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ABSTRACT Brain tumor growth and tumor-induced edema result in increased intracranial pressure (ICP), which, in turn, is
responsible for conditions as benign as headaches and vomiting or as severe as seizures, neurological damage, or even death.
Therefore, it has been hypothesized that tracking ICP dynamics may offer improved prognostic potential in terms of early detec-
tion of brain cancer and better delimitation of the tumor boundary. However, translating such theory into clinical practice remains
a challenge, in part because of an incomplete understanding of how ICP correlates with tumor grade. Here, we propose a multi-
phase mixture model that describes the biomechanical response of healthy brain tissue—in terms of changes in ICP and
edema—to a growing tumor. The model captures ICP dynamics within the diseased brain and accounts for the ability/inability
of healthy tissue to compensate for this pressure. We propose parameter regimes that distinguish brain tumors by grade,
thereby providing critical insight into how ICP dynamics vary by severity of disease. In particular, we offer an explanation for
clinically observed phenomena, such as a lack of symptoms in low-grade glioma patients versus a rapid onset of symptoms
in those with malignant tumors. Our model also takes into account the effects tumor-derived proteases may have on ICP levels
and the extent of tumor invasion. This work represents an important first step toward understanding the mechanisms that un-
derlie the onset of edema and ICP in cancer-afflicted brains. Continued modeling effort in this direction has the potential to
make an impact in the field of brain cancer diagnostics.
INTRODUCTION
Gliomas arise from non-neuronal brain cells such as neuro-
glia or glial cells and are the most common type of primary
brain tumors diagnosed in the United States each year (1).
Per World Health Organization guidelines (2), gliomas are
classified by grade, which is based on histological and mo-
lecular assessments of tumor biopsy samples. In particular,
grade I gliomas are slow-growing, nonmalignant, and asso-
ciated with a better prognosis than grade IV gliomas, which
are highly malignant and invasive with a mean overall sur-
vival of 15 months postdiagnosis (1,3). Each year, 23,000
new cases of glioma are diagnosed in the U.S., and it is
responsible for over 16,000 deaths (4,5). This high mortality
rate is, in part, due to relatively modest advances in thera-
pies over the last 25 years (6,7). The standard course of
treatment involves a combination of surgery, radiotherapy,
and chemotherapy. This treatment remains palliative rather
than curative because of multiple factors, such as late detec-
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tion of high-grade tumors and an inability of current imag-
ing techniques to accurately capture the tumor boundary,
especially when the cancer has infiltrated healthy tissue (6).

As brain cancers grow, tumor cells displace adjacent
healthy tissue, which, together with tumor-induced
vascular abnormalities, causes a disruption of the blood-
brain barrier. As a result, a large volume of blood plasma
leaks into the tumor tissue, causing cerebral edema, that
is, abnormal swelling in the brain parenchyma (8). Because
the cranial vault is an enclosed and environmentally
controlled space, a growing tumor—and any associated ce-
rebral edema—may lead to an increase in intracranial pres-
sure (ICP), thereby disrupting the homeostatic environment
within the brain. It is this increase in ICP that is responsible
for many adverse symptoms associated with brain cancers,
such as headaches, nausea, and seizures. Left unchecked,
ICP may ultimately cause patient death (9). For these rea-
sons, it has been hypothesized that tracking the degree of
edema or changes in ICP may offer improved prognostic
potential in terms of early detection of disease and
better delimitation of the tumor boundary (6). This has
motivated the recent development of new ultrasound tech-
niques, such as shear-wave elastography (SWE), which can
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detect changes in ICP that may be caused by a growing
tumor (10).

Our goal in this article is to explicate how edema and
elevated ICP develop in brains afflicted with cancer. To
realize this aim, we propose a mathematical model of the
biomechanical effects of cancer on adjacent, healthy brain
tissue. Specifically, a multiphase framework is employed
to describe the physical forces and interactions that are
involved in the response of brain tissue to a growing tumor.
Using analytical and numerical techniques, we explore
parameter regimes that correspond to different tumor grades
and establish how these may correlate with ICP time
courses. Our model, if validated with experimental data,
has the potential to accelerate the clinical applicability of
new diagnostic modalities such as SWE. Indeed, mathemat-
ical models have been employed extensively to describe the
growth and response to treatment of gliomas (for instance,
see (11–16); we refer the reader to (17) for a recent review).
However, the focus of these previous models has been to
predict either the extent to which the tumor has invaded
brain tissue or the outcome of different treatment strategies.
To the best of our knowledge, ours is the first model to
explicitly consider tumor-induced changes in ICP.

The remainder of this manuscript is organized as follows.
In Mathematical Model, we present our mathematical model
and describe the numerical scheme employed to simulate our
model.We also provide a discussion on parameter values and
constitutive assumptions. InAstrocytomas byGrade: Scaling
Regimes and Simulations, we employ singular perturbation
techniques to study parameter regimes that correspond to
brain cancer by grade and present numerical validation of
our analysis (details of the numerical methods and model
analysis are provided in the Supporting Materials and
Methods). In Application: Modeling Peritumoral Edema
with Proteases, we extend our model to investigate the effect
of proteases released by the tumor on the emergence of peri-
tumoral edema. Finally, we concludewith a discussion on the
significance of our findings in Discussion.
FIGURE 1 Schematic showing the geometry of the model domain. The

skull is located at x ¼ 0, and x ¼ G(t) represents the boundary of a growing

tumor, which is assumed to occupy the region G(t) < x < L, shown in red.

The tumor-tissue interface is assumed to move into healthy tissue with a

fixed velocity v that is representative of tumor growth. This boundary is

permeable to fluid but impermeable to healthy tissue, and the skull is imper-

meable to both tissue and fluid. To see this figure in color, go online.
MATHEMATICAL MODEL

Model derivation

A multiphase framework is used to describe the response of
healthy brain tissue to a growing tumor. Indeed, multiphase
models have been used extensively to simulate various as-
pects of cancer biology, such as tumor growth, tumor-extra-
cellular matrix interactions (18), cancer infiltration (19–22),
and tumor encapsulation (23). We refer the reader to (24) for
a review of such models. We remark that although we follow
the general framework provided in (20,23), our model dif-
fers significantly from those preceding it in that we are
focused on the biomechanical response of healthy tissue
to a growing (brain) tumor rather than the tumor itself or
the tumor’s response to therapeutic intervention.
In our modeling framework, healthy brain tissue is
viewed as a mixture of two distinct phases: a cellular
phase comprising brain cells, such as neurons and glial
cells, and an aqueous phase consisting of interstitial fluid,
blood, and any dissolved components. Mass and mo-
mentum balances are applied to both phases. The resulting
equations are closed by imposing suitable constitutive re-
lations for mass exchange between the different phases,
the partial stress tensors, and momentum transfer between
the phases. The mass exchange terms are chosen to
encourage the maintenance of healthy homeostasis,
whereas the choice of stress tensors and momentum trans-
fer terms are based on the assumed mechanical properties
of each phase. Note that, because our focus is on
describing the development of edema and ICP in the
healthy tissue surrounding the tumor, we do not explicitly
model the tumor itself.

For simplicity, we formulate our model in one-dimen-
sional Cartesian geometry with x ¼ 0 representing the skull
and x ¼ G(t) representing the boundary of an implicit
growing tumor. Specifically, the tumor is assumed to
occupy the region G(t) < x < L, and the tumor-healthy tis-
sue boundary moves with a fixed velocity v, which is
assumed to correlate with tumor growth rate. That is,
G(t) ¼ G(t ¼ 0) � vt, where G(t ¼ 0) ¼ L. Of course,
high-grade cancers may not have well-defined boundaries,
and individual cells shed from the primary tumor mass may
infiltrate surrounding tissue. However, these cells occupy a
negligible volume and will not contribute to changes in ICP
and may, therefore, be ignored in our formulation. In such
cases, G(t) may be viewed as representing the boundary of
the bulk of the tumor mass. A model schematic is shown in
Fig. 1.

