

Supplementary Information for

Daisy-chain gene drives for the alteration of local populations

Charleston Noble, John Min, Jason Olejarz, Joanna Buchthal, Alejandro Chavez, Andrea L. Smidler, Erika A. DeBenedictis, George M. Church, Martin A. Nowak and Kevin M. Esvelt

Kevin Esvelt and George Church. Email: esvelt@mit.edu (K.M.E.), gmc@harvard.edu (G.M.C.)

This PDF file includes:

Supplementary text Figs. S1 to S11 References for SI reference citations Correspondence with the Editorial Board

Supplementary Information Text

1 Evolutionary dynamics of a daisy drive construct

We first describe a daisy drive system consisting of only two elements. This simple case demonstrates the principle behind daisy drive engineering. We then describe a daisy drive system with an arbitrary number of elements.

1.1 Model for the evolutionary dynamics of a 2-element daisy drive

We consider a wild population of diploid organisms and focus on two loci, "1" and "2". The wild-type alleles at the two loci are 1_W and 2_W , and we denote by $1_{WW}2_{WW}$ the genotype of an individual that is homozygous for both. Using CRISPR genome editing technology, one can engineer what we refer to as "daisy" alleles at both loci $(1_D \text{ and } 2_D)$. They function as follows. The 1_D allele effects cutting of the 2_W allele in an individual's germline. We assume that the two loci are independent and that a single copy of 1_D always induces cutting of the 2_W allele. If an individual has genotype $1_{WD}2_{WW}$ or $1_{DD}2_{WW}$, then the drive allele at the first locus cuts and disrupts both wild-type alleles at the second locus, and the resulting gametes are nonviable. If an individual has genotype $1_{WD}2_{WD}$ or $1_{DD}2_{WD}$, then the drive allele at the first locus cuts the wild-type allele at the second locus, and one of two things can happen. If a homing event occurs, then the drive allele at the second locus is successfully copied into the position of the shredded wild-type allele, resulting in gametes that necessarily have the drive allele at the second locus. If a homing event does not occur, then the resulting gametes are nonviable. This results in super-Mendelian inheritance of the 2_D allele in a 1_D -mediated fashion. Importantly, the 1_D allele undergoes standard inheritance and does not facilitate its own spread similarly.

(Notice that in this simplified treatment, we do not explicitly study evolution with a resistant allele, as described in the main text. This simplified model illustrates the principle behind daisy drive engineering without concern for complications arising from emergence of resistance. In Section 2 of this Supplementary Information, we introduce resistance into the model.)

Genotype	$1_W 2_W$	$1_W 2_D$	$1_D 2_W$	$1_D 2_D$
$1_{WW}2_{WW}$	1	0	0	0
$1_{WW}2_{WD}$	$\frac{1}{2}F$	$\frac{1}{2}F$	0	0
$1_{WW}2_{DD}$	0	F	0	0
$1_{WD}2_{WW}$	0	0	0	0
$1_{WD}2_{WD}$	0	$\frac{1}{2}HF$	0	$\frac{1}{2}HF$
$1_{WD}2_{DD}$	0	$\frac{1}{2}F$	0	$\frac{1}{2}F$
$1_{DD}2_{WW}$	0	0	0	0
$1_{DD}2_{WD}$	0	0	0	HF
$1_{DD}2_{DD}$	0	0	0	F

To see how the daisy drive works, consider Table 1, which is understood as follows:

Table 1: Gamete production table showing the relative rates at which individuals of each genotype (rows) produce gametes of each haplotype (columns).

Gametes of haplotype $1_W 2_W$ are produced in the following ways:

- $1_{WW}2_{WW}$ individuals produce only 1_W2_W gametes. We set the rate of production of 1_W2_W gametes by $1_{WW}2_{WW}$ individuals to be 1.
- $1_{WW}2_{WD}$ individuals produce gametes with a wild-type allele at the second locus with probability 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WW}2_{WD}$ individuals produce 1_W2_W gametes at relative rate F/2.

Gametes of haplotype $1_W 2_D$ are produced in the following ways:

- $1_{WW}2_{WD}$ individuals produce gametes with a drive allele at the second locus with probability 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WW}2_{WD}$ individuals produce 1_W2_D gametes at relative rate F/2.
- $1_{WW}2_{DD}$ individuals produce only 1_W2_D gametes. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WW}2_{DD}$ individuals produce 1_W2_D gametes at relative rate F.
- $1_{WD}2_{WD}$ individuals produce gametes with a wild-type allele at the first locus with probability 1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the second locus, and homing occurs with probability H. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WD}2_{WD}$ individuals produce 1_W2_D gametes at relative rate HF/2.
- $1_{WD}2_{DD}$ individuals produce gametes with a wild-type allele at the first locus with probability 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WD}2_{DD}$ individuals produce 1_W2_D gametes at relative rate F/2.

Gametes of haplotype $1_D 2_D$ are produced in the following ways:

- $1_{WD}2_{WD}$ individuals produce gametes with a drive allele at the first locus with probability 1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the second locus, and homing occurs with probability H. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WD}2_{WD}$ individuals produce 1_D2_D gametes at relative rate HF/2.
- $1_{WD}2_{DD}$ individuals produce gametes with a drive allele at the first locus with probability 1/2. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{WD}2_{DD}$ individuals produce 1_D2_D gametes at relative rate F/2.
- $1_{DD}2_{WD}$ individuals have only the drive allele at the first locus. The action of the drive allele at the first locus is to cut the wild-type allele at the second locus, and homing occurs with probability H. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{DD}2_{WD}$ individuals produce 1_D2_D gametes at relative rate HF.
- $1_{DD}2_{DD}$ individuals produce only 1_D2_D gametes. There is a fitness effect, F, due to the payload of the drive allele at the second locus. So $1_{DD}2_{DD}$ individuals produce 1_D2_D gametes at relative rate F.

(Notice that if H is interpreted as the homing probability and F is interpreted as the fitness effect due to the drive payload, then Table 1 is naturally interpreted as describing drive that occurs in the embryo. That is, individuals with at least one copy of the drive allele at the first locus and a single copy of the drive allele at the second locus shred the wild-type allele at the second locus during embryonic development. And if homing does not occur, then the resulting, mature individuals are nonviable since the W (or D) allele is haploinsufficient. But Table 1 also effectively describes the production of gametes in the case of meiotic drive. The subtle distinction in that case would be that, if cutting occurs and homing does not follow, then $1_{WD}2_{WD}$ and $1_{DD}2_{WD}$ individuals produce a nonzero amount of gametes with a mutilated wild-type allele at the second locus. But when those gametes pair with any other gamete, the resulting individuals are necessarily nonviable, and so, effectively, $1_{WD}2_{WD}$ and $1_{DD}2_{WD}$ individuals only produce gametes with a drive allele at the second locus.)

Using these rules, we can formally express the rates at which the four types of gametes are produced in the population. We denote by g(z) the rate (with implicit time-dependence) at which gametes with haplotype z are produced by individuals in the population.

$$g(1_W 2_W) = x(1_{WW} 2_{WW}) + \frac{1}{2} Fx(1_{WW} 2_{WD})$$

$$g(1_W 2_D) = \frac{1}{2} Fx(1_{WW} 2_{WD}) + Fx(1_{WW} 2_{DD}) + \frac{1}{2} HFx(1_{WD} 2_{WD}) + \frac{1}{2} Fx(1_{WD} 2_{DD})$$

$$g(1_D 2_W) = 0$$

$$g(1_D 2_D) = \frac{1}{2} HFx(1_{WD} 2_{WD}) + \frac{1}{2} Fx(1_{WD} 2_{DD}) + HFx(1_{DD} 2_{WD}) + Fx(1_{DD} 2_{DD})$$

Here, x(z) is the frequency of individuals with genotype z.

