest AUC in all 3 scenarios followed by ATHENA and 

CANetwork. Table 2 shows the run time for the three methods. In Scenario 1, RFomics and 
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CANetwork had similar performance, while ATHENA required more than 20-times the 

runtime of RFomics and CANetwork. In Scenario 3, CANetwork was the most efficient 

method followed by RFomics, and ATHENA also required significantly more time than the 

other two methods. 

 

Discussion 

We have developed OmicsSIMLA, which simulates multi-omics data (i.e., genomics, 

epigenomics, transcriptomics, and proteomics data) with disease status. In contrast to the 

current omics data simulators that mainly focused on simulating one type of omics data, 

OmicsSIMLA simulates multiple types of omics data while the relationships between 

different types of omics data and the relationships between the omics data and the disease are 

modeled. As the development of integrative methods for analyzing multi-omics data has 

attracted substantial interest from researchers, OmicsSIMLA will be very useful to simulate 

benchmark datasets for comparisons of these methods. Furthermore, as more and more 

disease studies take advantages of multi-omics data, OmicsSIMLA will also be very useful 

for power calculations and sample size estimations when planning a new study. 

 

We used OmicsSIMLA to simulate a multi-omics dataset for breast cancer based on 

hypothetical pathways. Three analysis tools were compared using the dataset. The results 
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suggest that when the different types of data were properly normalized on the same scale, the 

RF-based method (i.e., RFomics) achieved the highest AUC. Furthermore, RFomics had 

comparable runtime efficiency as that of CANetwork, while ATHENA was computationally 

expensive. Therefore, RFomics can potentially be a useful analysis tool for disease prediction 

using multi-omics data. 

 

Currently, OmicsSIMLA focuses on simulating the dichotomous trait (i.e., affection status). 

As studies for quantitative traits are also important, it is our future work to extend 

OmicsSIMLA to simulate quantitative traits based on the classic quantitative genetics model 

[18]. Furthermore, environmental factors and the interactions between genes and 

environments can also play important roles in complex disease etiology. Therefore, 

simulating exposome data such as the climate and air quality data and modeling their 

interactions with genes are also important in the future extensions of OmicsSIMLA. 

 

Conclusions 

In conclusion, we developed a useful multi-omics data simulator, OmicsSIMLA, for complex 

disease studies. Benchmark datasets can be simulated by OmicsSIMLA for evaluating 

different multi-omics data analysis methods for disease studies. OmicsSIMLA can also be 

used to estimate sample sizes and statistical power when designing a new multi-omics disease 
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study. As many parameters can be adjusted in OmicsSIMLA, a user-friendly web interface is 

provided at https://omicssimla.sourceforge.io/generateCommand.html to conveniently specify 

these parameters. 

 

Methods 

Simulation of DNA sequences  

The SeqSIMLA2 package [14] is integrated in OmicsSIMLA to generate DNA sequences in 

unrelated/related individuals. Similar to SeqSIMLA2, OmicsSIMLA expects a set of external 

reference sequences (i.e., haplotypes) generated by an external sequence generator, such as 

COSI [19] or HAPGEN2 [20] that has been widely adopted in genetics studies. Generally, a 

set of 10,000 or more reference sequences are expected. Optional files consisting of 

recombination rate information and pedigree structures are also accepted. A gene dropping 

algorithm assuming random mating with crossovers is performed based on the reference 

sequences, recombination rates, and pedigree structures to generate haplotypes in each 

individual.  

Simulation of CNVs  

For the simulation of CNVs, we considered four CNV states including deletion (D), 

normal (N), one duplication (U), and two duplications (UU) on a chromosome. 

Therefore, there are 10 types of CNV states on the two chromosomes in an individual, as 
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shown in Supplementary Table S1, and the total copy numbers on the two chromosomes 

range from 0 to 6. The user will provide frequencies and ranges of the four CNV states. 

During meiosis, we use the single-copy crossover model, assuming all crossovers 

occurred between CNVs [21]. 