We denote the volume fraction of healthy tissue by h(x,t)
and that of the aqueous phase by w(x,t). Their corresponding
velocities and stress tensors are denoted vh, vw, sh, and sw,
respectively, these quantities being scalars for the
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one-dimensional geometry considered here. Both phases are
assumed to be incompressible fluids whose densities are, to
leading order, equal. In consequence, mass balances for
each phase may be expressed as:

½h�t þ ½vhh�x ¼ Sh; (1)

½w� þ ½vww� ¼ Swh� Sh; (2)
t x

where [,]t and [,]x denote partial derivatives with respect to
time and space, and Sh and Sw denote the net rates of the pro-
duction of healthy cells and water, respectively. We assume
that the system is closed, and hence, there is no net volume
change; the volume is simply transformed from one phase to
another. Assuming further that there are no voids within the
region, we obtain:

hþ w ¼ 1: (3)

Following (23), healthy cells are assumed to proliferate
by absorbing water at a rate which is proportional to h and
w, and they undergo apoptosis at a rate that is proportional
to h. Taken together, these assumptions yield:

Sh ¼ rhhw� dhh ¼ r

�
1� h

hN

�
h; (4)

where r¼ rh � dh is the net growth rate of healthy cells, and
hN ¼ (1 � dh/rh) represents their steady-state volume frac-
tion in the absence of external stimuli.

Next, neglecting inertial effects and assuming that no
external forces act on the system, the momentum conserva-
tion laws may be written as follows:

0 ¼ ½hsh�x þ Fhw þ p½h�x; (5)

0 ¼ ½wsw�x � Fhw þ p½w�x; (6)
where Fhw is the force exerted on healthy tissue by the
aqueous phase, an equal and opposite force being exerted
by healthy tissue on the aqueous phase. We view the cells
and aqueous fluid as inviscid fluids and, following (23,25),
we prescribe the stress tensors sh and sw to be the
following:

sh ¼ �ðpþ GðhÞÞ; (7)

sw ¼ �p; (8)
where p is the assumed pressure common to both phases,
and G(h) represents an additional isotropic pressure that dis-
tinguishes healthy tissue from water and may account for
cell-cell adhesion and membrane stress. Following (23),
the interaction or drag term Fhw is taken to be proportional
1562 Biophysical Journal 116, 1560–1574, April 23, 2019
to both the product of the volume fractions, wh, and the rela-
tive velocities of the phases, so that:

Fhw ¼ khwwhðvw � vhÞ: (9)

This choice of Fhw ensures that that there is no drag if one
of the phases is not present. The equations governing the
dependent variables h(x,t), w(x,t), vh, vw, and p are closed
by prescribing G(h) and appropriate boundary and initial
conditions. Specifically, brain tissue is taken to be at its
spatially homogeneous equilibrium state initially, that is,
h(x, 0) ¼ hN < 1. The skull is assumed to be impermeable
to both tissue and water so that vh ¼ 0 ¼ vw at x ¼ 0. The
tumor is also assumed to be impermeable to the solid tissue
phase. That is, vh ¼ �v at x ¼ G(t), where G(t) ¼ L � vt.
Further, brain cancer growth is known to disrupt the
blood-brain barrier, inducing vessel permeability that allows
fluid to leak into the tumor tissue (8); therefore, we assume
that the tumor is permeable to fluid. In practice, water may
flow from the tumor into the healthy tissue or vice versa.
Here, we assume that once fluid enters the tumor it cannot
escape.
Model simplification

We now reduce the two-phase model developed above to a
single nonlinear parabolic equation for the volume fraction
of the cellular phase. We eliminate w ¼ 1 � h from the
model equations via the ‘‘no voids’’ assumption in Eq. 3.
Then, adding Eqs. 1 and 2:

½vhhþ vww�x ¼ 0: (10)

Integrating the above with respect to x and recalling that
the skull (at x ¼ 0) is impermeable to fluid and tissue, we
obtain:

vw ¼ �h

1� h
vh: (11)

Adding Eqs. 5 and 6, and using Eqs. 3, 7, and 8, the mo-
mentum balance for the system reduces to:

½p�x ¼ �½hGðhÞ�x; (12)

that is, p(x,t) ¼ �hG (h) þ p0(t). We now substitute from
Eqs. 4, 8, 9, 11, and 12 into Eq. 6 to obtain the following
expression for the velocity of the tissue phase:

vh ¼ 1

khw

�
1� 1

h

�
½hGðhÞ�x: (13)

We note that the positive constant khw may be absorbed
into G(h), and therefore, we neglect it in what follows.
Finally, we substitute from Eq. 13 into Eq. 1 to arrive at
the following partial differential equation (PDE) describing
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the biomechanical response of healthy tissue to a growing
tumor:
½h�t ¼
�ð1� hÞ½hGðhÞ�x

�
x
þ r

�
1� h

hN

�
h; 0< t <L=v; 0<x <L� vt;

½hGðhÞ�x ¼ 0; 0< t < L=v; x ¼ 0;

½hGðhÞ�x ¼ vh

1� h
; 0< t <L=v; x ¼ L� vt;

hðx; 0Þ ¼ hN; 0%x%L:

(14)
Model parameters

The following parameters have been introduced in Eq. 14:
hN, a dimensionless constant representing the volume frac-
tion of healthy brain tissue at homeostasis; L, the character-
istic distance in micrometers from tumor origin to the
skull; r, the rate, per unit time, of brain remodeling; and
v, the velocity, in micrometers per unit time (26), of the
detectable tumor margin. Parameters arising from the
choice of G(h) are discussed in Parameter Values and Func-
tional Forms. Because we are interested in the response of
healthy tissue to a growing tumor, the unit of time should
correspond to the timescale of tumor growth, for instance,
days.
Numerical methods

Our challenge now is to numerically solve the nonlinear re-
action-diffusion system (14) with a moving boundary. We
first transform the moving domain [0, L � vt] to a fixed
one [0, L] via:

ðx; tÞ/ðy; sÞ¼def
�

Lx
L�vt

; t

�
; and hðx; tÞ ¼ uðy; sÞ: (15)

Consequently, Eq. 14 transforms to:
½u�s þ
� yv

L� vs

�
½u�y ¼ L2

ðL� vsÞ2
h
ð1� uÞ½uGðuÞ�y

i
y
þ r

�
1� u

uN

�
u; 0< s<L=v; 0< y<L;

½uGðuÞ�y ¼ 0; 0< s<L=v; y ¼ 0;

½uGðuÞ�y ¼ vLu

1� u
ðL� vsÞ; 0< s<L=v; y ¼ L;

uðy; 0Þ ¼ uN; 0< y<L:

(16)
Note that the coordinate transformation introduces an
advection term on the left-hand side of the PDE. Thus,
(16) is an advection-reaction-diffusion PDE with vari-
able-coefficient advection and nonlinear diffusion. To inte-
grate this system forward in time, we employ operator
splitting, which has the advantage of superior stability
(27). In particular, we integrate the reaction-diffusion
term over one time step using Crank-Nicolson, with the
nonlinearities lagged. This provisional solution is then ad-
vected using upwinding to obtain u at the next time step.
Note that the advection term vanishes at the left boundary,
which allows the associated boundary condition to be
safely omitted from the advection step. The overall accu-
racy of this scheme is second order in space and first order
in time. Further details on the numerical scheme and its
validation with a test problem can be found in the Support-
ing Materials and Methods.
Parameter values and functional forms

Eq. 14 are completely determined by the appropriate
choices of the additional isotropic pressure G(h) in the tis-
sue fraction, the volume fraction hN of healthy brain at ho-
meostasis, the speed v at which the tumor-healthy tissue
boundary moves, and the rate r of healthy brain tissue re-
modeling. We first discuss our choice for G(h). Patients
with slow-growing tumors are initially asymptomatic
because of minimal changes in their ICP. If the tumor con-
tinues to grow in size, eventually different compensatory
mechanisms of the brain will be exhausted, resulting in a
sharp increase in ICP (28). Langfitt et al. (29) proposed a
qualitative relation between ICP and intracranial volume,
shown in Fig. 2 a, which represents this sequence of dis-
ease progression and which remains widely used in the
biomedical literature (30–32). We therefore choose a
Biophysical Journal 116, 1560–1574, April 23, 2019 1563



FIGURE 2 (a) Reproduction of the qualitative

Langfitt Curve following (45), Fig. 2 in (46), and

Fig. 2 in (47). As intracranial volume increases

with time, the compensatory mechanisms that pre-

vent an initial rise in ICP are exhausted. (b) Shown

is a model output of average ICP versus time for sim-

ulations of Eq. 14 with v ¼ 0.01 and r ¼ 0.1. (c)

Shown is a model output of average ICP versus

time when there is constant isotropic pressure with

v ¼ 0.01 and r ¼ 0.1.

TABLE 1 Nondimensional Parameters and Their Values

Parameter Value or Range

hN 0.5

r 0–1

v 0.01–1
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functional form for G(h) that reproduces the Langfitt curve.
Specifically, we take:

GðhÞ ¼ g
h

1� h
; (17)

for some constant of proportionality, g, with units mm2/day.

