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Tumor-induced Intracranial Pressure

SUPPLEMENTAL INFORMATION
S1 Numerical Test Problem
Consider the heat equation on the shrinking domain 0  x  G(t):

[h]t = [h]xx , t > 0, 0 < x < G(t),
[h]x = 0, t > 0, x = 0,

[h]x + €G(t)h = 0, t > 0, x = G(t),
h(x, 0) = h1, 0 < x < G(t).

(S1.1)

Using Reynold’s transport theorem, as well as the boundary conditions we can show conservation of mass:

d
dt

π G(t)

0
h(x, t)dx =

π G(t)

0
[h]tdx + €G(t)h(x = G(t), t),

=

π G(t)

0
[h]xxdx + €G(t)h(x = G(t), t),

= [h]x(x = G(t), t) � hx(x = 0, t) + €G(t)h(x = G(t), t),
= [h]x(x = G(t), t) + €G(t)h(x = G(t), t),
= 0.

Applying the change of variables presented in the manuscript (15) to (S1.1) leads to:

[h]t = [u]y[y]t + [u]s[s]t ,

= [u]y
⇣
�x €G(s)
(G(s))2

⌘
+ [u]s ,

= [u]y
⇣
�y €G(s)

G(s)

⌘
+ [u]s .

[h]x = [u]y[y]x + [u]s[s]x ,

= [u]y
⇣ 1
G(s)

⌘
.

[h]xx = [u]yy
⇣ 1
(G(s))2

⌘
.

Thus, the system in the transformed domain reduces to:

[u]s �
⇣ y €G(s)

G(s)

⌘
[u]y =

⇣ 1
(G(s))2

⌘
[u]yy , s > 0, 0 < y < 1,

[u]y = 0, s > 0, y = 0,
[u]y = � €G(s)G(s)u, s > 0, y = 1,

u(y, 0) = u1, 0 < y < 1.

(S1.2)

Since we know mass is preserved in the decreasing boundary, we can calculate how the mass in the fixed domain is varying:

d
dt

π 1

0
u(y, s)dy =

π 1

0
[u]sdy, (S1.3)

=

π 1

0

⇣⇣ y €G(s)
G(s)

⌘
[u]y +

⇣ 1
(G(s))2

⌘
[u]yy

⌘
dy,

=
€G(s)

G(s)
yu
���1
0
�

€G(s)
G(s)

π 1

0
udy +

1
(G(s))2

(�G(s) €G(s)u(y = 1, s)),

= �

€G(s)
G(s)

π 1

0
udy.
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Figure S1.1: (a)-(c) Plots of total mass ver-
sus time. Total mass of u(s, y) was calcu-
lated by integrating over space. Simulations
of (S1.5) is shown in a solid blue curve, and
the theoretical mass increase in a dashed cyan
curve taking (a) v = 0.01, (b) v = 0.1, and
(c) v = 1. (d)-(f) Plots of total mass versus
time. Total mass of h(x, t) was calculated by
integrating over space the solution of (S1.1)
when (d) v = 0.01, (e) v = 0.1, and (f) v = 1.
(g)-(i) Plots of h(x, t) versus x. In each case,
di�erent rates v of tumor growth are con-
sidered ((g): v = 0.01, (h): v = 0.1, and
(i): v = 1). Simulations of (S1.1) were run
until the tumor boundary reaches x = 0.5.
The vertical lines denote the position of the
tumor.

If we now solve:
d
dt

π 1

0
u(y, s)dy = �

.
G(s)
G(s)

π 1

0
udy,

ln
⇣ π 1

0
u(y, s)dy

⌘
= � ln(G(s)) + K ,

π 1

0
u(y, s)dy =

u1
G(s)

.

(S1.4)

Considering G(t) = 1 � vt, since this is the function we use in our original problem, the system reads:

[u]s +
⇣ yv

1 � vs

⌘
[u]y =

⇣ 1
(1 � vs)2

⌘
[u]yy , s > 0, 0 < y < 1,

[u]y = 0, s > 0, y = 0,
[u]y = v(1 � vs)u, s > 0, y = 1,

u(y, 0) = u1, 0 < y < 1.