Simulation of affection status 

Genetic variants, including SNPs and CNVs, are used to determine the affection status of an 

individual based on a logistic penetrance function as follows: 

1 21 20
,

logit( ( ))
i i ji i j mnC C G mn

i i j m n

P affected C C G G    
   

         

where P(affected) is the probability of being affected, 
0  determines the baseline 

prevalence,  ,  , and   are sets of causal CNVs, SNPs with main effects, and SNPs 

with interaction effects, respectively, specified by the user, Ci1 and Ci2 are the CNV states for 

the first and second haplotypes at CNV i, respectively, Gj is the genotype coding at SNP j, 

and Gmn is the genotype coding at SNPs m and n. Ci1 and Ci2 have values of -1, 0, 1, and 2 for 

CNV states D, N, U, and UU, respectively, where N is the baseline state. The coding of Gj is 

based on a dominant, additive or recessive model, and the coding of Gmn is based on several 

interaction models. If SNP j is in a CNV region, allelic CNV [22] is considered in the coding 

of Gj. More details of the coding of Gj and Gmn are provided in Supplementary methods. The 

parameters 
C  and 

G  are the effect sizes of the main effects for CNVs and SNPs, 

respectively, and 
mn  determines the effect size of the interaction effect between SNPs m 
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and n. These parameters are specified by the user. 

Simulation of DNA methylation data  

The pWGBSSimla package [11] is integrated into OmicsSIMLA to generate the WGBS data. 

The pWGBSSimla algorithm simulates data using methylation profiles generated based on 41 

WGBS datasets for 29 human cell and tissue types. The profiles contain the information for 

each CpG, such as its distance to the next site, methylation rate, methylation status (i.e., 

methylated, unmethylated, and fuzzily methylated), and read counts for each type of 

methylation status. CpGs and the distances between the CpGs are first determined based on 

the profiles, and then the total read count and methylated read count are simulated for each 

CpG. Methylation level at a CpG influenced by a meQTL is simulated based on a genotype-

specific methylation probability, which is the methylation rate of the CpG in the profiles 

multiplied by a ratio following an exponential distribution. Furthermore, ASMs are simulated 

based on father- and mother-specific methylation rates for paternal and maternal alleles, 

respectively. Finally, a DMR is generated by simulating the same genomic region using 

profiles for different cell or tissue types. More details of the pWGBSSimla algorithm can be 

found in Chung and Kang [11].  

Simulation of RNA-seq data 

We implemented a parametric simulation procedure for simulating the RNA-seq data 

similar to that described in Benidt and Nettleton [13]. A negative binomial (NB) 
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distribution with mean 
ij  and dispersion parameter i  is used to simulate the read 

count for gene i in individual j. The mean is calculated as 
ij i jc  , where i  is the 

common mean for gene i and jc is the individual-specific normalization factor for 

individual j. The parameters λ , c, and   for all genes were estimated using the R 

package edgeR [23] based on a whole genome RNA-seq dataset consisting of 103 normal 

tissues in patients with breast cancer from The Cancer Genome Atlas (TCGA) project 

[24]. The parameters i  and i  are randomly sampled with replacement from λ  and 

 . If more than 103 samples are simulated, we use the smoothed bootstrap procedure 

[25] to calculate 
*

jc  for individual j, and ij  is calculated as 
*

i jc . More details of the 

calculation of 
*

jc  are provided in Supplementary methods. The user can specify n 

differentially expressed (DE) genes between cases and controls and their fold changes, 

and the read count for DE gene i in individual j is simulated based on a NB distribution 

with mean i ijf   and dispersion parameter i , where fi is the fold change for gene i. 

Simulation of eQTL and allele-specific reads 

We followed the procedure in the simulation study in Sun [26] to simulate eQTL and read 

counts for ASE. For eQTL l with a user-specified fold change hl, the means for the three 

genotypes AA, Aa, and aa at the eQTL are ij , l ijh  , and (2 1)l ijh  , respectively, and the 

dispersion parameter is i  in the NB distribution for gene i influenced by the eQTL. ASE 

for a gene caused by a cis-eQTL is simulated by assuming reads were mapped to 
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heterozygous SNPs (i.e., allele-specific reads) in the gene. A cis-eQTL refers to the eQTL 

being located in the cis-regulatory elements of the gene. Because the alleles at the cis-eQTL 

can be in the same haplotype as the alleles of the gene, ASE can be observed using the allele-

specific reads of the gene. Furthermore, only heterozygous SNPs can be tested for cis-eQTL 

with the allele-specific reads. Therefore, we simulate allele-specific reads for heterozygous 

eQTLs. Assuming tij is the total read count for gene i in individual j, the total number of 

allele-specific reads is calculated as 0.005tij, where 0.005 was estimated from real data by 

Sun [26]. Furthermore, also suggested by Sun [26], the number of allele-specific reads for a 

haplotype is simulated using a beta-binomial distribution with a mean determined by the 

effect size of the cis-eQTL and an overdispersion parameter of 0.1. The effect size is defined 

as log2(expression of the alternative allele at the eQTL/expression of the reference allele at 

the eQTL) [27] for a heterozygous cis-eQTL and is set to 0 for a homozygous cis-eQTL.  