Model parametrization

We now discuss our choice of model parameter values.
Without loss of generality, we set hN ¼ 0.5. The choice
of v and, to a certain extent, r will determine the type of
brain cancer being simulated and are expected to vary
with cancer by grade. g may be regarded as representative
of the mechanical properties of brain tissue. In the absence
of biological data with which to estimate these parameters,
we begin by nondimensionalizing (16) by introducing the
rescaled variables x* ¼ x/L and t* ¼ (g/L2)t. With this re-
scaling, model parameters in dimensionless terms are v* ¼
(L/g)v, r* ¼ (L2/g)r, g* ¼ 1, and L* ¼ 1. We then illus-
trate the various responses of brain tissue to a growing tu-
mor by numerically integrating the model for a range of
values of v and r (see below). In Astrocytomas by Grade:
Scaling Regimes and Simulations, we analytically investi-
gate how the system dynamics change as the timescales
of tumor growth and brain remodeling are varied with
respect to g. In Clinical Data Required for Model Parame-
trization and Validation, we present a short discussion on
1564 Biophysical Journal 116, 1560–1574, April 23, 2019
the type of clinical data required to estimate these param-
eters and to validate model results. Note that, in what fol-
lows, the asterisks are dropped for convenience. A list of
parameter values used to simulate the model is provided
in Table 1.

Fig. 2 b shows model predictions of the average
ICP versus time for a specified set of model parameters
(v ¼ 0.01, r ¼ 0.1), which is observed to qualitatively
agree with the behavior of ICP expected from the Langfitt
curve. We calculated average ICP by integrating Eq. 12
and averaging the resulting pressure p(x,t) over space.
We remark that other functional forms of G(h) are also
possible; our choice was governed by reasons of
simplicity and to keep the number of unknown parameters
at a minimal.

To illustrate model dynamics for this choice of G(h), we
present numerical simulations because model parameters
are varied. Specifically, we vary v and r. Fig. 3, a–d
show plots of h(x,t) versus x as the rate r of tissue remod-
eling is increased. For each value of r, different rates v of
tumor growth are considered, as indicated. The simulations



FIGURE 3 (a)–(d) Plots of h(x,t) versus x as r,

in which the rate of tissue remodeling varies ((a)

r ¼ 0, (b) r ¼ 0.01, (c) r ¼ 0.1, and (d) r ¼ 1). In

each case, different values of v, the tumor growth

rate, are considered (dashed curve, v ¼ 0.01; dash-

dotted curve, v ¼ 0.1; and solid black curve, v ¼ 1).

Simulations of Eq. 14 were run until either h(x,t) ¼
0.8 or the tumor boundary reaches x ¼ 0. The vertical

lines denote the position of the tumor. (e) Distance

invaded by the tumor into healthy tissue as v and r

are varied.

Tumor-Induced Intracranial Pressure
are run until t ¼ tf, where tf is the time when either h(x,t) ¼
0.8 or the tumor boundary G(t) reaches x ¼ 0, whichever
happens first. The plots are snapshots of the volume frac-
tion of healthy tissue at this final time. As the tumor grows,
water leaks into the tumor space, and consequently, the vol-
ume fraction of healthy tissue increases across the simula-
tion domain. Because we do not model tumor growth
explicitly, we cannot quantify fluid accumulation or edema
in the tumoral space. Rather, any increase in h above its
equilibrium value hN is taken to represent tumoral edema
because the motion of the tumor boundary into healthy tis-
sue causes fluid to leak into the tumor space. In all cases
considered, when v is small compared to g (dashed and
dash-dotted curves), the healthy tissue fraction appears to
increase uniformly across the domain as the tumor grows.
This is because the diffusion of healthy tissue over space
overcomes the pushing effect of the tumor boundary. As
a consequence, the tumor can invade far into the
healthy tissue. Moreover, when r is large and v is small
(Fig. 3 d, dashed and dash-dotted curves), remodeling en-
sures that the healthy tissue fractions stay below one longer
so that the tumor invades the farthest. This observation is
summarized in Fig. 3 e, which shows the maximal degree
of tumor invasion into healthy tissue as v and r are varied.
On the other hand, when v is comparable to g, h(x,t) / 1
rapidly at the tumor boundary, and the tumor is predicted to
cease growth because of a lack of space. Biologically, this
could mean that the primary tumor mass has reached a crit-
ical size. At this point, individual tumor cells may be shed
from the primary tumor and invade into healthy tissue as is
known to happen in GBM (33).

We also present a heat map of pressure corresponding to
some of the cases discussed above. Specifically, we choose
r ¼ 0 (Fig. 4, first column) and r ¼ 0.1 (Fig. 4, second
Biophysical Journal 116, 1560–1574, April 23, 2019 1565



FIGURE 4 Heat map of pressure corresponding to

the healthy tissue profiles shown in Fig. 3, a and c.

Time, measured in months, is plotted on the y axis,

and space is measured on the x axis. For ease of visu-

alization, the pressure plots are shown in the station-

ary domain with the skull located at the minimal of

the x axis and the tumor boundary at the maximal

of the x axis. (a)–(c) correspond to r ¼ 0, and

(d)–(f) correspond to r ¼ 0.1. For each value of r,

different values of v, the tumor growth rate, are

considered ((a and d) v ¼ 0.01, (b and e) v ¼ 0.1,

and (c and f) v ¼ 1). To see this figure in color,

go online.
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column) for illustrative purposes. For each value of r, we
consider a slow-, medium-, and fast-growing tumor as
before. These pressure plots correspond to the profiles in
Fig. 3, a and c, respectively. Time is plotted on the y
axis, and space is plotted on the x axis. For ease of visual-
ization, the pressure plots are shown in the transformed sta-
tionary domain, with the skull at x ¼ 0 and the tumor
boundary at x ¼ 1. In all cases, when v is small compared
to g (Fig. 4, a, b, d, and e), ICP is predicted to increase
almost uniformly across the domain with minimal increase
initially when the tumor is small. Such a patient may
remain asymptomatic during the initial stages of tumor
growth with symptoms manifesting only when ICP changes
appreciably. For a faster growing tumor (Fig. 4, c and f),
pressure throughout the domain barely changes except
near the tumor. These predictions reflect what is observed
clinically, that is, sharp increases in ICP when compensa-
tory mechanisms are exhausted (28,34,35), lending credi-
bility to our model.

Finally, for illustrative purposes, we also present nu-
merical simulations of the case when G(h) is a constant
rather than an increasing function of h(x,t). Fig. 5 presents
plots of h(x,t) versus x as r is increased, with different tu-
mor growth rates v considered for each value of r as
before. The corresponding pressure plots are shown in
Fig. 6. Qualitatively, Figs. 3 and 5 are similar; they
both predict that slow-growing tumors can invade farther
into the brain, but for faster growing tumors, the primary
1566 Biophysical Journal 116, 1560–1574, April 23, 2019
tumor mass ceases growth sooner. Thus, these graphs
are not by themselves indicative of whether G(h) ¼ g

or G(h) ¼ gh/(1 � h) is a more biologically appropriate
functional form for the additional isotropic pressure in
the tissue phase. However, when we look at the
predicted changes in ICP shown in Fig. 6—which are
quantified in Fig. 2 c—we observe that when G(h) is con-
stant, ICP increases linearly and does not match the
Langfitt curve.
Clinical data required for model parametrization
and validation

Normal ICP ranges from 5 to 15 mmHg in healthy adults
and is significantly affected by changes in intracranial vol-
ume (36). As mentioned in the Introduction, SWE is a
noninvasive technique capable of measuring increases in
ICP. It is routinely used to diagnose breast or liver disease
but not brain diseases (10). It can generate real-time, two-
dimensional maps of shear-wave velocity and shear
modulus within the tumor, at its border, and within normal
brain tissue. Generally, images are 38.4 � 40.0 mm, and
data are presented in kilopascals. Such measurements can
be used to calculate the Young’s modulus, in kilopascals,
which correlates linearly with ICP, in mmHg (10). For
our purposes, multiple images of the same brain region
per patient would be needed to generate averaged time
course data comparable to the model output presented in



FIGURE 5 (a)–(d) Plots of h(x,t) versus x when the

additional isotropic pressure in the tissue phase is

constant, that is, G(h) ¼ g, and r, the rate of tissue

remodeling, is varied ((a) r ¼ 0, (b) r ¼ 0.01, (c)

r ¼ 0.1, and (d) r ¼ 1). In each case, different values

of v, the tumor growth rate, are considered (dashed

curve, v ¼ 0.01; dash-dotted curve, v¼ 0.1; and solid

black curve, v ¼ 1). Simulations of Eq. 14 were run

until either h(x,t) approaches 1 or the tumor boundary

reaches x ¼ 0. The vertical lines denote the position

of the tumor.
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Fig. 2 b. Once available, these time courses can be used to
infer an appropriate functional form for G(h) and to esti-
mate the rate of brain remodeling, even at an individual
patient level. Because such data would be spatially
resolved, the SWE technique is a natural choice for model
parametrization.
RESULTS

Astrocytomas by grade: scaling regimes and
simulations

As mentioned in the Introduction, brain tumors are classi-
fied by grade I–IV, in which grade I is a benign tumor and
grade IV the most malignant (2). In our model, g (addi-
tional isotropic pressure), r (healthy tissue remodeling),
and v (tumor growth rate) are critical determinants of the
response of healthy tissue to a growing tumor in terms of
the following: changes in ICP; how far the tumor can
invade into healthy tissue; and peritumoral edema, the
change in tissue volume fraction above a normal state.
We now propose regimes of parameter space that corre-
spond to each grade, focusing on astrocytomas, the most
common and malignant type of gliomas (1,37). However,
similar analyses may be conducted for other types of brain
cancer.