The selection dynamics are then modeled by the following system of equations:

$$\begin{aligned} \dot{x}(1_{WW}2_{WW}) &= g(1_W2_W)^2 - \psi^2 x(1_{WW}2_{WW}) \\ \dot{x}(1_{WW}2_{WD}) &= 2g(1_W2_W)g(1_W2_D) - \psi^2 x(1_{WW}2_{WD}) \\ \dot{x}(1_{WW}2_{DD}) &= g(1_W2_D)^2 - \psi^2 x(1_{WW}2_{DD}) \\ \dot{x}(1_{WD}2_{WW}) &= 2g(1_W2_D)g(1_D2_W) - \psi^2 x(1_{WD}2_{WW}) \\ \dot{x}(1_{WD}2_{WD}) &= 2g(1_W2_D)g(1_D2_W) + 2g(1_W2_W)g(1_D2_D) - \psi^2 x(1_{WD}2_{WD}) \\ \dot{x}(1_{WD}2_{DD}) &= 2g(1_W2_D)g(1_D2_W) + 2g(1_W2_D)g(1_D2_D) - \psi^2 x(1_{WD}2_{DD}) \\ \dot{x}(1_{DD}2_{WW}) &= g(1_D2_W)^2 - \psi^2 x(1_{DD}2_{WW}) \\ \dot{x}(1_{DD}2_{WD}) &= 2g(1_D2_W)g(1_D2_D) - \psi^2 x(1_{DD}2_{WD}) \\ \dot{x}(1_{DD}2_{DD}) &= 2g(1_D2_W)g(1_D2_D) - \psi^2 x(1_{DD}2_{WD}) \\ \dot{x}(1_{DD}2_{DD}) &= 2g(1_D2_W)g(1_D2_D) - \psi^2 x(1_{DD}2_{WD}) \\ \dot{x}(1_{DD}2_{DD}) &= 2g(1_D2_W)g(1_D2_D) - \psi^2 x(1_{DD}2_{WD}) \end{aligned}$$

Here, an overdot denotes the time derivative, d/dt. Throughout this Supplementary Information, we omit explicitly writing the time dependence of our dynamical quantities. Note that this formulation assumes random mating, i.e., that two random gametes come together to form an individual. Also note that products g(y)g(z) represent the pairings of different gametes. At any given time, we require that the total number of individuals sums to one:

$$\sum_{z} x(z) = 1$$

To enforce this density constraint, we set

$$\psi = g(1_W 2_W) + g(1_W 2_D) + g(1_D 2_W) + g(1_D 2_D)$$

1.2 Model for the evolutionary dynamics of an *n*-element daisy drive

We can apply the same engineering to a daisy drive chain of arbitrary length, n, where the drive allele at one locus induces cutting of the wild-type allele at the next locus in the sequence. To describe this mathematically, it is helpful to generalize our notation.

Consider a daisy drive construct with only two loci, as in Section 1.1. We use a "1" bit to denote a wild-type allele, and we use a "0" bit to denote a daisy drive allele. To represent genotypes, we introduce vectors $a = (a_1, a_2)$ and $b = (b_1, b_2)$, where each $a_1, a_2, b_1, b_2 \in \{0, 1\}$. We construct these vectors such that a_1 and b_1 represent the two alleles at the first locus, while a_2 and b_2 represent the two alleles at the second locus. A full genotype is then a list of the two vectors, [a, b]. We write the nine possible genotypes for a two-element drive system as:

$$1_{WW}2_{WW} = [(1,1),(1,1)]$$

$$1_{WW}2_{WD} = [(1,1),(1,0)]$$

$$1_{WW}2_{DD} = [(1,0),(1,0)]$$

$$1_{WD}2_{WW} = [(1,1),(0,1)]$$

$$1_{WD}2_{WD} = [(1,1),(0,0)]$$

$$1_{WD}2_{DD} = [(1,0),(0,0)]$$

$$1_{DD}2_{WW} = [(0,1),(0,1)]$$

$$1_{DD}2_{WD} = [(0,0),(0,0)]$$

Notice that if an individual is heterozygous at a particular locus, then this notation allows for two ways of writing the alleles at that locus. For example, genotype $1_{WD}2_{WD}$ can be written in any one of four equivalent ways: [(1,1), (0,0)], [(0,0), (1,1)], [(1,0), (0,1)],or [(0,1), (1,0)].

When modeling daisy drives with a large number of loci, it is helpful to adopt shorthand notation. To do this, we extend the lengths of a and b to be equal to the number of loci, n. That is, we let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$, where each $a_i, b_j \in \{0, 1\}$. For example, the genotype $1_{WW} 2_{DD} 3_{WD}$ can be written [a, b] = [(1, 0, 1), (1, 0, 0)] or, equivalently, [a, b] = [(1, 0, 0), (1, 0, 1)].

We denote by x_{ab} the frequency of individuals with genotype [a, b]. We denote by g_b the rate at which gametes with haplotype b are produced. For an n-element daisy drive, g_b is given by

$$g_{b} = \sum_{\alpha,\beta} x_{\alpha\beta} F^{1-\alpha_{n}\beta_{n}} \\ \times \prod_{i=1}^{n} \left\{ \delta_{\alpha_{i}b_{i}} \delta_{\beta_{i}b_{i}} \left[\delta_{0,b_{i}} + \alpha_{i-1}\beta_{i-1}\delta_{1,b_{i}} \right] + (1 - \delta_{\alpha_{i}\beta_{i}}) \left[\frac{\alpha_{i-1}\beta_{i-1}}{2} + (1 - \alpha_{i-1}\beta_{i-1})H\delta_{0,b_{i}} \right] \right\}$$
(1)

Here, we have defined $\alpha_0 = \beta_0 = 1$. δ_{ij} is the Kronecker delta, defined by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. In Equations (1), in the sum over α, β when enumerating genotypes, heterozygous loci $(\alpha_i \neq \beta_i)$ are each counted once, so there is no double-counting. g_b is linear in each $x_{\alpha\beta}$, where all genotypes $[\alpha, \beta]$ are summed over.

We understand the terms in the factors in brackets as follows. Consider just a single factor in brackets for a particular value of i.

• If $\alpha_i = \beta_i = b_i = 0$, then individuals of genotype $[\alpha, \beta]$ have two identical copies of allele 0 at the *i*th locus, and those individuals create only gametes with allele 0 at position *i*.

- If $\alpha_i = \beta_i = b_i = 1$ and $\alpha_{i-1}\beta_{i-1} = 1$, then individuals of genotype $[\alpha, \beta]$ have two identical copies of allele 1 at the *i*th locus and no copy of allele 0 at the (i-1)th locus, and those individuals create only gametes with allele 1 at position *i*.
- If $\alpha_i \neq \beta_i$ and $\alpha_{i-1}\beta_{i-1} = 1$, then individuals of genotype $[\alpha, \beta]$ have a single copy of allele b_i at the *i*th locus, and without any action from the daisy drive, those individuals create gametes with allele b_i and allele $(1 + (-1)^{b_i})/2$ at position *i* in equal proportion.
- If $\alpha_i \neq \beta_i$ and $\alpha_{i-1}\beta_{i-1} = 0$, then individuals of genotype $[\alpha, \beta]$ have a single copy of allele b_i at the i^{th} locus, and the daisy drive allele at the $(i-1)^{\text{th}}$ locus cuts the wild-type allele at the i^{th} locus. Homing then occurs with probability H, and gametes with allele 0 at position i are created.