(S1.5)

We tested that our numerical scheme shows conservation of mass for three di�erent velocities v = 0.01, 0.1, 1 (figure S1.1(d),
(e), and (f)). Figure S1.1(a), (b), and (c) show that the increase in mass of the numerical simulation corresponds to the calculated
increase in (S1.4). In both figures the numerical simulation is presented in a solid blue curve and the theoretical result in a
dashed cyan curve.

S1.1 Test Problem Asymptotic Approximation
Based on numerical simulations of (S1.1), we observe that when v is small h(x, t) grows evenly throughout the domain. In
order to study this behavior, we consider v = O(✏), and we rescale time to the same order as v, that is ⌧ = ✏ t. Under these
assumptions S1.1 reads:

✏[h]⌧ = [h]xx , ⌧ > 0, 0 < x < 1 � ⌧,
[h]x = 0, ⌧ > 0, x = 0,
[h]x = vh, ⌧ > 0, x = 1 � ⌧,

h(x, 0) = h1, 0 < x < 1 � ⌧.
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Figure S1.2: Plots of h(x, t) versus x by
simulating (S1.1) is presented in a blue solid
curve along with the asymptotic approxima-
tion (S1.6) in a dashed magenta curve. We
captured both at an early (a), intermediate
(b), and late time (c).

By seeking solutions of the form h = h0(x, ⌧) + vh1(x, ⌧) + v2h2(x, ⌧) + v3h3(x, ⌧) + O(
4
) at leading order:

h0(⌧) =
h1

1 � ⌧
.

The first correction term h1(x, ⌧) can be calculated:

[h1]xx = [h0]⌧ =
vh1

(1 � ⌧)2
,

h1(x, ⌧) =
x2h1

2(1 � ⌧)2
.

As well as:

[h2]xx = [h1]⌧ =
v2x2h1
(1 � ⌧)3

,

h2(x, ⌧) =
x4h1

12(1 � ⌧)3
.

Similarly we can continue calculating correction terms. The asymptotic solution with three correction terms reads:

h(x, ⌧) ⇠
h1

1 � vt
+ v

x2h1
2(1 � vt)2

+ v2 x4h1
12(1 � vt)3

+ v3 x6h1
120(1 � vt)4

. (S1.6)

Figure S1.2 shows the numerical solution (blue solid curve) along with the asymptotic approximation (dashed magenta curve).
We captured both at an early (figure S1.2(a)), intermediate (figure S1.2(b)), and late time (figure S1.2(c)).

S2 Conservation of Mass
If ⇢ is taken to be zero in equations (14) we can show conservation of mass in the system. First, we consider the additional
isotropic pressure to be constant, �(h) = �. Non-dimentionalizing (14) by taking t = L2

� t⇤, v = �
L v

⇤, and x = Lx⇤ we obtain:

[h]t⇤ = (1 � h)[h]x⇤x⇤ � ([h]x⇤ )2 + ⇢⇤(1 � h)h, t⇤ > 0, 0 < x⇤ < 1,
[h]x⇤ = 0, t⇤ > 0, x⇤ = 0,

[h]x⇤ = v⇤
h

(1 � h)
, t⇤ > 0, x⇤ = 1 � v⇤t⇤,

h(x⇤, 0) = h1, 0 < x⇤ < 1.

(S2.7)

For now on, we drop the asterisks for convenience. Using the change of variables (15) the system in the fixed domain reads:

[u]s +
⇣ yv

1 � vs

⌘
[u]y = (1 � u)

1
(1 � vs)2

[u]yy �
1

(1 � vs)2
([u]y)2 + ⇢(1 � u)u, s > 0, 0 < y < 1,

[u]y = 0, s > 0, y = 0,

[u]y = (1 � vs)v
u

1 � u
, s > 0, y = 1,

u(y, 0) = u1, 0 < y < 1.

(S2.8)
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Using Reynold’s theorem:

d
dt

π 1�vt

0
h(x, t)dx =

π 1�vt

0
[h]tdx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � h[h]xx � ([h]x)2

⌘
dx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � [h[h]x]x

⌘
dx � vh(x = 1 � vt, t),

= (1 � h(x = 1 � vt, t))[h]x(x = 1 � vt, t) � vh(x = 1 � vt, t),

= 0.

