Supplementary informations

Dynamic gene regulation by nuclear colony-stimulating factor 1 receptor in human monocytes and macrophages

Bencheikh L et al.

Supplementary Figure 1: A fraction of CSF-1R is located in the nucleus of human monocytes.

A,B. Monocytes were fixed and stained for CSF-1R (anti-Cter sc-692) or a non-relevant antibody (IgG) and Dapi, followed by imaging flow cytometry (Amnis); **A.** representative image (DAPI in purple and CSF-1R in yellow, scale : 7μ m); **B.** quantification of nuclear CSF-1R (mean +/- SEM of 3 independent experiments, MFI : mean fluorescence intensity, A.U. : arbitrary units, *P<0.05). **C.** Monocytes were transfected with CSF-1R specific (#1 and 3) or control (Co) siRNAs; 24 hours later, cytoplasmic plus membrane (C+M) and nuclear (N) proteins were extracted and separated for immunoblotting with CSF-1R, Lamin B (nucleus marker) and actin (cytoplasmic marker) antibodies (n = 1). **D.** Electron microscopy analysis of monocytes were fractionated into cytoplasmic plus membrane (C+M) and nucleus (N) before and after CSF-1 stimulation (100ng/mL for indicated times in minutes), and proteins extracted from these fractions in the absence of DTT and boiling were analyzed by immunoblotting for CSF1-R, histone deacetylase 2 (HDAC2, nuclear protein) and GAPDH (cytplasmic protein) (n = 2). Two exposures of CSF-1R blot are shown.

Supplementary Figure 2: CSF-1R is recruited to the chromatin in human monocyte nucleus.

A. Peak calling for CSF-1R (blue), H3K4me1 (orange) and H3K4me3 (purple) ChIP-seq on *CSFR2B* and *CEBPD* genes in the three healthy donor monocytes (TSS: transcription starting site, TTS: transcription termination site). **B.** Chromatin was immunoprecipitated from monocytes with the anti-N-ter (sc-46662) (left panel) or the anti-C-ter (sc-692) (right panel) CSF-1R antibody or control IgG followed by qPCR directed against *PU.1 [promoter (-1739), intron 4.1 (20202), intron 4.2 (21399)], CSF2RB (7581), KLF6 (1) (-17610), KLF6 (2) (-23783), FGR (1599), CMKLR1 (33519), C3(3024), CEBPD (-25567) and SRC (72944) genes, using RAC2 as a control whose level if figured as a hatched blue bar (normalization to IgG, mean +/- SEM of 3 independent experiments). Results are normalized to IgG (mean +/- SEM of 3 independent experiments).*

Supplementary Figure 3: CSF-1R interacts with EGR1 to down-regulate gene expression.

A. Repartition of CSF-1R peaks detected on EGR1 motif and common to three healthy donors, to be compared to genome organization shown on Figure 3b. **B.** Peak calling of ChIP-Seq experiments performed with H3K4me1 (orange), H3K4me3 (purple), EGR1 (orange), and CSF-1R (dark blue) antibodies on *C3*, *CEBPD* and *CMKLR1* genes in human monocytes of healthy donors (TSS, transcription starting site; TTS, transcription termination site). **C.** Motif analysis of EGR1 peaks common to two healthy donors.

Supplementary Figure 4: EGR1 is involved in CSF-1R recruitment on chromatin in THP-1 cells.

A. Sequencing of *EGR1* exon 1 in 3 THP-1 clones showing CRISPR-Cas9 mediated deletion. Sequences aligned against wild-type *EGR1* sequence. **B**. mRNA expression (RT-qPCR) of *EGR1* gene in wild-type and *EGR1*-deleted clones (mean +/- SD of 3). **C**. Migration profile (Agilent Bioanalyzer) of Illumina libraries built using DNA immunoprecipitated with anti-CSF-1R antibody (sc-46662) in wild-type (WT) and EGR1-deleted clones (CRISPR). **D**. Peak calling on *CALML5, TLR10, TOM1* and *ROR2* genes for EGR1 in one monocyte sample and CSF-1R in two monocyte samples (Mo), two wild-type (WT) THP-1 clones and the pool of 3 EGR1-deleted THP-1 clones (CRISPR).

