Supplementary Figure 1

Supplementary Fig 1: A simulated single action potential elicited with a 30 pA, 0.35 ms current injection under control conditions (black) and when the K_v7 conductance was removed (red). The action potential amplitude when the K_v7 conductance was removed was enhanced and this could be restored to control conditions by reducing the peak Na⁺ conductance by 20 % as illustrated in green.

Supplementary Table 1.

	ADP Amplitude (mV)		ADP decay time constant (ms)	
	1 st AP	20 th AP	1 st AP	20 th AP
Control 1 Hz	6.49 ± 1.03	6.72 ± 0.93	66.43 ± 6.54	67.71 ± 5.92
	(n=8)	(n=8)	(n=7)	(n=7)
+XE991 1 Hz	$10.44 \pm 1.18^*$	$10.18 \pm 0.96*$	$115.43 \pm 10.75^*$	112.86 ± 9.03*
	(n=8)	(n=8)	(n=7)	(n=7)
Control 1 Hz	9.90 ± 1.30	9.33 ± 1.79	51.49 ± 15.14	44.64 ± 9.99
	(n=4)	(n=4)	(n=3)	(n=4)
+Linopirdine 1	$15.42 \pm 2.11^*$	$17.73 \pm 3.75*$	69.50 ± 17.53*	68.03 ± 18.57*
Hz	(n=4)	(n=4)	(n=4)	(n=4)
Control 5 Hz	6.52 ± 0.83	6.37 ± 0.84	58.14 ± 6.31	55.14 ± 5.57
	(n=8)	(n=8)	(n=7)	(n=7)
+XE991 5 Hz	9.79 ± 1.09*	9.18 ± 1.13*	$107.43 \pm 9.52*$	$105.00 \pm 9.05*$
	(n=8)	(n=8)	(n=7)	(n=7)
Control 5 Hz	9.84 ± 1.03	12.58 ± 1.28	28.77 ± 8.24	38.72 ± 12.96
	(n=4)	(n=4)	(n=4)	(n=4)
+Linopirdine 5	$19.69 \pm 2.25^*$	$20.56 \pm 2.35^*$	$61.92 \pm 20.62^*$	$60.24 \pm 17.39^*$
Hz	(n=4)	(n=4)	(n=4)	(n=4)
BAPTA 1 Hz	1.57 ± 1.21	1.72 ± 1.44	35.36 ± 21.70	36.64 ± 22.56
	(n=11)	(n=11)	(n=11)	(n=11)
+XE991 1 Hz	1.89 ± 2.14	1.94 ± 2.67	32.27 ± 21.34	31.82 ± 21.73
	(n=11)	(n=11)	(n=11)	(n=11)
BAPTA 5 Hz	1.88 ± 1.80	1.84 ± 1.78	35.73 ± 25.19	37.09 ± 25.50
	(n=11)	(n=11)	(n=11)	(n=11)
+XE991 5 Hz	1.74 ± 1.71	1.94 ± 1.87	31.27 ± 24.31	31.64 ± 25.60
	(n=11)	(n=11)	(n=11)	(n=11)
Control 1 Hz	9.72 ± 0.66	10.14 ± 0.82	98.17 ± 20.54	111.00 ± 22.44
	(n=6)	(n=6)	(n=6)	(n=6)
+XE991 and	$3.85 \pm 0.62*$	$3.92 \pm 0.70^*$	$45.67 \pm 6.20*$	$43.00 \pm 3.94*$
N/P/Q Ca ²⁺	(n=6)	(n=6)	(n=6)	(n=6)
channel				
inhibitors 1 Hz				
Control 5 Hz	10.26 ± 0.75	10.55 ± 1.08	94.67 ± 20.14	114.33 ± 24.02
	(n=6)	(n=6)	(n=6)	(n=6)
+XE991 and	$4.17 \pm 0.58*$	$4.10 \pm 0.40*$	$47.17 \pm 5.82^*$	$49.17 \pm 6.17*$
N/P/Q Ca ²⁺	(n=6)	(n=6)	(n=6)	(n=6)
channel				
inhibitors 5 Hz				

Supplementary Table 1: The mean and standard error of mean values for the amplitude and decay time constant of the ADP following either the 1^s or 20th action potential (AP) in train elicited at 1 Hz or 5 Hz under control conditions or when BAPTA (10 mM or 20 mM) was incorporated in the patch pipette and after subsequent application of 3 μ M XE991 or 10 μ M Linopirdine or 3 μ M XE991 together with 100 nM ω -conotoxin GVIA and 100 nM ω -agatoxin IVA. The numbers of observations are shown in parenthesis. Asterisks (*) indicate significance at p < 0.05 when compared with the appropriate controls.