Specifically, we identify and analyze distinguished limits
of the parameters g, v, and r that yield distinct profiles for
ICP, the degree of tumor invasion, and the deviation of tissue
volume fraction from its healthy steady state. These profiles
are then compared qualitatively to clinical observations and
are supported by numerical simulations for typical cases.
For simplicity, and without loss of generality, we set
L ¼ 1 in Eq. 14. This is equivalent to rescaling the
spatial variable x by 1/L, leading to a rescaling of v by
1/L and g by 1/L2. We restrict our attention to g ¼ Oð1Þ
and g ¼ Oð1=eÞ. Note that g ¼ OðeÞ is biologically
unrealistic because in such a regime, there will be no in-
crease in ICP as the tumor grows. In particular, we focus
on g ¼ Oð1=eÞ; g ¼ Oð1Þ yields qualitatively similar re-
sults. Time is rescaled, if necessary, so that significant tumor
growth can be observed. A summary of how parameter re-
gimes correspond to astrocytomas by grade is provided in
Table 2.
Pilocytic astrocytoma (grade I)

Pilocytic astrocytomas are benign, slow-growing tumors of
moderate cellularity. Patients with grade I astrocytomas
have a good prognosis in general because gross total resec-
tion is typically curative (38). Despite this, these tumors
can become very large and remain asymptomatic for pro-
longed periods of time because of minimal changes in
ICP (35,39).

In our model, taking v ¼ OðeÞ and r ¼ Oðe2Þ corre-
sponds to a pilocytic astrocytoma. This can be seen by per-
forming the transformation v ¼ ebv, r ¼ e2br and g ¼ bg=e in
Eq. 14. Additionally, we rescale time to be on a long
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FIGURE 6 Heat map of pressure corresponding

to the healthy tissue profiles shown in Fig. 5, a and

c when the additional isotropic pressure in the tis-

sue phase is constant, that is, G(h) ¼ g. For ease of

visualization, the pressure plots are shown in the

stationary domain with the skull and the tumor

boundary located at the minimal and maximal of

the x axis, respectively. Time, measured in months,

is plotted on the y axis. (a)–(c) correspond to r¼ 0,

and (d)–(f) correspond to r¼ 0.1. For each value of

r, different values of v, the tumor growth rate, are

considered ((a and d) v ¼ 0.01, (b and e) v ¼ 0.1,

and (c and f) v ¼ 1. To see this figure in color, go

online.
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timescale t � Oð1=eÞ, so that we can observe significant
tumor growth, that is, we define t ¼ et. Then, Eq. 14
reduces to:
e½h�t ¼ bg
e

�
ð1� hÞ

�
h2

1� h

	
x

	
x

þ e2br�1� h

hN

�
h; t > 0; 0< x < 1� bvt;

½h�x ¼ 0; t> 0; x ¼ 0;bg
e

�
h2

1� h

	
x

¼ e
bvh

1� h
; t > 0; x ¼ 1� bvt;

hðx; 0Þ ¼ hN; 0<x < 1:

(18)
We seek solutions of Eq. 18 in the form of a regular power
series expansion, with h ¼ h0 þ eh1 þ Oðe2Þ. At leading
order, we obtain:

h0ðtÞ ¼ hN
1� bvt: (19)

Thus, we predict that the volume fraction of the healthy
tissue will increase uniformly across the simulation domain
as the tumor boundary moves. Higher-order correction
terms may be determined in a similar manner (details of
this analysis are presented in Supporting Materials and
1568 Biophysical Journal 116, 1560–1574, April 23, 2019
Methods, Section S4.1, together with figures showing a
comparison of h(x,t) time courses for the full model and
the asymptotic solution). Fig. 7 a shows a heat map of the
predicted pressure under this parameter regime. As ex-
pected, the slowly growing tumor invades the healthy tissue
without a significant buildup of ICP. Our results are there-
fore consistent with clinical observations because grade I as-
trocytomas are benign and remain asymptomatic for a long
time (35,39).

Diffusive astrocytoma (grade II)

Diffusive astrocytomas grow faster than pilocytic astrocy-
tomas but slower than tumors of grades III and IV and
have ill-defined boundaries. Consequently, they cannot
easily be cured by surgical resection alone. Patients



TABLE 2 Parameter Regimes for Astrocytomas by Grade

Grade g v r t Results

Pilocytic astrocytoma I Oð1=eÞ OðeÞ Oðe2Þ Oð1=eÞ minimal uniform increase in ICP

Diffusive astrocytoma II Oð1=eÞ Oð1Þ Oð1Þ Oð1Þ slow uniform increase in ICP

Anaplastic astrocytoma III Oð1=eÞ Oð1Þ OðeÞ Oð1Þ fast uniform increase in ICP

Glioblastoma IV Oð1=eÞ Oð1=eÞ OðeÞ OðeÞ fast nonuniform increase in ICP
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with diffusive astrocytomas typically survive for 5–8
years and display symptoms related to increased ICP
(35,38,39).

We show below that taking v ¼ Oð1Þ and r ¼ Oð1Þ cor-
responds to a diffusive astrocytoma. In this case, remodeling
and tumor growth occur on the same timescale, and this is
shorter than that for the grade I pilocytic astrocytoma
considered in Pilocytic Astrocytoma (Grade I). Addition-
ally, with g ¼ bg=e (as before), Eq. 14 supplies:
½h�t ¼
bg
e

�
ð1� hÞ

�
h2

1� h

	
x

	
x

þ r

�
1� h

hN

�
h; t > 0; 0< x < 1� vt;

½h�x ¼ 0; t > 0; x ¼ 0;bg
e

�
h2

1� h

	
x

¼ vh

1� h
; t > 0; x ¼ 1� vt;

hðx; 0Þ ¼ hN; 0< x < 1:

(20)
As before, we look for regular power series expansions of
the form h ¼ h0 þ eh1 þOðe2Þ. It is straightforward to show
that the leading order term is given by:

h0ðtÞ ¼ ert

ð1� vtÞ
0@Z t

0

rers

1� vs
dsþ C

1A: (21)

Higher-order correction terms may be determined in a

similar manner. Figures comparing time courses of h(x,t)
for the full model and the asymptotic solutions can be found
in Supporting Materials and Methods, Section S4.2
(Fig. S4.6). Fig. 7 b shows a heat map of the pressure for
this parameter regime.As expected, there is a slow but notice-
able buildup of ICP, and the distribution of h(x,t) across the
spatial domain is no longer uniform.Our results are consistent
with clinical observations of diffusive astrocytomas, which
are relatively slow growing but cause ICP to increase.

Anaplastic astrocytoma (grade III)

Anaplastic astrocytomas are malignant tumors with a mean
survival of three years (38). They are more aggressive than
grade I and II astrocytomas and tend to have tentacle-like
projections (39). In contrast to the previous cases, in which
the brain can adapt, to some extent, to the growing tumor,
now the increase in ICP is more rapid. Consequently, symp-
toms for grade III (and also grade IV) astrocytomas appear
more rapidly (35).