The prefactor $F^{1-\alpha_n\beta_n}$ is the fitness cost associated with the payload. It appears if there is at least one copy of the daisy drive allele at the last position, n, in the daisy chain.

The selection dynamics for an n-element daisy drive are modeled by the following equations:

$$\dot{x}_{ab} = \sum_{\alpha} g_{\alpha} \sum_{\beta} g_{\beta} \prod_{i=1}^{n} \left[\delta_{a_i b_i} \delta_{\alpha_i a_i} \delta_{\beta_i b_i} + (1 - \delta_{a_i b_i})(1 - \delta_{\alpha_i \beta_i}) \right] - \psi^2 x_{ab}$$
(2)

In Equations (2), the haplotypes α and β are summed independently. There is one such equation for each possible genotype [a, b].

We make sense of Equations (2) as follows. Each pair of gametes g_{α} and g_{β} makes a new individual.

- If $a_i = b_i = \alpha_i = \beta_i$, then gametes of haplotypes α and β pair to make only individuals with genotype $[a_i, b_i]$ at locus *i*.
- If $a_i \neq b_i$ and $\alpha_i \neq \beta_i$, then gametes of haplotypes α and β pair to make only individuals with genotype $[a_i, b_i]$ at locus *i*.

We impose the density constraint

$$\sum_{a,b} x_{ab} = 1 \tag{3}$$

As already noted for Equations (1), in the sum over a, b when enumerating genotypes, heterozygous loci $(a_i \neq b_i)$ are each counted once, so there is no double-counting. We use the following identity:

$$\sum_{a,b} \prod_{i=1}^{n} \left[\delta_{a_i b_i} \delta_{\alpha_i a_i} \delta_{\beta_i b_i} + (1 - \delta_{a_i b_i})(1 - \delta_{\alpha_i \beta_i}) \right] = 1$$

The form of ψ that enforces the density constraint is

$$\psi = \sum_{\alpha} g_{\alpha} \tag{4}$$

2 Evolutionary dynamics of daisy drive resistance

Thus far in this Supplementary Information, we have assumed that there are exactly two alleles at each daisy drive locus: the daisy drive element, D, and the corresponding wild-type, W. However, additional alleles could arise in various ways: standing genetic variation, de novo mutation, or

misrepair after cutting could all result in alleles with mismatches between the engineered guide RNAs and their corresponding recognition sequences. Such alleles would be *resistant* to the future effects of daisy-mediated cutting.

Our previous consideration of only two classes of allele was motivated by our presumed biological design: each daisy element was to target a highly conserved essential gene using multiple guide RNAs, and the corresponding daisy drive construct was to contain a genetically recoded copy of the target gene. Under these assumptions, we would expect low rates of standing genetic variation and *de novo* mutation, and targets resulting from misrepair would almost certainly produce nonviable offspring.

However, these assumptions are fairly restrictive. It could be difficult, in practice, to locate highly conserved regions, recode essential genes, and design multiple guide RNAs for every daisy element in a large chain, particularly in time-sensitive situations, such as responding to release of a rogue drive. Thus, in this section, we relax these earlier assumptions by extending our model to account for drive-resistant alleles.

2.1 Two elements

We begin by considering the special case of two daisy drive elements, as in Section 1.1 above. The relevant loci are denoted 1 and 2 as before. Now, however, there are three alleles: the wild-type, W, the drive element, D, and a resistant allele, R, which is immune to the effects of the drive. We assume that resistant alleles primarily arise as the result of misrepair following cutting events (standing genetic variation could be accounted for by simply varying the initial frequency of the R allele). Because only the second locus is acted upon by the drive, we ignore resistance at the first locus.

Now, we consider the case where there is at least one drive element at the first locus (e.g., an individual with genotype 1_{WD} or 1_{DD}). Then there are six cases, depending on the genotype at the second locus:

- WW: The drive element cuts at both W alleles until both are resistant to further cutting. The individual thus converts to genotype 2_{RR} at this locus, and all gametes contain the 2_R allele.
- WD: The drive element cuts at the W allele. Subsequent repair occurs by homologous recombination with probability H, or by nonhomologous end-joining with probability 1 H. In the former case, the individual converts to genotype 2_{DD} and all gametes have the 2_D allele. In the latter case, the individual converts to 2_{DR} and produces gametes with 2_D or 2_R alleles with equal proportions.
- WR: The drive element cuts at the W allele. Subsequent repair by either repair pathway results in a resistant allele, so the individual converts to genotype 2_{RR} . Thus, all gametes produced contain the 2_R allele.
- DD: No cutting occurs, so all gametes contain the 2_D allele.
- DR: No cutting occurs, so gametes are produced containing the 2_D or 2_R allele with equal proportions.
- RR: No cutting occurs, so all gametes contain the 2_R allele.

The cases above describe the production probabilities of the various alleles. But what are their effects on fitness? We assume that the payload element, 2_D , confers a dominant fitness cost, c; the

Genotype	$1_W 2_W$	$1_W 2_D$	$1_W 2_R$	$1_D 2_W$	$1_D 2_D$	$1_D 2_R$	Fitness
$1_{WW}2_{WW}$	1	0	0	0	0	0	1
$1_{WW}2_{WD}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	F
$1_{WW}2_{WR}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	K
$1_{WW}2_{DD}$	0	1	0	0	0	0	F
$1_{WW}2_{DR}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	FK
$1_{WW}2_{RR}$	0	0	1	0	0	0	K
$1_{WD}2_{WW}$	0	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$	G
$1_{WD}2_{WD}$	0	$\frac{1+H}{4}$	$\frac{1-H}{4}$	0	$\frac{1+H}{4}$	$\frac{1-H}{4}$	FG
$1_{WD}2_{WR}$	0	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$	GK
$1_{WD}2_{DD}$	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$	0	FG
$1_{WD}2_{DR}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	FGK
$1_{WD}2_{RR}$	0	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$	GK
$1_{DD}2_{WW}$	0	0	0	0	0	1	G
$1_{DD}2_{WD}$	0	0	0	0	$\frac{1+H}{2}$	$\frac{1-H}{2}$	FG
$1_{DD}2_{WR}$	0	0	0	0	0	1	GK
$1_{DD}2_{DD}$	0	0	0	0	1	0	FG
$1_{DD}2_{DR}$	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	FGK
$1_{DD}2_{RR}$	0	0	0	0	0	1	GK

Table 2: Gamete production probabilities and genotype fitnesses for two-element daisy drive with resistant alleles.

upstream drive element, 1_D , confers a dominant fitness cost, d; and the resistant allele confers a dominant fitness cost, s. We assume that the all-wild-type individual has maximum fitness 1, so that $0 \le c, d, s \le 1$. We then define the shorthand notation F = 1 - c, G = 1 - d, and K = 1 - s. These assumptions are summarized in Table 2.