Supplementary Table 2.

	AP Amplitude (mV)		AP Half-width (ms)	
	1 st AP	20 th AP	1st AP	20 th AP
Control 1 Hz	65.52 ± 4.18	64.59 ± 3.00	0.85 ± 0.05	0.86 ± 0.05
(n=8)				
+XE991 1 Hz	57.47 ± 2.92*	58.60 ± 3.89*	$1.04 \pm 0.10^*$	$1.09 \pm 0.10^*$
(n=8)				
Control 1 Hz	60.26 ± 2.33	63.21 ± 2.64	1.23 ± 0.13	1.24 ± 0.13
(n=4)				
+Linopirdine 1	$49.68 \pm 0.83^{*}$	$48.82 \pm 1.80^{*}$	$1.37 \pm 0.17*$	$1.36 \pm 0.15^*$
Hz (n=4)				
Control 5 Hz	66.31 + 2.27	61.02 + 2.35	0.85 ± 0.05	0.97 ± 0.05
(n=8)				
+XE991 5 Hz	58.17 ± 2.66*	$55.73 \pm 2.25*$	$1.07 \pm 0.10^{*}$	$1.18 \pm 0.09*$
(n=8)				
Control 5 Hz	60.71 ± 3.60	61.87 ± 3.51	1.24 ± 0.12	1.28 ± 0.13
(n=4)				
+Linopirdine 5	$50.20 \pm 2.19^*$	$46.68 \pm 0.98*$	$1.39 \pm 0.15^*$	$1.44 \pm 0.17*$
Hz (n=4)				
Control 20 Hz	63.20 ± 2.64	60.10 ± 2.67	0.83 ± 0.05	0.99 ± 0.05
(n=8)				
+XE991 20 Hz	56.70 ± 1.58*	53.53 ± 2.21*	$1.08 \pm 0.10^{*}$	$1.16 \pm 0.09*$
(n=8)				
Control 20 Hz	64.37 ± 2.73	61.10 ± 4.36	1.30 ± 0.13	1.39 ± 0.11
(n=4)				
+Linopirdine 20	$46.72 \pm 1.20^*$	$43.69 \pm 4.07*$	1.46 ± 0.13	1.67 ± 0.17
Hz(n=4)				
Control 50 Hz	66.87 ± 3.18	55.56 ± 3.22	1.07 ± 0.11	1.13 ± 0.07
(n=8)				
+XE991 50 Hz	$60.01 \pm 2.66*$	50.57 ± 3.01*	$1.26 \pm 0.07*$	$1.50 \pm 0.07*$
(n=8)				
Control 50 Hz	60.90 ± 1.59	58.03 ± 2.74	1.29 ± 0.14	1.60 ± 0.16
(n=4)				
+Linopirdine 50	$46.97 \pm 3.87*$	$42.50 \pm 1.75^*$	$1.50 \pm 0.14*$	$1.77 \pm 0.20*$
Hz (n=4)				
Control 100 Hz	63.86 ± 3.20	51.74 ± 3.13	0.79 ± 0.04	1.08 ± 0.05
(n=8)				
+XE991 100 Hz	$58.10 \pm 3.22*$	$43.34 \pm 2.03*$	$1.00 \pm 0.09*$	$1.22 \pm 0.08*$
(n=8)				
Control 100 Hz	61.64 ± 2.07	55.73 ± 4.28	1.30 ± 0.13	1.43 ± 0.13
(n=4)				
+Linopirdine	$47.51 \pm 0.98*$	$35.92 \pm 3.44*$	$1.51 \pm 0.13^*$	$1.85 \pm 0.17*$
100 Hz (n=4)				
BAPTA 1 Hz	91.18 ± 2.91	90.36 ± 3.03	2.45 ± 0.23	4.32 ± 1.58
(n=11)				
+XE991 1 Hz	91.45 ± 3.13	91.21 ± 3.43	2.65 ± 0.27	4.52 ± 1.57
(n=11)				
BAPTA 5 Hz	90.18 ± 2.78	88.91 ± 2.96	2.53 ± 0.24	4.50 ± 1.56
(n=11)				