Which shows conservation of mass. Now consider (S2.8). As we did before:

d
ds

π 1

0
u(y, s)dy =

π 1

0
[u]sdy,

=

π 1

0

⇣⇣
�

yv

1 � vs

⌘
[u]y + (1 � u)

1
(1 � vs)2

[u]yy �
1

(1 � vs)2
([u]y)2

⌘
dy,

=

π 1

0

⇣⇣
�

yv

1 � vs

⌘
[u]y +

1
(1 � vs)2

[u]yy �
1

(1 � vs)2
[u[u]y]y

⌘
dy,

= �
v

1 � vs
u(y = 1, s) �

v

1 � vs

π 1

0
udy +

1
(1 � vs)2

[u]y(y = 1, s)

�
1

(1 � vs)2
u(y = 1, s)[u]y(y = 1, s),

= �
v

1 � vs

π 1

0
u(y, s)dy.

If we now solve:

d
ds

π 1

0
u(y, s)dy = �

v

1 � vs

π 1

0
u(y, s)dy,

ln
⇣ π 1

0
u(y, s)dy

⌘
= � ln(1 � vs) + K ,

π 1

0
u(y, s)dy =

u1
1 � vs

.

In figure S2.3(b), (d), and (f) we show that our numerical solution has conservation of mass. For illustrative purposes we picked
v = 0.01, 0.1, 1 respectively. Figure S2.3(a), (b), and (e) present the numerical solution in a solid blue line, as well as the
theoretical result in a dashed cyan line. We can see that, as v increases, the numerical solution becomes less accurate. This
problem can be overcome, to an extent, by refining the mesh size.

Following a similar process, we can show conservation of mass when �(h) = �h/(1 � h) (figure S2.4(b), (d), and (f)).
Figure S2.4(a), (b), and (e) present the numerical solution in a solid blue line, as well as the theoretical result in a dashed cyan
line. The velocity was taken to be v = 0.01, 0.1, 1 respectively.
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Figure S2.3: (a)-(c) Plots of total mass ver-
sus time. Total mass of u(s, y) was calcu-
lated by integrating over space. Simulations
of (S2.8) is shown in a solid blue curve, and
the theoretical mass increase in a dashed cyan
curve taking (a) v = 0.01, (b) v = 0.1, and
(c) v = 1. (d)-(f) Plots of total mass versus
time when ⇢ = 0. Total mass of h(x, t) was
calculated by integrating over space when
(d) v = 0.01, (e) v = 0.1, and (f) v = 1.

Figure S2.4: (a)-(c) Plots of total mass ver-
sus time. Total mass of u(s, y) was calcu-
lated by integrating over space. Simulations
of (S2.8) is shown in a solid blue curve, and
the theoretical mass increase in a dashed cyan
curve taking (a) v = 0.01, (b) v = 0.1, and
(c) v = 1. (d)-(f) Plots of total mass versus
time when ⇢ = 0. Total mass of h(x, t) was
calculated by integrating over space the solu-
tion of (14) when (d) v = 0.01, (e) v = 0.1,
and (f) v = 1.
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Once we introduce remodeling we cannot obtain a functional form of the change in mass:

d
dt

π 1�vt

0
h(x, t)dx =

π 1�vt

0
[h]tdx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � h[h]xx � ([h]x)2 + ⇢

⇣
1 �

h
h1

⌘
h
⌘
dx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � [h[h]x]x + ⇢

⇣
1 �

h
h1

⌘
h
⌘
dx � vh(x = 1 � vt, t),

= (1 � h(x = 1 � vt, t))[h]x(x = 1 � vt, t) � vh(x = 1 � vt, t)

+

π 1�vt

0
⇢
⇣
1 �

h
h1

⌘
hdx

=

π 1�vt

0
⇢
⇣
1 �

h
h1

⌘
hdx.