Using these rules, we can formally express the rates at which the six types of gametes are produced in the population. We denote by g(z) the rate (with implicit time-dependence) at which

gametes with haplo type \boldsymbol{z} are produced by individuals in the population.

$$\begin{split} g(1_W2_W) &= x(1_{WW}2_{WW}) + \frac{1}{2}Fx(1_{WW}2_{WD}) + \frac{1}{2}Kx(1_{WW}2_{WR}) \\ g(1_W2_D) &= \frac{1}{2}Fx(1_{WW}2_{WD}) + Fx(1_{WW}2_{DD}) + \frac{1}{2}FKx(1_{WW}2_{DR}) + \frac{1+H}{4}FGx(1_{WD}2_{WD}) \\ &\quad + \frac{1}{2}FGx(1_{WD}2_{DD}) + \frac{1}{4}FGKx(1_{WD}2_{DR}) \\ g(1_W2_R) &= \frac{1}{2}Kx(1_{WW}2_{WR}) + \frac{1}{2}FKx(1_{WW}2_{DR}) + Kx(1_{WW}2_{RR}) + \frac{1}{2}Gx(1_{WD}2_{WW}) \\ &\quad + \frac{1-H}{4}FGx(1_{WD}2_{WD}) + \frac{1}{2}GKx(1_{WD}2_{WR}) + \frac{1}{4}FGKx(1_{WD}2_{DR}) \\ &\quad + \frac{1}{2}GKx(1_{WD}2_{RR}) \\ g(1_D2_W) &= 0 \\ g(1_D2_D) &= \frac{1+H}{4}FGx(1_{WD}2_{WD}) + \frac{1}{2}FGx(1_{WD}2_{DD}) + \frac{1}{4}FGKx(1_{WD}2_{DR}) \\ &\quad + \frac{1+H}{2}FGx(1_{DD}2_{WD}) + FGx(1_{DD}2_{DD}) + \frac{1}{2}FGKx(1_{DD}2_{DR}) \\ &\quad + \frac{1}{4}FGKx(1_{WD}2_{WR}) + \frac{1-H}{4}FGx(1_{WD}2_{WD}) + \frac{1}{2}GKx(1_{WD}2_{WR}) \\ &\quad + \frac{1}{4}FGKx(1_{WD}2_{DR}) + \frac{1}{2}GKx(1_{WD}2_{WR}) + \frac{1-H}{2}FGx(1_{WD}2_{DR}) \\ &\quad + \frac{1-H}{2}FGx(1_{DD}2_{WD}) + \frac{1}{2}GKx(1_{WD}2_{RR}) + Gx(1_{DD}2_{WR}) \\ &\quad + \frac{1-H}{2}FGx(1_{DD}2_{WD}) + GKx(1_{DD}2_{WR}) + \frac{1}{2}FGKx(1_{DD}2_{DR}) \end{split}$$

Here, x(z) is the frequency of individuals with genotype z.

The selection dynamics are then modeled by the following system of equations:

$= g(1_W 2_W)^2 - \psi^2 x (1_{WV})^2$	$W^{2}WW) =$	$g(1_W 2_W)^2 - \psi^2 x (1_{WW} 2_W)^2$	$_{VW})$
$= 2g(1_W 2_W)g(1_W 2_D) - \psi^2 x(1_W$	$WW2_{WD}) =$	$2g(1_W 2_W)g(1_W 2_D) - \psi^2 x(1_{WW} 2_W)g(1_W 2_W)g(1$	$_{WD})$
$= 2g(1_W 2_W)g(1_W 2_R) - \psi^2 x(1_W 2_R)$	$V_W 2_{WR}) =$	$2g(1_W 2_W)g(1_W 2_R) - \psi^2 x(1_W W 2_R)$	$_{WR})$
$= g(1_W 2_D)^2 - \psi^2 x (1_W$	$_{VW}2_{DD}) =$	$g(1_W 2_D)^2 - \psi^2 x(1_{WW} 2$	$_{DD})$
$= 2g(1_W 2_D)g(1_W 2_R) - \psi^2 x(1_W 2_R)$	$_{VW}2_{DR}) =$	$2g(1_W 2_D)g(1_W 2_R) - \psi^2 x(1_{WW} 2_R)$	$L_{DR})$
$= g(1_W 2_R)^2 - \psi^2 x (1_W$	$_{VW}2_{RR}) =$	$g(1_W 2_R)^2 - \psi^2 x (1_{WW} 2$	(2_{RR})
$= 2g(1_W 2_W)g(1_D 2_W) - \psi^2 x(1_W)$	$_{D}2_{WW}) =$	$2g(1_W 2_W)g(1_D 2_W) - \psi^2 x(1_{WD} 2_W)$	$_{VW})$
$= 2g(1_W 2_D)g(1_D 2_W) + 2g(1_W 2_W)g(1_D 2_D) - \psi^2 x(1_W 2_W)g(1_W 2_W)g(1_D 2_D) - \psi^2 x(1_W 2_W)g(1_W 2_W)g(1_D 2_D) - \psi^2 x(1_W 2_W)g(1_W 2$	$_{VD}2_{WD}) = 2g$	$(2_D)g(1_D 2_W) + 2g(1_W 2_W)g(1_D 2_D) - \psi^2 x(1_{WD} 2_W)g(1_D 2_D)$	$_{WD})$
$= 2g(1_W 2_R)g(1_D 2_W) + 2g(1_W 2_W)g(1_D 2_R) - \psi^2 x(1_W 2_W)g(1_W 2_W 2_W)g(1_W 2_W)g(1_W 2_W)g(1_W 2_W 2_W 2_W)g(1_W 2_W 2_W)g(1_W 2_W 2_W)g(1_W 2_W 2_W 2_W 2_W)g(1_W 2_W 2_W 2_W 2_W)g(1_W 2_W 2_W 2_W 2_W 2_W)g(1_W 2_W 2_W 2_W 2_W)g(1_W 2_W 2_W 2_W 2_W 2_W 2_W 2_W 2_W 2_W)g(1_W 2_W 2_W 2_W 2_W 2_W 2_W 2_W 2_W 2_W 2$	$_{VD}2_{WR}) = 2$	$2_R)g(1_D 2_W) + 2g(1_W 2_W)g(1_D 2_R) - \psi^2 x(1_W D 2_R)$	$_{WR})$
$= 2g(1_W 2_D)g(1_D 2_D) - \psi^2 x(1_W 2_D)g(1_D 2_D)g(1_D 2_D) - \psi^2 x(1_W 2_D)g(1_D 2_D$	$_{VD}2_{DD}) =$	$2g(1_W 2_D)g(1_D 2_D) - \psi^2 x(1_{WD} 2_D)$	$_{DD})$
$= 2g(1_W 2_D)g(1_D 2_R) + 2g(1_W 2_R)g(1_D 2_D) - \psi^2 x(1_W 2_D)g(1_D 2_$	$_{WD}2_{DR}) =$	$(V_{2D})g(1_D 2_R) + 2g(1_W 2_R)g(1_D 2_D) - \psi^2 x(1_{WD} 2_R)g(1_D 2_D)$	$L_{DR})$
$= 2g(1_W 2_R)g(1_D 2_R) - \psi^2 x(1_W 2_R)g(1_R 2_R)g(1_R)g(1_R 2_R)g(1_R$	$_{WD}2_{RR}) =$	$2g(1_W 2_R)g(1_D 2_R) - \psi^2 x(1_{WD} 2_R)$	(2_{RR})
$= g(1_D 2_W)^2 - \psi^2 x (1_D)$	$_{DD}2_{WW}) =$	$g(1_D 2_W)^2 - \psi^2 x (1_{DD} 2_W)^2$	$_{VW})$
$= 2g(1_D 2_W)g(1_D 2_D) - \psi^2 x(1_D 2_$	$_{DD}2_{WD}) =$	$2g(1_D 2_W)g(1_D 2_D) - \psi^2 x(1_{DD} 2_W)g(1_D 2_D)$	$_{WD})$
$= 2g(1_D 2_W)g(1_D 2_R) - \psi^2 x(1_D 2_$	$_{DD}2_{WR}) =$	$2g(1_D 2_W)g(1_D 2_R) - \psi^2 x(1_{DD} 2_R)$	$_{WR})$
$= g(1_D 2_D)^2 - \psi^2 x (1_L)^2$	$_{DD}2_{DD}) =$	$g(1_D 2_D)^2 - \psi^2 x(1_{DD} 2$	$_{DD})$
$= 2g(1_D 2_D)g(1_D 2_R) - \psi^2 x(1_R)$	$_{DD}2_{DR}) =$	$2g(1_D 2_D)g(1_D 2_R) - \psi^2 x(1_{DD} 2_R)$	(D_R)
$= g(1_D 2_R)^2 - \psi^2 x (1_R)^2$	$_{DD}2_{RR}) =$	$g(1_D 2_R)^2 - \psi^2 x(1_{DD} 2_R)^2$	$2_{RR})$