Supplementary Figure 5: Differential CSF-1R chromatin localization in CSF-1-induced macrophages.

A. Venn diagram of peak calling (input normalization) from ChIP-seq experiment (anti-CSF-1R sc-46662) performed on monocytes differentiated 3 days with 100ng/mL CSF-1 from 3 donors. **B**. Repartition of the ChIP-seq peaks common to the 3 donors on the genome compared to genome of reference (Genome). **C**. Monocytes were stimulated 3 days with 100ng/mL CSF-1. Chromatin was immunoprecipitated with CSF-1R antibody (anti-N-ter sc-46662) or control IgG followed by qPCR directed against *CFMS*, *MYB*, *EZH2*, *FOS*, YY1 and IL6R genes (normalization to IgG, mean +/- SEM of 2 independent experiments). RAC2 is a negative control whose level if figured as a hatched blue bar. **D**. Peak calling for H3K4me3 (purple) and CSF-1R (blue) on *MAFB*, *JUN*, *MYC* **E**. and *PU.1* genes in monocytes (Mo) compared to CSF-1 (3 days) differentiated-macrophages (Mac) (TSS : transcription starting site; TTS : transcription termination site). **F**. Monocytes were treated 3 days with 100ng/mL CSF-1, fixed and stained for CSF-1R (green), ELK1 (red) or control IgG and Dapi (blue) followed by confocal imaging (n = 2, scale : 10µm).

Supplementary Figure 6: Differential gene regulation by CSF-1R in CSF-1-induced macrophages.

Monocytes were treated with 100 ng/ml CSF-1 for 2 days and transfected during 48h with scrambled (SCR) or *CFMS*-specific siRNA **A.** RT-qPCR analysis of *CFMS, YY1, ASXL1, CBL, BCL2* and *CJUN* genes **B.** RT-qPCR analysis of *CFMS, KLF6* and *CSF2RB* gene expression. Results in the two panels are expressed as a mean +/- SEM of 3 to 4 independent experiments, normalization to control siRNA indicated as a red hatched line, *p<0.05, **P<0.01, ns : non significant.

Uncropped blots related to Figure 1e

Uncropped blots related to Figure 4e

55

EGR1

Uncropped blots related to Figure 6a

Uncropped blots related to Figure 7d

Uncropped blots related to Figure 9a

Supplementary Figure 7: Uncropped scans of key immunoblots.

Supplementary Tables

Supplementary Table 1: Enrichment of Gene Ontology biological process terms in ChIP hits with CSF-1R in monocytes

Go term ID	GO biological process	Fold	P-value
		Enrichment	
GO:0036179	osteoclast maturation	10.38	3.48 e-7
GO:0010934	macrophage cytokine production	10.33	3.25 e-5
GO:0050902	leukocyte adhesive activation	10.29	3.32 e-3
GO:2000669	negative regulation of dendritic cell apoptotic process	9.96	2.11 e-6
GO:0036035	osteoclast development	9.13	6.41 e-8
GO:0071674	mononuclear cell migration	8.37	3.86 e-4
GO:0033159	negative regulation of protein import into nucleus, translocation	7.12	2.33 e-5
GO:2000510	positive regulation of dendritic cell chemotaxis	6.19	5.06 e-4
GO:0033235	positive regulation of protein sumoylation	5.27	1.28 e-10
GO:0061082	myeloid leukocyte cytokine production	3.74	1.66 e-3

Supplementary Table 2: Enrichment of Gene Ontology biological process terms in ChIP hits with CSF-1R in monocytes exposed to CSF-1 for 3 days

Go term ID	GO biological process	Fold	P-value
		Enrichment	
GO:0010847	regulation of chromatin assembly	12.92	1.76 e-3
GO:0000389	mRNA 3'-splice site recognition	8.67	1.31 e-3
GO:0072369	regulation of lipid transport by positive regulation of transcription from RNA	8.41	3.79 e-4
	polymerase II promoter		
GO:0072363	regulation of glycolysis by positive regulation of transcription from RNA	7.29	2.44 e-3
	polymerase II promoter		
GO:0046833	positive regulation of RNA export from nucleus	6.86	1.01 e-2
GO:0072367	regulation of lipid transport by regulation of transcription from RNA	5.66	2.30 e-4
	polymerase II promoter		
GO:0036179	osteoclast maturation	5.13	3.29 e-3
GO:0036035	osteoclast development	3.69	1.26 e-2
GO:0090314	positive regulation of protein targeting to membrane	3.18	9.26 e-4
GO:0008334	histone mRNA metabolic process	2.47	5.68 e-4