Simulation of eQTM 

We used linear regression to model the relationship between gene expression and 

methylation: 

' ( )i ij i i ijE y x     , where yij and xij are the RNA-seq read count and the proportion of 

methylated reads, respectively, for gene i influenced by methylation in individual j. Assuming 

that the NB parameters for gene i are i  and i , the parameter i  is specified as i , and 

i  is assumed to follow a normal distribution with a mean and a standard deviation specified 
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by the user. Then the gene expression of gene i is simulated by an NB distribution with 

parameters of '

i  and i . 

Protein expression simulation 

We assumed that the protein expression level for protein k at a time point t in sample j 

follows a normal distribution with a mean 
kjt  and a standard deviation k  after 

normalization. We used the mass-action kinetic action model [15] to simulate protein 

expression at a certain time point. The mean , 1kj t   for the protein expression at time t+1 

was determined as follows: 

, 1 ( )s d

kj t kjt kjt jt kjt jtx        , 

where kjtx  is the normalized gene expression for the gene encoding protein k, and 
s

jt  and 

d

jt  are the protein synthesis and degradation rates, respectively, in individual j at time t. The 

normalized gene expression kjtx  is calculated using the median absolute deviation (MAD) 

scale normalization [28] based on the RNA-seq data simulated from the previous section. 

Similar to the simulation study in Teo et al. [15], 
d

jt  is fixed to be 1, and 
s

jt  with a default 

value of 1 can be changed by the user. A vector of standard deviations   were estimated 

from the level 4 protein expression data of primary tumor tissue in 874 breast cancer patients 

from the TCGA project downloaded from the cancer proteome atlas (TCPA) [29] website. 

The level 4 data consist of protein expression data for 224 proteins that have been normalized 

across the samples as well as across the proteins, and a replication-based method was used to 
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account for differences in protein expression among different batches. The parameter 
j  is 

then randomly sampled with replacement from  . 

A random-forest based method for integrating multi-omics data for disease studies 

Multi-omics data can have different data types (e.g., discrete data for SNP genotypes, 

categorical data for CNV statuses, and continuous data for proportions of methylated reads, 

RNA-seq read counts, and normalized protein expression) and different variations (e.g., three 

possible values of 0, 1, and 2 for minor allele counts at SNPs, and real numbers ranging 

between 0 and 1 for the proportions of methylated reads). When developing a method for 

integrating these data, it is important to account for the properties of different data types so 

that the analysis results would not be biased toward certain variables [9]. We developed a 

preprocessing algorithm for the multi-omics data. A gene-based risk score, which is a 

weighted sum of the numbers of risk alleles at SNPs in the gene, for each individual is 

constructed. The weights are the effect sizes of the risk alleles at the SNPs. More details for 

calculating the risk score are provided in Supplementary methods. Then each variable from 

different omics data, including the gene-based risk scores, CNV statuses of genes, 

methylation proportions at CpGs, gene and protein expression levels, is normalized so that it 

has a mean 0 and a standard deviation of 1. The normalized variables are then used in RF for 

classification. 

Simulation studies 
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We used OmicsSIMLA to evaluate the performance of the proposed RF-based method, 

compared with CANetwork and ATHENA. A hypothetical disease model for breast cancer 

involving multi-omics data [9] was simulated, as shown in Figure 2. To be more specific, a 

deletion with a frequency of 20%, which had a protective effect with an odds ratio (OR) of 

0.67, in the CYP1A1 gene and 3 common variants, which had main effects (ORs = 1.5) with 

minor allele frequencies (MAFs) > 10%, in the CYP1B1 gene were simulated. We also 

simulated 5 rare variants with MAFs < 3% in the COMT gene, which had interaction effects 

(ORs = 5) with a meQTL for the XRCC1 gene. The CpG in XRCC1 influenced by the 

meQTL caused a difference in methylation rates of 10% between cases and controls. 