Note that this formulation assumes random mating as before, i.e., that two random gametes come together to form an individual. Also note that products g(y)g(z) represent the pairings of different gametes. At any given time, we require that the total number of individuals sums to one:

$$\sum_{z} x(z) = 1$$

To enforce this density constraint, we set

$$\psi = g(1_W 2_W) + g(1_W 2_D) + g(1_W 2_R) + g(1_D 2_W) + g(1_D 2_D) + g(1_D 2_R)$$

2.2 Evolutionary dynamics of an *n*-element daisy drive with resistance

As in Section 1.2 above, we now apply the same concept to a daisy drive chain of arbitrary length, n. To describe this mathematically, we return to and amend our previous notation for an n-element system.

Consider a daisy drive construct with only two loci, as in Section 2.1. We use "W" to denote a wild-type allele, "D" to denote a daisy drive allele, and "R" to denote a resistant allele. To represent genotypes, we introduce vectors $a = (a_1, a_2)$ and $b = (b_1, b_2)$, where each $a_1, a_2, b_1, b_2 \in \{W, D, R\}$. We construct these vectors such that a_1 and b_1 represent the two alleles at the first locus, while a_2 and b_2 represent the two alleles at the second locus. A full genotype is then a list of the two vectors, [a, b].

Below are a few examples of this naming convention applied to the genotypes of the two-element system:

$$1_{WW}2_{WW} = [(W, W), (W, W)]$$

$$1_{WW}2_{WD} = [(W, W), (W, D)]$$

$$1_{WW}2_{DD} = [(W, D), (W, D)]$$

$$1_{WW}2_{DR} = [(W, D), (W, R)]$$

$$1_{WD}2_{WW} = [(W, W), (D, W)]$$

$$1_{WD}2_{WD} = [(W, W), (D, D)]$$

To consider daisy drives of arbitrary length, we extend the lengths of the vectors a and b to be equal to the number of loci, n. That is, we let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$, where each $a_i, b_j \in \{W, D, R\}$. Again, notice that if an individual is heterozygous at a particular locus, then this notation allows for two ways of writing the alleles at that locus. For example, the genotype $1_{DD}2_{RR}3_{DR}$ can be written [a, b] = [(D, R, D), (D, R, R)] or, equivalently, [a, b] = [(D, R, R), (D, R, D)].

We denote by x_{ab} the frequency of individuals with genotype [a, b]. We denote by g_b the rate at which gametes with haplotype b are produced. For an n-element daisy drive, g_b is given by

$$g_b = \sum_{\alpha,\beta} x_{\alpha\beta} f(\alpha,\beta) p_{\alpha,\beta}(b)$$
(5)

Here we have used shorthand notation: $f(\alpha, \beta)$ is the fitness of an individual with genotype $[\alpha, \beta]$, and $p_{\alpha,\beta}(b)$ is the probability that an individual with genotype $[\alpha, \beta]$ produces a gamete with haplotype b. Notice that this is the same form as our Equations (1) above, with the fitness and gamete production components clearly identified.

The fitness of an $[\alpha, \beta]$ individual, $f(\alpha, \beta)$, is given by:

$$f(\alpha,\beta) = \prod_{i=1}^{n} F_{i}^{1-(1-\delta_{\alpha_{i},D})(1-\delta_{\beta_{i},D})} K_{i}^{1-(1-\delta_{\alpha_{i},R})(1-\delta_{\beta_{i},R})}$$
(6)

Here, $F_i = 1 - c_i$, where c_i is the fitness cost associated with the *i*th daisy drive element. Similarly, $K_i = 1 - s_i$, where s_i is the fitness cost of resistance at the *i*th position. δ_{ij} is the Kronecker delta, defined by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. This formulation assumes dominance of each fitness cost and mutual independence of all costs, as in the two-element system in Section 2.1 above.

Although the above formulation allows us to assign arbitrary costs at each position, we make the following simplifying assumptions in our simulations:

- The cost of resistance at upstream (non-payload) elements is zero: $K_1 = \cdots = K_{n-1} = 1$.
- All upstream (non-payload) drive elements have identical associated fitness costs: $F_1 = \cdots = F_{n-1} = 1 d$.
- We define a cost, s, associated with resistance to the payload element: $K_n = 1 s$.
- We define a cost, c, associated with the payload element itself: $F_n = 1 c$.

Then, the probability, $p_{\alpha,\beta}(b)$, of an $[\alpha,\beta]$ individual producing gamete b is given by:

$$p_{\alpha,\beta}(b) = \prod_{i=1}^{n} \left\{ \left(1 - \gamma_{\alpha_{i-1},\beta_{i-1}}^{D}(0) \right) \times \left[\delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{R}(2) + \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{R}(1) \gamma_{\alpha_{i},\beta_{i}}^{D}(1) + \frac{1 - H}{2} \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{W}(1) \gamma_{\alpha_{i},\beta_{i}}^{D}(1) + \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{R}(2) + \frac{1}{2} \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{D}(1) \gamma_{\alpha_{i},\beta_{i}}^{D}(1) + \frac{1 - H}{2} \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{U}(1) \gamma_{\alpha_{i},\beta_{i}}^{D}(1) + \delta_{b_{i,D}} \gamma_{\alpha_{i},\beta_{i}}^{D}(2) + \frac{1}{2} \delta_{b_{i,D}} \gamma_{\alpha_{i},\beta_{i}}^{D}(1) \gamma_{\alpha_{i},\beta_{i}}^{R}(1) + \frac{1 + H}{2} \delta_{b_{i,D}} \gamma_{\alpha_{i},\beta_{i}}^{D}(1) \gamma_{\alpha_{i},\beta_{i}}^{W}(1) \right]$$