Supplementary Table 3: Enrichment of Gene Ontology biological process terms in ChIP hits with CSF-1R in monocytes exposed to CSF-1 for 6 hours

Go term ID	GO biological process	Fold	P-value
		Enrichment	
GO:0071677	positive regulation of mononuclear cell migration	110.34	2.52E-06
GO:0035691	macrophage migration inhibitory factor signaling pathway	26.63	8.27E-07
GO:0038145	macrophage colony-stimulating factor signaling pathway	11.18	9.12E-04
GO:0050765	negative regulation of phagocytosis	7.41	4.13E-05
GO:2000785	regulation of autophagic vacuole assembly	7.71	2.94E-04
GO:0006890	retrograde vesicle-mediated transport, Golgi to ER	4.55	1.92E-04
GO:0033235	positive regulation of protein sumoylation	3.66	6.74E-04
GO:0002246	wound healing involved in inflammatory response	3.66	2.95E-02
GO:0000184	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	2.86	8.78E-05
GO:0019083	viral transcription	2.83	5.87E-06

Gene	Forward	Reverse
CFMS	5'-GCCCCCATCACCTCACT-3'	5'-GTGTTTTGGAAGGTAGCGTTGTT-3'
LUCIFERASE	5'-CAGCTGCACAAAGCCATGA-3'	5'-CGATATGTGCGTCGGTAAAGG-3'
B2M	5'-ACACAACTGTGTTCACTAGC-3'	5'-CAACTTCATCCACGTTCACC-3'
GAPDH	5'-AAGGTCGGAGTCAACGGGT-3'	5'-AGAGTTAAAAGCAGCCCTGGTG-3'
TUBULIN A	5'-TCCAGATTGGCAATGCCTG-3'	5'-GGCCATCGGGCTGGAT-3'
RENILLA	5'-AATTTGCAGCATATCTTGAACCATT-3'	5'-GGATTTCACGAGGCCATGAT-3'
HPRT	5'-GGACAGGACTGAACGTCTTGC-3'	5'-CTTGAGCACACAGAGGGCTACA-3'
RPL32	5'-TGTCCTGAATGTGGTCACCTGA-3'	5'-CTGCAGTCTCCTTGCACACCT-3'
PU.1	5'-GGAGAGCCATAGCGACCATTACT-3'	5'-CGGCGAAGCTCTCGAACTC-3'
BCL2	5'-AACTGTACGGCCCCAGCAT-3'	5'-GCCAAACTGAGCAGAGTCTTCAG-3'
EZH2	5'-CGCTGACCATTGGGACAGTA-3'	5'-TTGGAGCCCCGCTGAATA-3'
ASXL1	5'-CCGCGCGCCTGGTA-3'	5'-CTGCAGAATCTGTTTTGGTGTCAT-3'
CBL	5'-GAAGTGCTGGAAGCTCATGGA-3'	5'-CGCCAGCTTTGGGTTCTG-3'
CSF2RB	5'-TACAACGACTACACCAGCCACAT-3'	5'-AGCCGCTGGGCATCCT-3'
CEBPD	5'-GGAGATGCAGCAGAAGTTGGT-3'	5'-CGCGCTGGTGCAGCTT-3'
SRC	5'-GGACAGCCCCTGCCTTCTA-3'	5'-GGCATCCTTGGGCTTGCT-3'
KLF6	5'-TGCACGAGACCGGCTACTTC-3'	5'-TAGGCAGGTCTGTTGCCAGTAC-3'
YY1	5'-GGCTGCGTCTCAGGTTTCC-3'	5'-CCACCGTTGGGAGGATGTC-3'
С3	5'-GGGAGTCCCATGTACTCTATCATCA-3'	5'-TGGGCCTCCAGCACCAT-3'
FGR	5'-CCATCAACCCTGGCTTCCT-3'	5'-CACCCCAATCCCTGACACA-3'
CJUN	5'-AACGACCTTCTATGACGATGCC-3'	5'-TGTAGCCATAAGGTCCGCTCTC-3'
EGR1	5'-TGATGTCCCCGCTGCAG-3'	5'-GTCCATGGTGGGCGAGTG-3'