S3 Alternative Model Simplification
Here we present the alternative derivation of the model, where we solve for w instead of h. As we did previously, we eliminate
h = 1 � w from the model equations via the “no voids” assumption in (3). Then, adding (1) and (2):

[vhh + vww]x = 0 (S3.9)

Integrating the above with respect to x and recalling that the skull (at x = 0) is impermeable to fluid and tissue, we obtain:

vh =
�w

1 � w
vw . (S3.10)

Following the process we did in the main text, adding (5) and (6), and using (3) and (7)-(8), the momentum balance for the
system in terms of w reduces to:

[p]x = �[(1 � w)�(1 � w)]x , (S3.11)

that is p(x, t) = �(1 � w)�(1 � w) + p0(t). We now substitute from (4),(7),(9), (S3.10), and (S3.11) into (5) to obtain the
following expression for the velocity of the tissue phase:

vw =
1

khw
[(1 � w)�(1 � w)]x . (S3.12)

Again, the positive constant khw may be absorbed into �(1 � w) and therefore we neglect it in what follows. Finally, we
substitute from (S3.10) into (2), to arrive at the following PDE:

[w]t = �

h
w[(1 � w)�(1 � w)]x

i
x
� ⇢

⇣w � h1
1 � h1

⌘
(1 � w), 0 < t < L/v, 0 < x < L � vt,

w[(1 � w)�(1 � w)]x = 0, 0 < t < L/v, x = 0,
w[(1 � w)�(1 � w)]x = �vw, 0 < t < L/v, x = L � vt,

w(x, 0) = 1 � h1, 0  x  L.

(S3.13)

We remark that the boundary condition for the water phase w has the opposite sign to the boundary condition for the tissue
phase h. This represents the flow of fluid towards the tumor region.

S4 Asymptotic Analysis
Here we elaborate on some of the asymptotic analysis done in section 3.
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Figure S4.5: Asymptotic Approximation of
Pilocytic Astrocytoma. Plots of h(x, t) ver-
sus x by simulating (14) v = O(✏ ), ⇢ =
O(✏2

), and � = O(1/✏ ) is presented in a
blue solid curve along with the asymptotic
approximation (18) in a dashed cyan curve.
Specifically, v = 0.1, ⇢ = 0.01,� = 10. We
captured both at an early (a), intermediate
(b), and late time (c).

S4.1 Pilocytic Astrocytoma (grade I)
At leading order we obtain that:

�̂
h
(2 � h0)h0

1 � h0

@h0
@x

i
x
= 0, t > 0, 0 < x < 1 � v̂⌧

[h0]x = 0, x = 0,
[h0]x = 0, x = 1 � v̂⌧.

Thus h0 = h0(⌧) is independent of x. To obtain the functional form of h0 we now study O(✏):

�̂
h
(2 � h0)h0

1 � h0

@h1
@x

i
x
= 0, t > 0, 0 < x < 1 � v̂⌧

[h1]x = 0, x = 0,
[h1]x = 0, x = 1 � v̂⌧.

Therefore, not only the leading order is independent of space, but also the first correction term h1 = h1(⌧). Considering higher
order correction terms:

[h0]⌧ = �̂
h
(2 � h0)h0

1 � h0
[h2]x

i
x
, t > 0, 0 < x < 1 � v̂⌧

[h2]x = 0, x = 0,

[h2]x =
v̂

�̂

1 � h0
2 � h0

, x = 1 � v̂⌧.

Thus:

h2(x, ⌧) = A(⌧)x + B(⌧) + f (h0)
x2

2
.

Where A(⌧) = 0 and:

f (h0) =
v̂

�̂

1 � h0
2 � h0

1
1 � v̂⌧

.

Which results in the close form of:

[h0]⌧ = v̂
h0

1 � v̂⌧
,π

dh0
h0
=

π
v̂

1 � v̂⌧
d⌧,

h0(⌧) =
C

1 � v̂⌧
.

Which using the initial condition leads to (18). In figure S4.5 numerical simulations using the numerical methodology proposed
in section 2.3 are presented in a blue solid curve along with the asymptotic approximation (18) in a dashed cyan curve.

S4.2 Di�usive Astrocytoma (grade II)
In figure S4.6 numerical simulations using the numerical methodology proposed in section 2.3 are presented in a blue solid
curve along with the asymptotic approximation (21) in a dashed cyan curve.
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Figure S4.6: Asymptotic Approximation of
Di�usive Astrocytoma. Plots of h(x, t) ver-
sus x by simulating (14) with v = O(1),
⇢ = O(1), and � = O(1/✏ ) is presented in a
blue solid curve along with the asymptotic
approximation (21) in a dashed cyan curve.
Specifically, v = 1, ⇢ = 1,� = 10. We cap-
tured both at an early (a), intermediate (b),
and late time (c).