$$+ \gamma_{\alpha_{i-1},\beta_{i-1}}^{D}(0) \times \left[\delta_{b_{i,W}} \gamma_{\alpha_{i},\beta_{i}}^{W}(2) + \frac{1}{2} \delta_{b_{i,W}} \gamma_{\alpha_{i},\beta_{i}}^{W}(1) \gamma_{\alpha_{i},\beta_{i}}^{D}(1) + \frac{1}{2} \delta_{b_{i,W}} \gamma_{\alpha_{i},\beta_{i}}^{W}(1) \gamma_{\alpha_{i},\beta_{i}}^{R}(1) + \delta_{b_{i,D}} \gamma_{\alpha_{i},\beta_{i}}^{D}(2) + \frac{1}{2} \delta_{b_{i,D}} \gamma_{\alpha_{i},\beta_{i}}^{D}(1) \gamma_{\alpha_{i},\beta_{i}}^{R}(1) + \frac{1}{2} \delta_{b_{i,D}} \gamma_{\alpha_{i},\beta_{i}}^{D}(1) \gamma_{\alpha_{i},\beta_{i}}^{W}(1) + \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{R}(2) + \frac{1}{2} \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{R}(1) \gamma_{\alpha_{i},\beta_{i}}^{W}(1) + \frac{1}{2} \delta_{b_{i,R}} \gamma_{\alpha_{i},\beta_{i}}^{R}(1) \gamma_{\alpha_{i},\beta_{i}}^{D}(1) \right] \right\}$$

$$(7)$$

Here, we use shorthand notation, $\gamma_{\alpha_i,\beta_i}^c(k)$, to count the number of a particular allele at a particular locus: we define $\gamma_{\alpha_i,\beta_i}^c(k) = 1$ if there are k copies (k = 0, 1, 2) of allele $c \ (c \in \{W, D, R\})$ at position i in an individual with genotype $[\alpha, \beta]$. Otherwise, $\gamma_{\alpha_i,\beta_i}^c(k) = 0$. This is given by:

$$\gamma_{\alpha_{i},\beta_{i}}^{c}(k) = \delta_{k,0} \left[(1 - \delta_{\alpha_{i},c})(1 - \delta_{\beta_{i},c}) \right] + \delta_{k,1} \left[\delta_{\alpha_{i},c}(1 - \delta_{\beta_{i},c}) + \delta_{\beta_{i},c}(1 - \delta_{\alpha_{i},c}) \right] + \delta_{k,2} \left[\delta_{\alpha_{i},c} \delta_{\beta_{i},c} \right].$$

For example, $\gamma_{\alpha_i,\beta_i}^W(2) = 1$ if there are two copies of a wild-type allele at position *i* in an $[\alpha,\beta]$ individual; otherwise $\gamma_{\alpha_i,\beta_i}^W(2) = 0$. We also define $\alpha_0 = \beta_0 = W$.

We understand Equations (7) as follows. Inheritance at each locus is independent, so the total probability $p_{\alpha,\beta}(b)$ is the product of inheritance probabilities at each individual position. Consider locus *i*. There are two possibilities. Either there is a daisy drive allele at the previous locus, which entails $\gamma_{\alpha_{i-1},\beta_{i-1}}^D(0) = 0$. (This eliminates the sum in the second pair of square brackets.) Or there is no daisy drive allele at the previous locus, which entails $\gamma_{\alpha_{i-1},\beta_{i-1}}^D(0) = 1$. (This eliminates the sum in the first pair of square brackets.)

If there is a daisy drive allele at the previous locus, then the value of the factor in the product of Equations (7) depends on the genotype at the current locus:

- $(\alpha_i, \beta_i) = (W, W)$. This entails $\gamma^W_{\alpha_i, \beta_i}(2) = 1$. Only *R* alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, R} = 1$. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (W, D)$. This entails $\gamma^W_{\alpha_i,\beta_i}(1)\gamma^D_{\alpha_i,\beta_i}(1) = 1$. By the action of the drive, D alleles are produced at locus i with probability (1 + H)/2, or R alleles are produced at locus i with probability (1 H)/2. So if $\delta_{b_i,D} = 1$, then the factor is (1 + H)/2. Or if $\delta_{b_i,R} = 1$, then the factor is (1 H)/2. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (W, R)$. This entails $\gamma^W_{\alpha_i, \beta_i}(1) \gamma^R_{\alpha_i, \beta_i}(1) = 1$. Only *R* alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, R} = 1$. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (D, D)$. This entails $\gamma^D_{\alpha_i, \beta_i}(2) = 1$. Only *D* alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, D} = 1$. Otherwise, it is zero.

- $(\alpha_i, \beta_i) = (D, R)$. This entails $\gamma^D_{\alpha_i, \beta_i}(1) \gamma^R_{\alpha_i, \beta_i}(1) = 1$. Here, D and R alleles are produced at locus i in equal proportions. Thus, the factor is 1/2 if $\delta_{b_i, D} = 1$ or if $\delta_{b_i, R} = 1$. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (R, R)$. This entails $\gamma^R_{\alpha_i, \beta_i}(2) = 1$. Only *R* alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, R} = 1$. Otherwise, it is zero.

Similarly, if there is no daisy drive allele at the previous locus, then the value of the factor in the product of Equations (7) depends on the genotype at the current locus. However, because there is no drive, the inheritance probabilities are simply Mendelian:

- $(\alpha_i, \beta_i) = (W, W)$. This entails $\gamma^W_{\alpha_i, \beta_i}(2) = 1$. Only W alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, W} = 1$. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (W, D)$. This entails $\gamma^W_{\alpha_i, \beta_i}(1) \gamma^D_{\alpha_i, \beta_i}(1) = 1$. There is no drive action, so W alleles and D alleles are produced at locus i in equal proportions. Thus, if $\delta_{b_i, W} = 1$ or $\delta_{b_i, D} = 1$, then the factor is 1/2. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (W, R)$. This entails $\gamma^W_{\alpha_i, \beta_i}(1) \gamma^R_{\alpha_i, \beta_i}(1) = 1$. Here, W alleles and R alleles are produced at locus *i* in equal proportions. Thus, if $\delta_{b_i, W} = 1$ or $\delta_{b_i, R} = 1$, then the factor is 1/2. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (D, D)$. This entails $\gamma^D_{\alpha_i, \beta_i}(2) = 1$. Only *D* alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, D} = 1$. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (D, R)$. This entails $\gamma^D_{\alpha_i, \beta_i}(1)\gamma^R_{\alpha_i, \beta_i}(1) = 1$. Here, *D* alleles and *R* alleles are produced at locus *i* in equal proportions. Thus, the factor is 1/2 if $\delta_{b_i, D} = 1$ or $\delta_{b_i, R} = 1$. Otherwise, it is zero.
- $(\alpha_i, \beta_i) = (R, R)$. This entails $\gamma^R_{\alpha_i, \beta_i}(2) = 1$. Only R alleles are produced at locus *i*. Thus, the factor is 1 if $\delta_{b_i, R} = 1$. Otherwise, it is zero.