Supplementary Table 4: Primer sequences used for RT-qPCR analyses

Supplementary Table 5: Primer sequences used for ChIP-qPCR analyses

Gene	Forward	Reverse
PU.1 promoter	5'-CTCCACCCCCAGAAAAGAT-3'	5'-GCGCTGGGAAAACAAAAAG-3'
PU.1 intron 4-1	5'-GGCTGAGACAGGAGAATTGCTT-3'	5'-GGCACGATCTCGGCTCACT-3'
PU.1 intron 4-2	5'-GGAGGTGGAGGTTGCAGTGA-3'	5'-GTTTTTGAGATGGAGTTGCTCTTGT-3'
CSF2RB intron1	5'-GTTTGCATGGGCATCTTGAGT-3'	5'-CAAGTGTGGCTCCTTTTCTTCTG-3'
KLF6-18kb	5'-TGTGTGCCTCTGTGTGTATGTG-3'	5'-CTTACCCACACAGAGACACACAGAC-3'
KLF6-24kb	5'-TCACAGACACACATGCGTACAC-3'	5'-GTCTCTCTGTGTGTCTGCTGCATA-3'
C3 intron 4	5'-TCCGTGGATTCTGCTTTCAGT-3'	5'-CGTCATGATCCCGATATTCAGAT-3'
FGR intron 2	5'-AGGCAAACTCACCCATACTTAGAG-3'	5'-GTCCTATTGCTTTGATATGTTGTGTTTC-3'
CMKLR1	5'-CTACCACAGAATTAGCAAAAGAGTAGCT-3'	: 5'-CGCCTAGCCATCCATCCA-3'
CEBPD	5'-CCCGAGAGGATTCAGACTGG-3'	5'-ACACACTAGGAGGTTCATTGC-3'
SRC	5'-GACTCTGCTCATGCCACGTATTT-3'	5'-GCCAGAAGAAGTGGGAGAAGAC-3'
CFMS intron 1	5'-CCCCAACACCTGCAATTGA-3'	5'-CCTGAGCAAGCCTCTGATACTCTT-3'
MYB TSS	5'-GCCGCTCCAGAGACTGATG-3'	5'-CCCAACGTCCGGATACATTT-3'
EZH2 TSS	5'-GGAGACACAGTCCGTCCTTTG-3'	5'-ACGGGACAGACACAAGTTGGT-3'
FOS intron 1	5'-GGGATAGCCTCTCTTACTACCACTCA-3'	5'-ACAGGCGAGCCCATGCT-3'
YY1 TSS	5'- GGCTGCGTCTCAGGTTTCC -3'	5'- CCACCGTTGGGAGGATGTC -3'
ILR6 intron1	5'- CATGGTAGCATGTACCTGTAGTCTCA -3'	5'- TGGTTCACTGCAACTTCTAATTCC -3'
RAC2	5'- ATCTCAGGGCATCCCAGTTG -3'	5'- GGTGGGAGATGGGTAGGTACCT -3'

CMML patient characteristics	N = 28
Mean age in years (range)	80.3 (60-96)
Sex ratio M/F	15/13
CMML 0/CMML 1/CMML 2 (WHO criteria)	10/14/3
Proliferative/dysplastic (WHO criteria)	14/14
Leucocyte mean.10 ⁹ /L (range)	27.3 (2.1-167.4)
Monocyte mean.10 ⁹ /L (range)	8.1 (1.0-110.0)
Platelet count mean.10 ⁹ /L (range)	146 (23-597)
Hemoglobin level mean g/dL (range)	11.5 (7.7-15.9)
Karyotype (normal/abnormal/not done)	24/3/1
Mutations (mutated/done)	
TET2	20/27 (74%)
SRSF2	11/24 (46%)
ASXL1	10/24 (42%)
RUNX1	3/24 (12.5%)
NRAS	2/22 (9%)
KRAS	2/25 (8%)
CBL	2/25 (8%)