For anaplastic astrocytomas we assume that the tumor
grows at a comparable speed as in the previous case, so that
v ¼Oð1Þ. Because the brain does not adapt as quickly to vol-
ume changes induced by tumor growth, we fix r ¼ OðeÞ. In
particular, we take r¼ 0 for analytical tractability. Addition-
ally, with g ¼ bg=e (as before), Eq. 14 reduces to:
½h�t ¼
bg
e

�
ð1� hÞ

�
h2

1� h

	
x

	
x

; t > 0; 0< x < 1� vt; (22)

with initial and boundary conditions remaining unchanged
from the previous case (grade II). By seeking solutions of
the form h ¼ h0 þ eh1 þ Oðe2Þ, it is straightforward to
show that:

h0ðtÞ ¼ hN
1� vt

: (23)

Thus, at leading order, anaplastic astrocytomas behave
like pilocytic astrocytomas. However, the first correction
term for anaplastic astrocytomas reveals spatial inhomoge-
neity. That is:

h1ðx; tÞ ¼ v

48bg
 

1

1� vt

 
ðhNÞ3

ð2ð1� vtÞ � hNÞ þ 4� 2hN

� ðhNÞ3
2� hN

!
þ 2hN � 4ð1� vtÞ

!

þ vbg
�
1� h0ðtÞ
2� h0ðtÞ

�
1

ð1� vtÞ
x2

2
:

(24)
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FIGURE 7 Pressure heat maps for parameter regimes

corresponding to tumors by grade: (a) grade I, pilocytic

astrocytoma, r ¼Oðe2Þ, v ¼OðeÞ; (b) grade II, diffusive
astrocytoma, r ¼ Oð1Þ, v ¼ Oð1Þ; (c) grade III,

anaplastic astrocytoma, r ¼ 0, v ¼ Oð1Þ; and (d) grade

IV, glioblastoma, r ¼ OðeÞ, v ¼ Oð1=eÞ. In all cases,

g ¼ Oð1=eÞ. Specific parameter values for the simula-

tions shown are given in Table S4.1. To see this figure

in color, go online.
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This is in contrast to the case of pilocytic astrocytomas,
in which the first correction term is also independent
of space. Details of this analysis are presented in Support-
ing Materials and Methods, Section S4.3, together
½h�t ¼ bg�ð1� hÞ
�

h2

1� h

	
x

	
x

þ e2br�1� h

hN

�
h; t> 0; 0< x < 1� bvt;

½h�x ¼ 0; t > 0; x ¼ 0;

bg� h2

1� h

	
x

¼ bvh
1� h

; t > 0; x ¼ 1� bvt;
hðx; 0Þ ¼ hN; 0< x < 1:

(25)
with figures comparing time courses for the full model
and the asymptotic approximation (Fig. S4.7). Fig. 7 c
shows a heat map of the predicted pressure under
this parameter regime. Our results are consistent with
clinical observations in that the buildup of ICP is more
rapid as compared to that in astrocytomas of grades I
and II.

Glioblastoma multiforme (grade IV)

Glioblastomas (GBM) are the most rapidly growing and
malignant of astrocytomas (1). GBM are extremely aggres-
sive, and patients have an average survival period of
12–18 months postdiagnosis (38).

We show below that taking v ¼ Oð1=eÞ, so that v ¼ bv=e,
corresponds to GBM. As in the case of anaplastic astrocy-
toma, we assume r ¼ OðeÞ, that is, r ¼ ebr, because the
brain does not adapt quickly to volume changes induced
1570 Biophysical Journal 116, 1560–1574, April 23, 2019
by tumor growth. When modeling GBM, we rescale time
by setting t ¼ t/e so that we can capture effects that act
on the short growth timescale. Additionally, we consider
g ¼ bg=e. Under these assumptions, Eq. 14 reduces to:
In this case, if we seek a regular power series expansion
for h(x,t), then we recover Eq. 14 at leading order. There-
fore, this case needs to be considered numerically. However,
the asymptotic approximation for grade III cancer as given
by Eqs. 23 and 24 can be rescaled to approximate the initial
stage of GBM. That is, introducing the transformation
v ¼ bv=e and t ¼ et in Eqs. 23 and 24 supplies:

hðx; tÞ � hN
1� bvt þ bvx2bg2ð1� bvtÞ

�
1� bvt � hN
2� 2bvt � hN

�
þ bv
48bgð1� bvtÞ

 
2bvðhNÞ3

ð2ð1� bvtÞ � hNÞð2� hNÞ

þ 2bvtð4� 2bvt � hNÞ
!
:

(26)
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Figures comparing h(x,t) time courses for numerical solu-
tions of the full model and approximation (26) are included
in Supporting Materials and Methods, Section S4.4 (see
Fig. S4.8). Fig. 7 d shows a heat map of the pressure under
this parameter regime. In agreement with clinical observa-
tions, our model simulations predict a rapid increase in
ICP due to GBM growth. In contrast to the case for
anaplastic astrocytomas, the increase in ICP is no longer
spatially uniform, with the tumor-healthy tissue interface
corresponding to the region of highest pressure.
Application: modeling peritumoral edema with
proteases

The results presented in the previous sections reveal that our
model captures key aspects of the mechanical response of
brain tissue to tumor growth and that it can be used to iden-
tify parameter regimes that correspond to tumor grades. One
limitation of the model is that if the tumor growth rate v is
large, then all the fluid adjacent to the tumor leaks into it,
causing the volume fraction of healthy tissue rapidly to
approach one near the tumor boundary, which is biologi-
cally unrealistic. In practice, the mechanisms of tumor inva-
sion are complex and depend, in part, on the secretion of
several proteases that degrade healthy tissue and create
space locally for tumor cells to invade and migrate (40).
In this section, we explain how we can extend our model
to investigate the effect that tumor-derived proteases may
have on ICP levels and tumor invasion.

Existing models (23,41) typically view proteases as
diffusible species. However, others argue that proteases
act locally in the immediate vicinity of the tumor source
(42). This point of view has been validated in recent exper-
iments wherein protease expression was evaluated in vivo in
a rat brain gliosarcoma xenograft model using magnetic
resonance imaging. The experiments showed that proteases
were localized in the peritumoral region (43). Consequently,
we assume that tumor-derived proteases will degrade
healthy tissue adjacent to the moving tumor boundary,
within a small region of width�d. To account for this effect,
Eq. 14 is amended as follows:

½h�t ¼
�
ð1� hÞ

�
hg

h

1� h

	
x

	
x

þ r

�
1� h

hN

�
h

� lðx; tÞh; t > 0; 0< x <L� vt; (27)

where the rate of tissue degradation l(x,t) is assumed to be
of the form:

lðx; tÞ ¼ a

2

�
1þ tanh

�
x � ðL� vt � dÞ

u

��
: (28)

The initial and boundary conditions used to close Eq. 27
remain unchanged. In Eq. 28, the constant a represents the
maximal rate at which proteases degrade healthy tissue, and
the constant u determines the sharpness of the boundary of
the region within which proteases are active.

For illustrative purposes, we simulate the response of
brain tissue to a fast-growing tumor, such as GBM, and a
slow-growing tumor. Results for other malignancies can
be similarly simulated. Fig. 8, a–c show time snapshots of
GBM growth, with and without active proteases. Specif-
ically, Fig. 8 a shows an early stage of tumor growth,
Fig. 8 b shows a snapshot at the time when the tumor not
secreting proteases has invaded its farthest, and Fig. 8 c
shows the simulations at the time when the tumor-secreting
proteases has invaded its farthest. As can be seen, secreting
proteases allows the tumor to keep growing for longer, with
greater invasiveness. Fig. 8, d and e graph the heat maps of
corresponding changes in ICP with and without the effect of
proteases, respectively. In both cases, a nonuniform increase
in ICP is predicted as in the case of GBM earlier. However,
ICP onset is slightly delayed with active proteases because
the degradation of healthy tissue relieves the initial increase
in ICP. Clinically, this could explain why symptoms mani-
fest late.

On the other hand, in Fig. 9, a and b, we present h(x,t)
time snapshots for a slow-growing tumor, with and without
the effect of proteases. In this case, the tumor invades the
simulation domain regardless of whether active proteases
are present. However, the release of proteases results in an
elevated fluid fraction near the tumor, which may be inter-
preted as peritumoral edema. As for pilocytic astrocytomas,
there is minimal change in ICP regardless of whether tumor-
derived proteases are present (Fig. 9 c). These minimal
changes in ICP are insignificant compared to the changes
in ICP in the case of GBM.
DISCUSSION

Brain tumor growth disrupts the blood-brain barrier, thereby
causing cerebral edema (8,9,35,38). Because the brain is en-
closed in the cranial vault, tumor growth and/or edema re-
sults in an increase in ICP that is initially offset by
compensatory mechanisms, such as cerebrospinal fluid
displacement, cerebral blood flow decrease, and changes
in the parenchyma shape. Over time, as the tumor pro-
gresses, such compensatory mechanisms are exhausted,
and ICP increases sharply (28). Currently, there is no clearly
defined ICP threshold signaling the need for therapeutic
intervention (44). Understanding the relationship between
ICP and tumor volume is crucial for determining such a
threshold and could be used as a new prognostic indicator.