The selection dynamics for an *n*-element daisy drive are then modeled by the following equations:

$$\dot{x}_{ab} = \sum_{\alpha} g_{\alpha} \sum_{\beta} g_{\beta} \prod_{i=1}^{n} \Delta_{a_i b_i}^{\alpha_i \beta_i} - \psi^2 x_{ab}$$
(8)

Here, as shorthand notation, we define

$$\begin{aligned} \Delta_{a_ib_i}^{\alpha_i\beta_i} &= \delta_{a_ib_i}\delta_{\alpha_ia_i}\delta_{\beta_ib_i} \\ &+ \gamma_{a_i,b_i}^W(1)\gamma_{a_i,b_i}^D(1)\gamma_{\alpha_i,\beta_i}^W(1)\gamma_{\alpha_i,\beta_i}^D(1) \\ &+ \gamma_{a_i,b_i}^W(1)\gamma_{a_i,b_i}^R(1)\gamma_{\alpha_i,\beta_i}^W(1)\gamma_{\alpha_i,\beta_i}^R(1) \\ &+ \gamma_{a_i,b_i}^D(1)\gamma_{a_i,b_i}^R(1)\gamma_{\alpha_i,\beta_i}^D(1)\gamma_{\alpha_i,\beta_i}^R(1) \end{aligned}$$

In Equations (8), the haplotypes α and β are summed independently. There is one such equation for each possible genotype [a, b].

We impose the density constraint

$$\sum_{a,b} x_{ab} = 1. \tag{9}$$

We use the following identity:

$$\sum_{a,b}\prod_{i=1}^n \Delta_{a_ib_i}^{\alpha_i\beta_i}=1$$

And, as before, the form of ψ that enforces the density constraint is

$$\psi = \sum_{\alpha} g_{\alpha}.$$
 (10)

2.3 Continuous release

To model a continuous release of individuals carrying the daisy drive construct into a population, we use the following equations:

$$\dot{x}_{ab} = \sum_{\alpha} g_{\alpha} \sum_{\beta} g_{\beta} \prod_{i=1}^{n} \Delta_{a_i b_i}^{\alpha_i \beta_i} + C_{ab} - \left(\psi^2 + \sum_{\alpha, \beta} C_{\alpha\beta}\right) x_{ab}$$
(11)

A nonzero value of C_{ab} models a flow of individuals of genotype [a, b] into the population. Equations (11) are thus a generalization of Equations (8). ψ is given by Equation (10), and the density constraint, Equation (9), holds at all times.

3 Two-population model for an *n*-element daisy drive with resistance

We now extend the model from Section 2.3 to include a simple spatial component: two populations connected by gene flow.

3.1 Two-population model without gene flow

First, we consider two populations whose evolutionary dynamics are decoupled. We denote by x_{ab} the frequency of individuals with genotype [a, b] among individuals in the target population, and we denote by y_{ab} the frequency of individuals with genotype [a, b] among individuals in the mainland population. We denote by $g_b^{(T)}$ the rate at which gametes with haplotype b are produced in the target population, and we denote by $g_b^{(M)}$ the same for the mainland population. For an *n*-element daisy drive, $g_b^{(T)}$ and $g_b^{(M)}$ are given by

$$g_{b}^{(T)} = \sum_{\alpha,\beta} x_{\alpha\beta} f(\alpha,\beta) p_{\alpha,\beta}(b)$$

$$g_{b}^{(M)} = \sum_{\alpha,\beta} y_{\alpha\beta} f(\alpha,\beta) p_{\alpha,\beta}(b)$$
(12)

Here, $f(\alpha, \beta)$ is the fitness of the genotype $[\alpha, \beta]$, and $p_{\alpha,\beta}(b)$ is the probability that an individual of genotype $[\alpha, \beta]$ produces a gamete with haplotype b. These two quantities are given by Equations (6) and (7), respectively.

Equations (12) are essentially identical to Equations (5), except we assume that only individuals in the target population contribute to the target population gamete pool and similarly for the mainland. Thus, the difference between Equations (12) and Equations (5) arises from the separation of the two populations via $g_b^{(T)}$, $g_b^{(M)}$, $x_{\alpha\beta}$, and $y_{\alpha\beta}$. The selection dynamics for an n-element daisy drive system in two populations are then modeled by the following equations:

$$\dot{x}_{ab} = \sum_{\alpha} g_{\alpha}^{(T)} \sum_{\beta} g_{\beta}^{(T)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(T)} - \left(\left(\psi^{(T)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(T)} \right) x_{ab}$$
$$\dot{y}_{ab} = \sum_{\alpha} g_{\alpha}^{(M)} \sum_{\beta} g_{\beta}^{(M)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(M)} - \left(\left(\psi^{(M)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(M)} \right) y_{ab}$$

Notice that each population experiences selection dynamics identical to the single-population model given by Equations (11). A nonzero value of $C_{ab}^{(T)}$ models a flow of individuals of genotype [a, b] into the target population, and a nonzero value of $C_{ab}^{(M)}$ models a flow of individuals of genotype [a, b] into the mainland population.

The density constraints are

$$\sum_{a,b} x_{ab} = 1$$
$$\sum_{a,b} y_{ab} = 1$$

To enforce these density constraints, we set

$$\psi^{(T)} = \sum_{\alpha} g^{(T)}_{\alpha}$$
$$\psi^{(M)} = \sum_{\alpha} g^{(M)}_{\alpha}$$

3.2 Two-population model with gene flow

Next, we assume that there is a nonzero rate of migration of individuals from the target population to the mainland population and vice versa. For notational clarity, we define new frequency variables. We denote by X_{ab} (with an uppercase X) the frequency of individuals with genotype [a, b] among individuals in the target population when there is migration, and we denote by Y_{ab} (with an uppercase Y) the frequency of individuals with genotype [a, b] among individuals in the mainland population when there is migration. We denote by $G_b^{(T)}$ (with an uppercase G) the rate at which gametes with haplotype b are produced in the target population when there is migration, and we denote by $G_b^{(M)}$ (with an uppercase G) the same for the mainland population when there is migration. $G_b^{(T)}$ and $G_b^{(M)}$ are given by

$$G_{b}^{(T)} = \sum_{\alpha,\beta} X_{\alpha\beta} f(\alpha,\beta) p_{\alpha,\beta}(b)$$

$$G_{b}^{(M)} = \sum_{\alpha,\beta} Y_{\alpha\beta} f(\alpha,\beta) p_{\alpha,\beta}(b)$$
(13)

Here, $f(\alpha, \beta)$ is the fitness of the genotype $[\alpha, \beta]$, and $p_{\alpha,\beta}(b)$ is the probability that an individual of genotype $[\alpha, \beta]$ produces a gamete with haplotype b. These two quantities are given by Equations (6) and (7), respectively.

We assume that, over a given time interval, the number of individuals migrating in each direction is equal, so that the population sizes of the target and the mainland each remain constant. The rate of migration is quantified by the parameter r. We also denote by R the fraction of all individuals that are on the target. (Similarly, 1 - R is the fraction of all individuals that are on the mainland.) The selection dynamics for an *n*-element daisy drive system in two populations that are connected by gene flow are then modeled by the following equations:

$$\dot{X}_{ab} = \sum_{\alpha} G_{\alpha}^{(T)} \sum_{\beta} G_{\beta}^{(T)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(T)} + \frac{r}{R} \left(Y_{ab} - X_{ab} \right) - \left(\left(\Psi^{(T)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(T)} \right) X_{ab}$$
$$\dot{Y}_{ab} = \sum_{\alpha} G_{\alpha}^{(M)} \sum_{\beta} G_{\beta}^{(M)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(M)} + \frac{r}{1-R} \left(X_{ab} - Y_{ab} \right) - \left(\left(\Psi^{(M)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(M)} \right) Y_{ab}$$
(14)