+XE991 5 Hz	91.63 ± 3.11	90.18 ± 3.32	2.74 ± 0.28	4.81 ± 1.54
(n=11)				
BAPTA 20 Hz	90.91 ± 2.68	85.64 ± 2.71	2.53 ± 0.25	4.75 ± 1.54
(n=11)				
+XE991 20 Hz	91.18 ± 2.79	86.09 ± 2.36	2.72 ± 0.26	4.96 ± 1.52
(n=11)				
BAPTA 50 Hz	90.68 ± 2.44	82.14 ± 2.41	2.37 ± 0.22	4.68 ± 1.54
(n=11)				
+XE991 50 Hz	91.09 ± 2.48	79.22 ± 2.25	2.77 ± 0.31	4.95 ± 1.52
(n=11)				
BAPTA 100 Hz	90.45 ± 3.15	63.82 ± 3.55	2.40 ± 0.22	4.74 ± 1.54
(n=11)				
+XE991 100 Hz	88.45 ± 3.62	65.36 ± 3.00	2.64 ± 0.29	4.85 ± 1.53
(n=11)				
Control 1 Hz	83.25 ± 6.80	82.75 ± 6.55	2.48 ± 0.38	2.88 ± 0.24
(n=4)				
+XE991 and	$76.75 \pm 6.37*$	74.50 ± 7.08*	3.10 ± 0.39	2.85 ± 0.68
N/P/Q Ca ²⁺				
channel				
inhibitors 1 Hz				
(n=4)				
Control 5 Hz	94.67 ± 3.97	93.00 ± 3.55	2.30 ± 0.28	2.70 ± 0.28
(n=6)				
+XE991 and	89.00 ± 3.72*	87.33 ± 3.31*	2.48 ± 0.24	2.87 ± 0.24
N/P/Q Ca ²⁺				
channel				
inhibitors 5 Hz				
(n=6)				
Control 20 Hz	92.83 ± 3.38	85.86 ± 5.45	2.40 ± 0.24	2.83 ± 0.36
(n=6)				
+XE991 and	81.67 ± 6.23*	77.06 ± 6.57*	2.88 ± 0.32	3.28 ± 0.28
N/P/Q Ca ²⁺				
channel				
inhibitors 20 Hz				
(n=6)				
Control 50 Hz	86.50 ± 5.62	76.83 ± 6.11	2.68 ± 0.37	3.08 ± 0.36
(n=6)				
+XE991 and	$68.52 \pm 5.69*$	$62.05 \pm 5.12^*$	3.1 ± 0.29	3.87 ± 0.31
N/P/Q Ca ²⁺				
channel				
inhibitors 50 Hz				
(n=6)				
Control 100 Hz	88.00 ± 5.17	67.20 ± 5.54	2.36 ± 0.32	3.22 ± 0.38
(n=5)				
+XE991 and	$64.47 \pm 9.22*$	59.20 ± 5.08*	2.70 ± 0.30	3.60 ± 0.36
N/P/Q Ca ²⁺				
channel				
inhibitors 100				
Hz (n=5)				

Supplementary Table 2: The mean and standard error of mean values for the amplitude and half-width of the 1^a and 20^b action potential (AP) in a train elicited at frequencies ranging from 1 Hz – 100 Hz under control conditions or when BAPTA (10 mM or 20 mM) was incorporated in the patch pipette and after subsequent application of 3 μ M XE991 or 10 μ M Linopirdine or 3 μ M XE991 together with 100 nM ω -conotoxin GVIA and 100 nM ω -agatoxin IVA. The numbers of observations per group are shown in parenthesis. Asterisks (*) indicate significance at p < 0.05 when compared with the appropriate controls.

Supplementary Table 3.

Conductance	Peak Conductance (S/cm ²)	V _{1/2} activation (mV)	V _{1/2} inactivation (mV)	Reference
Na ⁺	0.12	-40.4	-86.8	Engel and Jonas (2005) ⁴⁴
Delayed rectifier type K [.]	0.001	13		Shah et al., (2008) ³⁹
A-type K [.]	0.01	11	-56	Shah et al., (2008) ³⁹
Inward rectifier type K [,]	0.021	-98.92		Stegen et al., (2012) ⁵⁷
K _v 7	0.005	-70		Data from this manuscript
Ca ²⁺	0.6	-14	-40.11	Shah et al., (2008) ³⁹

Supplementary Table 3: Selected properties of the conductances used in our computational model. The complete set of files are available on ModelDB

(<u>https://senselab.med.yale.edu/modeldb/</u> accession no. 245417). The Na⁺ conductance kinetics was implemented using the fitting parameters reported in Engel and Jonas (2005)⁴⁴. The deactivation time constant of the Ca²⁺ conductance was set to 50 ms. For experimental values that were obtained at room temperature, a Q10 value of 5 was used.