Here, we proposed a biomechanical model of the
response of brain tissue to a growing tumor to understand
how factors, such as tumor growth rate, healthy tissue re-
modeling rate, and the mechanical properties of brain tissue,
affect ICP. We viewed the brain as a two-phase mixture: a
healthy tissue phase and a watery phase. The model was
Biophysical Journal 116, 1560–1574, April 23, 2019 1571



FIGURE 8 Numerical solution of the model

including proteases (solid blue line) is contrasted

with the solution of the model without proteases

(dashed black line). The area in between is

shaded in cyan to highlight the difference. Parameter

values are representative of GBM (g¼ 10, r¼ 0.01,

v ¼ 10, and a ¼ 20). We present snapshots at (a) an

early time, (b) the time when the tumor in the

absence of proteases has ceased to invade, and (c)

the time when the tumor-secreting proteases have

ceased to invade. (d and e) show the corresponding

heat maps of pressure in GBM with (d) and without

(e) protease secretion. To see this figure in color,

go online.
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derived using principles of mass and momentum balances
and numerically integrated using an operator splitting
scheme. Tumor growth was simulated by shrinking the right
boundary of the domain. Model simulations and analysis
1572 Biophysical Journal 116, 1560–1574, April 23, 2019
provided critical insight into how edema and ICP depend
on brain tumor by grade. In particular, we proposed param-
eter regimes that capture the differences in ICP dynamics
associated with different grades of astrocytomas and used
FIGURE 9 Numerical solution of the model including

proteases (solid blue line) is contrasted with the solution

of the model without proteases (dashed black line). The

area in between is shaded in cyan to highlight the

difference. Parameters values are representative of a

slow-growing tumor (g ¼ 0.01, r ¼ 0.2, v ¼ 0.01, and

a ¼ 0.4). We present snapshots at (a) an early time and

(b) an intermediate time. (c) Shown is the corresponding

heat map of pressure in a slow-growing tumor that is

secreting proteases. To see this figure in color, go online.
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perturbation methods to derive analytical approximations to
model solutions in these cases.

Slow-growing astrocytomas were predicted to grow
further into healthy tissue than faster, more malignant tu-
mors, resulting in more edema over time. At the same
time, changes in ICP were minimal in such tumors. This
could explain why clinically, patients with grade I and II as-
trocytomas often exhibit symptoms only once their tumors
have grown to a large extent. In contrast to those with astro-
cytomas of lower grade, patients with grade III and IV can-
cers typically present with acute symptoms. Model
simulations revealed that for such faster growing tumors,
the compensatory mechanisms of the brain are exhausted,
inducing a sharp rise in ICP, especially near the tumor
boundary. We remark that, as a first step toward a better un-
derstanding of tumor-induced edema and elevated ICP, we
made the simplifying assumption of prescribing tumor
growth rather than explicitly modeling the tumor itself. In
future work, we plan to relax this assumption. Model valida-
tion—and extension to higher spatial dimensions—will be
possible once increased clinical data in the form of SWE-
derived real-time estimates of brain and cancer tissue stiff-
ness become available.

One limitation of our model was that faster growing tu-
mors such as GBM could not invade far into the brain
because of the volume fraction of healthy tissue rapidly ap-
proaching one near the tumor boundary. We therefore
extended the scope of our model to include the effect that
tumor-derived proteases may have on ICP levels and tumor
invasion. Model simulations predicted that accounting for
protease secretion by the tumor increased its invasiveness
and may also be a potential mechanism underlying peritu-
moral edema onset.

Although simple, our model captures the biomechanical
response of healthy brain tissue, in terms of changes in
ICP and edema, to a growing tumor. Key differences in
edema and pressure profiles were predicted that corre-
sponded to tumors by grade. Thus, this model represents
an important first step toward understanding the mecha-
nisms that underlie ICP onset caused by brain cancer. We
look forward to validating our model with clinical data as
and when it becomes available. Once validated, such a
model has the potential to improve brain cancer diagnostics
via quantification of the (currently theoretical) notion of the
Langfitt curve.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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SUPPLEMENTAL INFORMATION
S1 Numerical Test Problem
Consider the heat equation on the shrinking domain 0  x  G(t):

[h]t = [h]xx , t > 0, 0 < x < G(t),
[h]x = 0, t > 0, x = 0,

[h]x + €G(t)h = 0, t > 0, x = G(t),
h(x, 0) = h1, 0 < x < G(t).

(S1.1)

Using Reynold’s transport theorem, as well as the boundary conditions we can show conservation of mass:

d
dt

π G(t)

0
h(x, t)dx =

π G(t)

0
[h]tdx + €G(t)h(x = G(t), t),

=

π G(t)

0
[h]xxdx + €G(t)h(x = G(t), t),

= [h]x(x = G(t), t) � hx(x = 0, t) + €G(t)h(x = G(t), t),
= [h]x(x = G(t), t) + €G(t)h(x = G(t), t),
= 0.

Applying the change of variables presented in the manuscript (15) to (S1.1) leads to:

[h]t = [u]y[y]t + [u]s[s]t ,

= [u]y
⇣
�x €G(s)
(G(s))2

⌘
+ [u]s ,

= [u]y
⇣
�y €G(s)

G(s)

⌘
+ [u]s .

[h]x = [u]y[y]x + [u]s[s]x ,

= [u]y
⇣ 1
G(s)

⌘
.

[h]xx = [u]yy
⇣ 1
(G(s))2

⌘
.

Thus, the system in the transformed domain reduces to:

[u]s �
⇣ y €G(s)

G(s)

⌘
[u]y =

⇣ 1
(G(s))2

⌘
[u]yy , s > 0, 0 < y < 1,

[u]y = 0, s > 0, y = 0,
[u]y = � €G(s)G(s)u, s > 0, y = 1,

u(y, 0) = u1, 0 < y < 1.

(S1.2)

Since we know mass is preserved in the decreasing boundary, we can calculate how the mass in the fixed domain is varying:

d
dt

π 1

0
u(y, s)dy =

π 1

0
[u]sdy, (S1.3)

=

π 1

0

⇣⇣ y €G(s)
G(s)

⌘
[u]y +

⇣ 1
(G(s))2

⌘
[u]yy

⌘
dy,

=
€G(s)

G(s)
yu
���1
0
�

€G(s)
G(s)

π 1

0
udy +

1
(G(s))2

(�G(s) €G(s)u(y = 1, s)),

= �

€G(s)
G(s)

π 1

0
udy.
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Figure S1.1: (a)-(c) Plots of total mass ver-
sus time. Total mass of u(s, y) was calcu-
lated by integrating over space. Simulations
of (S1.5) is shown in a solid blue curve, and
the theoretical mass increase in a dashed cyan
curve taking (a) v = 0.01, (b) v = 0.1, and
(c) v = 1. (d)-(f) Plots of total mass versus
time. Total mass of h(x, t) was calculated by
integrating over space the solution of (S1.1)
when (d) v = 0.01, (e) v = 0.1, and (f) v = 1.
(g)-(i) Plots of h(x, t) versus x. In each case,
di�erent rates v of tumor growth are con-
sidered ((g): v = 0.01, (h): v = 0.1, and
(i): v = 1). Simulations of (S1.1) were run
until the tumor boundary reaches x = 0.5.
The vertical lines denote the position of the
tumor.

If we now solve:
d
dt

π 1

0
u(y, s)dy = �

.
G(s)
G(s)

π 1

0
udy,

ln
⇣ π 1

0
u(y, s)dy

⌘
= � ln(G(s)) + K ,

π 1

0
u(y, s)dy =

u1
G(s)

.

(S1.4)

Considering G(t) = 1 � vt, since this is the function we use in our original problem, the system reads:

[u]s +
⇣ yv

1 � vs

⌘
[u]y =

⇣ 1
(1 � vs)2

⌘
[u]yy , s > 0, 0 < y < 1,

[u]y = 0, s > 0, y = 0,
[u]y = v(1 � vs)u, s > 0, y = 1,

u(y, 0) = u1, 0 < y < 1.

(S1.5)

We tested that our numerical scheme shows conservation of mass for three di�erent velocities v = 0.01, 0.1, 1 (figure S1.1(d),
(e), and (f)). Figure S1.1(a), (b), and (c) show that the increase in mass of the numerical simulation corresponds to the calculated
increase in (S1.4). In both figures the numerical simulation is presented in a solid blue curve and the theoretical result in a
dashed cyan curve.

