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by remotely controlling insulin secretion
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Supplementary Fig. 1. a-b Gene-ontology (GO) analysis of hits from the RNAi screen whose
knockdown is associated with increased (a) or decreased (b) pupal size. Underlying data are provided
in the Source Data file.
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Supplementary Fig. 2. a Knockdown of breathless (btl) in the tracheae (bt/>btl-RNAi) with two
additional RNAI lines from VDRC (transformant ID numbers 950 and 27108) targeting independent
sequences of bl reduces pupal body size compared to the control (b#/> crossed to wild type, w!!’8). n
= 39-48. b Duration of larval development determined by the onset of pupariation of animals with
trachea-specific bt/ knockdown compared to bt/>+ driver (btl> crossed to wild type, w!/!%) and bzi-
RNAi/+ (btl-RNAi crossed to wild type, w/!%) controls. n = 46-69. Statistics: one-way ANOVA with
Dunnett’s multiple-comparisons test. ***P<0.001, compared to the control. Error bars indicate
standard error of the mean (SEM). Underlying data are provided in the Source Data file.
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Supplementary Fig. 3. a Duration of larval development determined by the onset of pupariation of
da>InR-RNAi animals with global knockdown of the insulin receptor (/nR), and pp/>Tsc1/2 animals
with fat-body-specific Tor inhibition compared to controls (w!/’%). n = 60-74. b Transcript levels of
the ecdysone-inducible E75B gene. n = 5. ¢ Effect of global bt/ knockdown and Dilp2 overexpression
using the weak ubiquitous arm> driver on the number of thick terminal branches (TTBs) per terminal
cell, quantified as the number of cell projections. n = 7-9. d Pupal size changes in animals with
trachea-specific loss of breathless (btl) (btI>btl-RNAi), insulin signal transduction (bt/>InR-RNAi and
btl>Akt-RNAi), or Tor signaling (btI>Tscl/2 and btl>TorP") compared to btl>+ controls (btl>
crossed to wild type, w/!!%). n = 22-79. Statistics: one-way ANOVA with Dunnett’s test for multiple
comparisons and Student’s t-test for pairwise comparisons. *P<0.05, **P<0.01, ***P<0.001,
compared to the control. Error bars indicate standard error of the mean (SEM). Underlying data are
provided in the Source Data file.
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Supplementary Fig. 4. a Duration of larval development determined by the onset of pupariation of
wild-type (w!/!%) animals under normoxia (21% O>) and hypoxia (5% O), and Hph mutant animals
under normoxia. n = 57-73. b Whole-animal levels of phosphorylated Akt (pAkt) kinase determined
by immunoblotting in normoxia (21% O:) and hypoxia (5% O2), and Hph mutant animals normalized
to alpha-Tubulin (Tub) or Akt levels. n = 3-5. ¢-d Transcript levels of branchless (bnl) (¢) and
ecdysone-inducible gene £75B (d) in whole larvae under normoxia in wild-types and Hph mutants
and in wild-types under hypoxic conditions. n = 6. e Effects of 20-hydroxyecdysone (20E) feeding
on pupal size of wild type (w!//%) animals under hypoxia. n = 27-29. Statistics: one-way ANOVA
with Dunnett’s multiple-comparisons test. *P<0.05, **P<0.01, ***P<0.001, compared to the control.
Error bars indicate standard error of the mean (SEM). Underlying data are provided in the Source
Data file.
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Supplementary Fig. 5. a Transgenic GFP::ODD (white) and RFP (magenta) reporter of hypoxia
indicates that the fat body experiences low oxygen levels that inhibit Hph (increased GFP) when wild-
type (w!!%) animals are incubated under 5% O compared to 21% O conditions. Scale bar, 20 um. b
Fat-body phosphorylated ribosomal protein S6 (anti-pS6) levels are reduced in larvae reared under
hypoxia (5% Oz). n = 20-23. Statistics: Student’s t-test for pairwise comparisons. ***P<0.001,
compared to the control. Error bars indicate standard error of the mean (SEM). Underlying data are
provided in the Source Data file.
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Supplementary Fig. 6. a Fat-body-specific expression of Rheb stimulates S6 phosphorylation under
hypoxia, indicating increased Tor pathway activity. n = 5-30. b We conducted a mini-screen of known
fat-body factors and IPC-expressed receptors for hypoxia-specific effects, hypothesizing that
knocking down a factor or receptor that is involved in the insulinostatic response would rescue the
size reduction (i.e., lead to larger pupae) under hypoxia. AkhR-GAL4::p65 (AkhR>) or ppl-GAL4
(pp!>) drove RNAI against secreted factors and Rheb expression (inducing activation of Tor) in the
fat body, while R96408-GAL4 (R96A08>) was used to knock down their respective receptors in the
IPCs. Zero change indicates that an RNAi treatment had no hypoxia-specific effect — the ratio
between hypoxic and normoxic sizes was the same as for controls. Roughly +20% would represent a
complete blockage of hypoxia-induced size reduction. CCHa2/CCHaZ2-R results are inconsistent with
each other, and a size increase upon CCHa2-R knockdown is inconsistent with its reported
insulinotropic effects; thus perhaps the CCHa2-R-RNAi-#I phenotype reflects off-target effects. n =
1-14 vials (4-168 hypoxia:normoxia comparisons) per genotype. ¢-d Fat-body-specific sima/HIF-1a
RNAi-mediated knockdown (mimicking the Tor-independent aspects of fat-body normoxia) reduces
hypoxia-induced DILP2 retention (¢) and partially rescues hypoxia-induced systemic body growth
inhibition (d). c: n = 40-55. d: n =20-47. Statistics: two-tailed Student’s t-test for pairwise
comparisons versus controls. ***P<(0.001, compared to the Luciferase control. Error bars indicate
standard error of the mean (SEM). Underlying data are provided in the Source Data file.



Supplementary Table 1. Primers used in this study in qPCR assays.

Target gene Forward primer Reverse primer

branchless TGCCCTATCACAGAGTTGC ACCTACACGAACGCCATCAC
Dilp2 CTCAACGAGGTGCTGAGTATG | GAGTTATCCTCCTCCTCGAACT
Dilp3 CAACGCAATGACCAAGAGAAC | GCATCTGAACCGAACTATCACTC
Dilp5 ATGGACATGCTGAGGGTTG GTGGTGAGATTCGGAGCTATC
Eip75B (E75B) | CAACAGCAACAACACCCAGA | CAGATCGGCACATGGCTTT

InR CTCAGCCATACCAGGGACTTT | CTCTCCATAACACCGCCATC
RpL32 AGTATCTGATGCCCAACATCG | CAATCTCCTTGCGCTTCTTG