Furthermore, we simulated 5 rare variants in the GSTM1 gene, which had interaction effects 

(ORs = 5) with a cis-eQTL for the XRCC3 gene, and 5 rare variants in the GSTT1 gene, 

which had interaction effects (ORs = 5) with a SNP located in the same region as that of the 

meQTL and eQTL. The eQTL caused a fold change of 1.5 in the XRCC3 gene expression 

compared to the reference genotype, and a fold change of 1.5 was simulated for the 

differential gene expression of XRCC3 between cases and controls. In summary, the total 

variables consisted of 200, 687, 264, and 176 SNPs in the CYP1B1, COMT, GSTM1, and 

GSTT1 genes, respectively, and 695 SNPs harboring the meQTL, eQTL, and the SNP 

interacting with GSTT1 in the regulatory region, a variable for CNV status in CYP1A1, 

methylation levels at 688 CpGs in XRCC1, and gene and protein expression levels for 100 
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genes and their encoded proteins. More details for generating the reference sequences in the 

genes and the simulations for each omics data type are provided in Supplementary methods.  

 

We simulated a training dataset consisting of 500 cases and 500 controls as well as a 

validation dataset consisting of 100 cases and 100 controls. The training dataset was used by 

RFomics, CANetwork, or ATHENA to construct a prediction model. The validation dataset 

was then used to calculate the AUC based on the prediction model. Note that a 5-fold cross-

validation was performed in ATHENA, and a best model based on the testing dataset (i.e., 

one of the five random 20% of the training dataset) was created for each cross-validation. The 

model with the highest AUC based on the testing dataset was selected and applied to the 

validation dataset. This simulation scenario was referred to as Scenario 1. We also simulated 

a scenario with less strong genetic effects (Scenario 2) and a scenario with larger sample size 

(Scenario 3). More details about Scenarios 2 and 3 are provided in Supplementary methods. 

For each scenario, 1,000 batches of training and validation datasets were simulated, and the 

AUC for each algorithm was averaged over the 1,000 batches.  

 

Availability of supporting source code and requirements 

Project name: OmicsSIMLA 

Project home page: https://omicssimla.sourceforge.io 
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Operating system: Linux 

Programming language: C++  

Other requirements: C++11 compiler and Eigen and boost libraries if directly compiling the 

source code. 

License: GPL-3.0 

 

Availability of supporting data  

The simulated datasets supporting the conclusions of this article are available from the 

OmicsSIMLA website (https://omicssimla.sourceforge.io/download.html). 
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Figures 

Figure 1. Simulation framework of OmicsSIMLA. The black solid lines represent the 

relationships among different types of omics data. The black dotted lines represent the causal 

effects of genomics data to the disease. The red dotted lines represent the retrospective 

simulations of the methylation, gene expression and protein expression levels conditional on 

the disease status. 

 

Figure 2. Hypothetical pathways involved in breast cancer. The brown solid lines represent 

the main effects of SNPs and CNVs on the disease, while the green solid lines represent the 

interaction effects of SNPs on the disease. The black sold lines represent the regulatory 

effects of the meQTL and eQTL on methylation and gene expression, respectively. The red 

dotted lines represent the retrospective simulations of the methylation, gene expression and 

protein expression levels conditional on the disease status. 
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Tables 

Table 1. Area under the curve (AUC) for RFomics, CANetwork, and ATHENA under 

different scenarios 

 RFomics CANetwork ATHENA 

Scenario 1 0.861 (0.026)1 0.596 (0.042) 0.831 (0.042) 

Scenario 2 0.566 (0.041) 0.529 (0.029) 0.559 (0.068) 

Scenario 3 0.876 (0.012) 0.649 (0.019) 0.835 (0.031) 

1The mean AUC and its standard error estimated based on 1,000 batches 

 

Table 2. Run time (in seconds) for RFomics, CANetwork, and ATHENA under Scenarios 

1 and 3 

 RFomics CANetwork ATHENA 

Scenario 1 37.78 40.54 823.14 

Scenario 3 143.91 94.16 2195.95 

1The mean time (in seconds) was estimated based on 100 batches 
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