S1.1 Test Problem Asymptotic Approximation
Based on numerical simulations of (S1.1), we observe that when v is small h(x, t) grows evenly throughout the domain. In
order to study this behavior, we consider v = O(✏), and we rescale time to the same order as v, that is ⌧ = ✏ t. Under these
assumptions S1.1 reads:

✏[h]⌧ = [h]xx , ⌧ > 0, 0 < x < 1 � ⌧,
[h]x = 0, ⌧ > 0, x = 0,
[h]x = vh, ⌧ > 0, x = 1 � ⌧,

h(x, 0) = h1, 0 < x < 1 � ⌧.
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Figure S1.2: Plots of h(x, t) versus x by
simulating (S1.1) is presented in a blue solid
curve along with the asymptotic approxima-
tion (S1.6) in a dashed magenta curve. We
captured both at an early (a), intermediate
(b), and late time (c).

By seeking solutions of the form h = h0(x, ⌧) + vh1(x, ⌧) + v2h2(x, ⌧) + v3h3(x, ⌧) + O(
4
) at leading order:

h0(⌧) =
h1

1 � ⌧
.

The first correction term h1(x, ⌧) can be calculated:

[h1]xx = [h0]⌧ =
vh1

(1 � ⌧)2
,

h1(x, ⌧) =
x2h1

2(1 � ⌧)2
.

As well as:

[h2]xx = [h1]⌧ =
v2x2h1
(1 � ⌧)3

,

h2(x, ⌧) =
x4h1

12(1 � ⌧)3
.

Similarly we can continue calculating correction terms. The asymptotic solution with three correction terms reads:

h(x, ⌧) ⇠
h1

1 � vt
+ v

x2h1
2(1 � vt)2

+ v2 x4h1
12(1 � vt)3

+ v3 x6h1
120(1 � vt)4

. (S1.6)

Figure S1.2 shows the numerical solution (blue solid curve) along with the asymptotic approximation (dashed magenta curve).
We captured both at an early (figure S1.2(a)), intermediate (figure S1.2(b)), and late time (figure S1.2(c)).

S2 Conservation of Mass
If ⇢ is taken to be zero in equations (14) we can show conservation of mass in the system. First, we consider the additional
isotropic pressure to be constant, �(h) = �. Non-dimentionalizing (14) by taking t = L2

� t⇤, v = �
L v

⇤, and x = Lx⇤ we obtain:

[h]t⇤ = (1 � h)[h]x⇤x⇤ � ([h]x⇤ )2 + ⇢⇤(1 � h)h, t⇤ > 0, 0 < x⇤ < 1,
[h]x⇤ = 0, t⇤ > 0, x⇤ = 0,

[h]x⇤ = v⇤
h

(1 � h)
, t⇤ > 0, x⇤ = 1 � v⇤t⇤,

h(x⇤, 0) = h1, 0 < x⇤ < 1.

(S2.7)

For now on, we drop the asterisks for convenience. Using the change of variables (15) the system in the fixed domain reads:

[u]s +
⇣ yv

1 � vs

⌘
[u]y = (1 � u)

1
(1 � vs)2

[u]yy �
1

(1 � vs)2
([u]y)2 + ⇢(1 � u)u, s > 0, 0 < y < 1,

[u]y = 0, s > 0, y = 0,

[u]y = (1 � vs)v
u

1 � u
, s > 0, y = 1,

u(y, 0) = u1, 0 < y < 1.

(S2.8)
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Using Reynold’s theorem:

d
dt

π 1�vt

0
h(x, t)dx =

π 1�vt

0
[h]tdx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � h[h]xx � ([h]x)2

⌘
dx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � [h[h]x]x

⌘
dx � vh(x = 1 � vt, t),

= (1 � h(x = 1 � vt, t))[h]x(x = 1 � vt, t) � vh(x = 1 � vt, t),

= 0.

Which shows conservation of mass. Now consider (S2.8). As we did before:

d
ds

π 1

0
u(y, s)dy =

π 1

0
[u]sdy,

=

π 1

0

⇣⇣
�

yv

1 � vs

⌘
[u]y + (1 � u)

1
(1 � vs)2

[u]yy �
1

(1 � vs)2
([u]y)2

⌘
dy,

=

π 1

0

⇣⇣
�

yv

1 � vs

⌘
[u]y +

1
(1 � vs)2

[u]yy �
1

(1 � vs)2
[u[u]y]y

⌘
dy,

= �
v

1 � vs
u(y = 1, s) �

v

1 � vs

π 1

0
udy +

1
(1 � vs)2

[u]y(y = 1, s)

�
1

(1 � vs)2
u(y = 1, s)[u]y(y = 1, s),

= �
v

1 � vs

π 1

0
u(y, s)dy.

If we now solve:

d
ds

π 1

0
u(y, s)dy = �

v

1 � vs

π 1

0
u(y, s)dy,

ln
⇣ π 1

0
u(y, s)dy

⌘
= � ln(1 � vs) + K ,

π 1

0
u(y, s)dy =

u1
1 � vs

.

In figure S2.3(b), (d), and (f) we show that our numerical solution has conservation of mass. For illustrative purposes we picked
v = 0.01, 0.1, 1 respectively. Figure S2.3(a), (b), and (e) present the numerical solution in a solid blue line, as well as the
theoretical result in a dashed cyan line. We can see that, as v increases, the numerical solution becomes less accurate. This
problem can be overcome, to an extent, by refining the mesh size.

Following a similar process, we can show conservation of mass when �(h) = �h/(1 � h) (figure S2.4(b), (d), and (f)).
Figure S2.4(a), (b), and (e) present the numerical solution in a solid blue line, as well as the theoretical result in a dashed cyan
line. The velocity was taken to be v = 0.01, 0.1, 1 respectively.
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Figure S2.3: (a)-(c) Plots of total mass ver-
sus time. Total mass of u(s, y) was calcu-
lated by integrating over space. Simulations
of (S2.8) is shown in a solid blue curve, and
the theoretical mass increase in a dashed cyan
curve taking (a) v = 0.01, (b) v = 0.1, and
(c) v = 1. (d)-(f) Plots of total mass versus
time when ⇢ = 0. Total mass of h(x, t) was
calculated by integrating over space when
(d) v = 0.01, (e) v = 0.1, and (f) v = 1.

Figure S2.4: (a)-(c) Plots of total mass ver-
sus time. Total mass of u(s, y) was calcu-
lated by integrating over space. Simulations
of (S2.8) is shown in a solid blue curve, and
the theoretical mass increase in a dashed cyan
curve taking (a) v = 0.01, (b) v = 0.1, and
(c) v = 1. (d)-(f) Plots of total mass versus
time when ⇢ = 0. Total mass of h(x, t) was
calculated by integrating over space the solu-
tion of (14) when (d) v = 0.01, (e) v = 0.1,
and (f) v = 1.
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Once we introduce remodeling we cannot obtain a functional form of the change in mass:

d
dt

π 1�vt

0
h(x, t)dx =

π 1�vt

0
[h]tdx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � h[h]xx � ([h]x)2 + ⇢

⇣
1 �

h
h1

⌘
h
⌘
dx � vh(x = 1 � vt, t),

=

π 1�vt

0

⇣
[h]xx � [h[h]x]x + ⇢

⇣
1 �

h
h1

⌘
h
⌘
dx � vh(x = 1 � vt, t),

= (1 � h(x = 1 � vt, t))[h]x(x = 1 � vt, t) � vh(x = 1 � vt, t)

+

π 1�vt

0
⇢
⇣
1 �

h
h1

⌘
hdx

=

π 1�vt

0
⇢
⇣
1 �

h
h1

⌘
hdx.

S3 Alternative Model Simplification
Here we present the alternative derivation of the model, where we solve for w instead of h. As we did previously, we eliminate
h = 1 � w from the model equations via the “no voids” assumption in (3). Then, adding (1) and (2):

[vhh + vww]x = 0 (S3.9)

Integrating the above with respect to x and recalling that the skull (at x = 0) is impermeable to fluid and tissue, we obtain:

vh =
�w

1 � w
vw . (S3.10)

Following the process we did in the main text, adding (5) and (6), and using (3) and (7)-(8), the momentum balance for the
system in terms of w reduces to:

[p]x = �[(1 � w)�(1 � w)]x , (S3.11)

that is p(x, t) = �(1 � w)�(1 � w) + p0(t). We now substitute from (4),(7),(9), (S3.10), and (S3.11) into (5) to obtain the
following expression for the velocity of the tissue phase:

vw =
1

khw
[(1 � w)�(1 � w)]x . (S3.12)

Again, the positive constant khw may be absorbed into �(1 � w) and therefore we neglect it in what follows. Finally, we
substitute from (S3.10) into (2), to arrive at the following PDE:

[w]t = �

h
w[(1 � w)�(1 � w)]x

i
x
� ⇢

⇣w � h1
1 � h1

⌘
(1 � w), 0 < t < L/v, 0 < x < L � vt,

w[(1 � w)�(1 � w)]x = 0, 0 < t < L/v, x = 0,
w[(1 � w)�(1 � w)]x = �vw, 0 < t < L/v, x = L � vt,

w(x, 0) = 1 � h1, 0  x  L.