S4.3 Anaplastic Astrocytoma (grade III)
The equations for the leading order will then read:

�̂
h
(2 � h0)h0

1 � h0
[h0]x

i
x
= 0, t > 0, 0 < x < 1,

[h0]x = 0, t > 0, x = 0,
[h0]x = 0, t > 0, x = 1 � vt.

Thus, h0 = h0(t) is independent of x. Now consider O(✏):

[h0]t = �̂
h
(2 � h0)h0

1 � h0
[h1]x

i
x
, t > 0, 0 < x < 1, (S4.14)

[h1]x = 0, t > 0, x = 0, (S4.15)

[h1]x =
v(1 � h0)

�̂(2 � h0)
, t > 0, x = 1 � vt. (S4.16)

Since h0(t) is independent of space we can conclude that:

h1(x, t) = A(t)x + B(t) + f (h0)
x2

2
. (S4.17)

From (S4.15) we know that A(t) = 0 and from (S4.16):

vh0 = �̂
(2 � h0)h0

1 � h0
( f (h0)(1 � vt)),

f (h0) =
v

�̂

1 � h0
2 � h0

1
1 � vt

.

Resulting in:

[h0]t = v
h0

1 � vt
,π

dh0
h0
=

π
v

1 � vt
dt,

h0 =
C

1 � vt
.

Which using the initial condition leads to (23). We can calculate the first correction term:

[h1]t = �̂
h
(2 � h0)h0

1 � h0
[h2]x + 2h1[h1]x

i
x
, t > 0, 0 < x < 1,

[h2]x = 0, t > 0, x = 0,

�̂
⇣
(2 � h0)h0

1 � h0
[h2]x + 2h1[h1]x

⌘
= vh1, t > 0, x = 1 � vt.

From before we had that:
h1(x, t) = B(t) + f (h0)

x2

2
.
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Figure S4.7: Asymptotic Approximation of
Anaplastic Astrocytoma. Plots of h(x, t) ver-
sus x by simulating (14) with v = O(1),
⇢ = O(✏2

), and � = O(1/✏ ) is presented in
a blue solid curve along with the asymptotic
approximation (24)-(23) in a dashed cyan
curve. Specifically, v = 1, ⇢ = 0.01,� = 10.
We captured both at an early (a), intermediate
(b), and late time (c).

Figure S4.8: Asymptotic Approximation of
Glioblastoma. Plots of h(x, t) versus x by
simulating (14) with v = O(1/✏ ), ⇢ = 0,
and � = O(1/✏ ) is presented in a blue solid
curve along with the asymptotic approxima-
tion (26) in a dashed cyan curve. Specifically,
v = 10, ⇢ = 0,� = 10. We captured both at
an early (a), intermediate (b), and late time
(c).

where

f (h0) =
v

�̂

1 � h0
2 � h0

1
1 � vt

,

f 0(h0) =
v

�̂h1

h2
0 � 4h0 + 2
(2 � h0)2

,

and

(h1)
2 = (B(t))2 + B(t) f (h0)x2 + ( f (h0))

2 � x4

4
�
,

[(h1)
2
]x = 2B(t) f (h0)x + ( f (h0))

2x3,
[(h1)

2
]xx = 2B(t) f (h0) + 3( f (h0))

2x2.

Where B(t) can be found:

B(t) =
v

48�̂

⇣ 1
1 � vt

⇣
(h1)3

(2(1 � vt) � h1)
+ 4 � 2h1 �

(h1)3

2 � h1

⌘
+ 2h1 � 4(1 � vt)

⌘
.

Which gives us a functional form for the correction term h1(x, t). In figure S4.7 numerical simulations using the numerical
methodology proposed in section 2.3 are presented in a blue solid curve along with the asymptotic approximation (23)-(24) in a
dashed cyan curve.

S4.4 Glioblastoma Multiforme (grade IV)
In figure S4.8 numerical simulations using the numerical methodology proposed in section 2.3 are presented in a blue solid
curve along with the asymptotic approximation (26) in a dashed cyan curve.

Grade � v ⇢
Pilocytic Astrocytoma I 10 0.1 0.01
Di�usive Astrocytoma II 10 1 1
Anaplastic Astrocytoma III 10 1 0.01
Glioblastoma IV 10 10 0

Table S4.1: Parameter Values for simulations in section 3 and S4.
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