(S3.13)

We remark that the boundary condition for the water phase w has the opposite sign to the boundary condition for the tissue
phase h. This represents the flow of fluid towards the tumor region.

S4 Asymptotic Analysis
Here we elaborate on some of the asymptotic analysis done in section 3.
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Figure S4.5: Asymptotic Approximation of
Pilocytic Astrocytoma. Plots of h(x, t) ver-
sus x by simulating (14) v = O(✏ ), ⇢ =
O(✏2

), and � = O(1/✏ ) is presented in a
blue solid curve along with the asymptotic
approximation (18) in a dashed cyan curve.
Specifically, v = 0.1, ⇢ = 0.01,� = 10. We
captured both at an early (a), intermediate
(b), and late time (c).

S4.1 Pilocytic Astrocytoma (grade I)
At leading order we obtain that:

�̂
h
(2 � h0)h0

1 � h0

@h0
@x

i
x
= 0, t > 0, 0 < x < 1 � v̂⌧

[h0]x = 0, x = 0,
[h0]x = 0, x = 1 � v̂⌧.

Thus h0 = h0(⌧) is independent of x. To obtain the functional form of h0 we now study O(✏):

�̂
h
(2 � h0)h0

1 � h0

@h1
@x

i
x
= 0, t > 0, 0 < x < 1 � v̂⌧

[h1]x = 0, x = 0,
[h1]x = 0, x = 1 � v̂⌧.

Therefore, not only the leading order is independent of space, but also the first correction term h1 = h1(⌧). Considering higher
order correction terms:

[h0]⌧ = �̂
h
(2 � h0)h0

1 � h0
[h2]x

i
x
, t > 0, 0 < x < 1 � v̂⌧

[h2]x = 0, x = 0,

[h2]x =
v̂

�̂

1 � h0
2 � h0

, x = 1 � v̂⌧.

Thus:

h2(x, ⌧) = A(⌧)x + B(⌧) + f (h0)
x2

2
.

Where A(⌧) = 0 and:

f (h0) =
v̂

�̂

1 � h0
2 � h0

1
1 � v̂⌧

.

Which results in the close form of:

[h0]⌧ = v̂
h0

1 � v̂⌧
,π

dh0
h0
=

π
v̂

1 � v̂⌧
d⌧,

h0(⌧) =
C

1 � v̂⌧
.

Which using the initial condition leads to (18). In figure S4.5 numerical simulations using the numerical methodology proposed
in section 2.3 are presented in a blue solid curve along with the asymptotic approximation (18) in a dashed cyan curve.

S4.2 Di�usive Astrocytoma (grade II)
In figure S4.6 numerical simulations using the numerical methodology proposed in section 2.3 are presented in a blue solid
curve along with the asymptotic approximation (21) in a dashed cyan curve.
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Figure S4.6: Asymptotic Approximation of
Di�usive Astrocytoma. Plots of h(x, t) ver-
sus x by simulating (14) with v = O(1),
⇢ = O(1), and � = O(1/✏ ) is presented in a
blue solid curve along with the asymptotic
approximation (21) in a dashed cyan curve.
Specifically, v = 1, ⇢ = 1,� = 10. We cap-
tured both at an early (a), intermediate (b),
and late time (c).

S4.3 Anaplastic Astrocytoma (grade III)
The equations for the leading order will then read:

�̂
h
(2 � h0)h0

1 � h0
[h0]x

i
x
= 0, t > 0, 0 < x < 1,

[h0]x = 0, t > 0, x = 0,
[h0]x = 0, t > 0, x = 1 � vt.

Thus, h0 = h0(t) is independent of x. Now consider O(✏):

[h0]t = �̂
h
(2 � h0)h0

1 � h0
[h1]x

i
x
, t > 0, 0 < x < 1, (S4.14)

[h1]x = 0, t > 0, x = 0, (S4.15)

[h1]x =
v(1 � h0)

�̂(2 � h0)
, t > 0, x = 1 � vt. (S4.16)

Since h0(t) is independent of space we can conclude that:

h1(x, t) = A(t)x + B(t) + f (h0)
x2

2
. (S4.17)

From (S4.15) we know that A(t) = 0 and from (S4.16):

vh0 = �̂
(2 � h0)h0

1 � h0
( f (h0)(1 � vt)),

f (h0) =
v

�̂

1 � h0
2 � h0

1
1 � vt

.

Resulting in:

[h0]t = v
h0

1 � vt
,π

dh0
h0
=

π
v

1 � vt
dt,

h0 =
C

1 � vt
.

Which using the initial condition leads to (23). We can calculate the first correction term:

[h1]t = �̂
h
(2 � h0)h0

1 � h0
[h2]x + 2h1[h1]x

i
x
, t > 0, 0 < x < 1,

[h2]x = 0, t > 0, x = 0,

�̂
⇣
(2 � h0)h0

1 � h0
[h2]x + 2h1[h1]x

⌘
= vh1, t > 0, x = 1 � vt.

From before we had that:
h1(x, t) = B(t) + f (h0)

x2

2
.
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Figure S4.7: Asymptotic Approximation of
Anaplastic Astrocytoma. Plots of h(x, t) ver-
sus x by simulating (14) with v = O(1),
⇢ = O(✏2

), and � = O(1/✏ ) is presented in
a blue solid curve along with the asymptotic
approximation (24)-(23) in a dashed cyan
curve. Specifically, v = 1, ⇢ = 0.01,� = 10.
We captured both at an early (a), intermediate
(b), and late time (c).

Figure S4.8: Asymptotic Approximation of
Glioblastoma. Plots of h(x, t) versus x by
simulating (14) with v = O(1/✏ ), ⇢ = 0,
and � = O(1/✏ ) is presented in a blue solid
curve along with the asymptotic approxima-
tion (26) in a dashed cyan curve. Specifically,
v = 10, ⇢ = 0,� = 10. We captured both at
an early (a), intermediate (b), and late time
(c).

where

f (h0) =
v

�̂

1 � h0
2 � h0

1
1 � vt

,

f 0(h0) =
v

�̂h1

h2
0 � 4h0 + 2
(2 � h0)2

,

and

(h1)
2 = (B(t))2 + B(t) f (h0)x2 + ( f (h0))

2 � x4

4
�
,

[(h1)
2
]x = 2B(t) f (h0)x + ( f (h0))

2x3,
[(h1)

2
]xx = 2B(t) f (h0) + 3( f (h0))

2x2.

Where B(t) can be found:

B(t) =
v

48�̂

⇣ 1
1 � vt

⇣
(h1)3

(2(1 � vt) � h1)
+ 4 � 2h1 �

(h1)3

2 � h1

⌘
+ 2h1 � 4(1 � vt)

⌘
.

Which gives us a functional form for the correction term h1(x, t). In figure S4.7 numerical simulations using the numerical
methodology proposed in section 2.3 are presented in a blue solid curve along with the asymptotic approximation (23)-(24) in a
dashed cyan curve.

S4.4 Glioblastoma Multiforme (grade IV)
In figure S4.8 numerical simulations using the numerical methodology proposed in section 2.3 are presented in a blue solid
curve along with the asymptotic approximation (26) in a dashed cyan curve.

Grade � v ⇢
Pilocytic Astrocytoma I 10 0.1 0.01
Di�usive Astrocytoma II 10 1 1
Anaplastic Astrocytoma III 10 1 0.01
Glioblastoma IV 10 10 0

Table S4.1: Parameter Values for simulations in section 3 and S4.

Manuscript submitted to Biophysical Journal S9


	A Biomechanical Model of Tumor-Induced Intracranial Pressure and Edema in Brain Tissue
	Introduction
	Mathematical Model
	Model derivation
	Model simplification
	Model parameters

	Numerical methods
	Parameter values and functional forms
	Model parametrization

	Clinical data required for model parametrization and validation

	Results
	Astrocytomas by grade: scaling regimes and simulations
	Pilocytic astrocytoma (grade I)
	Diffusive astrocytoma (grade II)
	Anaplastic astrocytoma (grade III)
	Glioblastoma multiforme (grade IV)

	Application: modeling peritumoral edema with proteases

	Discussion
	Supporting Material
	Author Contributions
	Acknowledgments
	References