The density constraints are

$$\sum_{a,b} X_{ab} = 1$$
$$\sum_{a,b} Y_{ab} = 1$$

To enforce these density constraints, we set $\Psi^{(T)}$ (with an uppercase Ψ) and $\Psi^{(M)}$ (with an uppercase Ψ) to equal

$$\Psi^{(T)} = \sum_{\alpha} G^{(T)}_{\alpha}$$
$$\Psi^{(M)} = \sum_{\alpha} G^{(M)}_{\alpha}$$

4 N-population model for an n-element daisy drive with resistance

The above treatment is readily extended to a population that consists of N islands. Denote the frequency of individuals of genotype [a, b] on island ℓ (for $1 \leq \ell \leq N$) as $X_{ab}^{(\ell)}$. Gametes with haplotype b are produced on island ℓ at rate $G_b^{(\ell)}$, where $G_b^{(\ell)}$ is given by

$$G_b^{(\ell)} = \sum_{\alpha,\beta} X_{\alpha\beta}^{(\ell)} f(\alpha,\beta) p_{\alpha,\beta}(b)$$

The rate of migration of individuals between islands ℓ and ω is quantified by the parameter $r_{\ell\omega} = r_{\omega\ell}$. The fraction of all individuals in the population that are on island ℓ is denoted by R_{ℓ} . The dynamics of $X_{ab}^{(\ell)}$ are given by

$$\dot{X}_{ab}^{(\ell)} = \sum_{\alpha} G_{\alpha}^{(\ell)} \sum_{\beta} G_{\beta}^{(\ell)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(\ell)} + \sum_{\substack{\omega=1\\\omega\neq\ell}}^{N} \frac{r_{\ell\omega}}{R_{\ell}} \left(X_{ab}^{(\omega)} - X_{ab}^{(\ell)} \right) - \left(\left(\Psi^{(\ell)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(\ell)} \right) X_{ab}^{(\ell)}$$

$$\tag{15}$$

The density constraints are

$$\sum_{a,b} X_{ab}^{(\ell)} = 1$$

To enforce these density constraints, we set $\Psi^{(\ell)}$ (with an uppercase Ψ) to equal

$$\Psi^{(\ell)} = \sum_{\alpha} G_{\alpha}^{(\ell)}$$

5 Particular case: Daisy-chain versus self-propagating drives on five islands

It is instructive to contrast the evolutionary dynamics of a daisy-chain gene drive with a selfpropagating gene drive, where in both cases the evolution occurs in a population consisting of five islands. For simplicity, we assume that individuals are only exchanged between nearby islands, i.e., there is gene flow between islands 1 and 2, between islands 2 and 3, between islands 3 and 4, and between islands 4 and 5. We further assume that these rates of gene flow are all equal, and we assume that each island has the same number of individuals.

In this section, we present the equations necessary to perform simulations of the evolutionary dynamics for each of these scenarios.

5.1 5-population model for an *n*-element daisy drive

For modeling the dynamics of a daisy-chain gene drive on five islands, we use Equations (15). Substituting $r_{12}/R_1 = r_{21}/R_2 = r_{23}/R_2 = r_{32}/R_3 = r_{34}/R_3 = r_{43}/R_4 = r_{45}/R_4 = r_{54}/R_5 = r$, and setting all other migration rates equal to zero, we obtain

$$\begin{split} \dot{X}_{ab}^{(1)} &= \sum_{\alpha} G_{\alpha}^{(1)} \sum_{\beta} G_{\beta}^{(1)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(1)} + r \left(X_{ab}^{(2)} - X_{ab}^{(1)} \right) - \left(\left(\Psi^{(1)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(1)} \right) X_{ab}^{(1)} \\ \dot{X}_{ab}^{(2)} &= \sum_{\alpha} G_{\alpha}^{(2)} \sum_{\beta} G_{\beta}^{(2)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(2)} + r \left(X_{ab}^{(3)} + X_{ab}^{(1)} - 2X_{ab}^{(2)} \right) - \left(\left(\Psi^{(2)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(2)} \right) X_{ab}^{(2)} \\ \dot{X}_{ab}^{(3)} &= \sum_{\alpha} G_{\alpha}^{(3)} \sum_{\beta} G_{\beta}^{(3)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(3)} + r \left(X_{ab}^{(4)} + X_{ab}^{(2)} - 2X_{ab}^{(3)} \right) - \left(\left(\Psi^{(3)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(3)} \right) X_{ab}^{(3)} \\ \dot{X}_{ab}^{(4)} &= \sum_{\alpha} G_{\alpha}^{(4)} \sum_{\beta} G_{\beta}^{(4)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(4)} + r \left(X_{ab}^{(5)} + X_{ab}^{(3)} - 2X_{ab}^{(4)} \right) - \left(\left(\Psi^{(4)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(4)} \right) X_{ab}^{(4)} \\ \dot{X}_{ab}^{(5)} &= \sum_{\alpha} G_{\alpha}^{(5)} \sum_{\beta} G_{\beta}^{(5)} \prod_{i=1}^{n} \Delta_{a_{i}b_{i}}^{\alpha_{i}\beta_{i}} + C_{ab}^{(5)} + r \left(X_{ab}^{(4)} - X_{ab}^{(5)} \right) - \left(\left(\Psi^{(5)} \right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(5)} \right) X_{ab}^{(5)} \end{split}$$

5.2 5-population model for a self-propagating drive

The equations for modeling the dynamics of a self-propagating gene drive on five islands are based on Section S7 of the Supplementary Materials for Noble et al. (2017) (Ref. 1). (For more details and descriptions, please see the writing therein.)

For a self-propagating gene drive, consider that there are \mathcal{N} guide RNAs. There are the drive allele, D, \mathcal{N} "costly" resistant alleles, R_i (with $1 \leq i \leq \mathcal{N}$), \mathcal{N} "neutral" resistant alleles, S_i (with $1 \leq i \leq \mathcal{N}$), and the wild-type allele, S_0 .

We use $X_{ab}^{(\ell)}$ to denote the frequency of individuals of genotype [a, b] on island ℓ . The rates at

which each of the 2N + 2 types of gametes are produced on island ℓ are given by

$$\begin{split} F_D^{(\ell)} &= f_{DD} X_{DD}^{(\ell)} + \sum_{k=1}^{\mathcal{N}} p_{R_k D, D} f_{R_k D} X_{R_k D}^{(\ell)} + \sum_{k=0}^{\mathcal{N}} p_{S_k D, D} f_{S_k D} X_{S_k D}^{(\ell)} \\ F_{S_i}^{(\ell)} &= \sum_{k=0}^{\mathcal{N}} \frac{1 + \delta_{ki}}{2} f_{S_k S_i} X_{S_k S_i}^{(\ell)} + \frac{1}{2} \sum_{k=1}^{\mathcal{N}} f_{R_k S_i} X_{R_k S_i}^{(\ell)} + \sum_{k=0}^{i} p_{S_k D, S_i} f_{S_k D} X_{S_k D}^{(\ell)} \\ F_{R_i}^{(\ell)} &= \sum_{k=1}^{\mathcal{N}} \frac{1 + \delta_{ki}}{2} f_{R_k R_i} X_{R_k R_i}^{(\ell)} + \frac{1}{2} \sum_{k=0}^{\mathcal{N}} f_{R_i S_k} X_{R_i S_k}^{(\ell)} \\ &+ \sum_{k=1}^{i} p_{R_k D, R_i} f_{R_k D} X_{R_k D}^{(\ell)} + \sum_{k=0}^{i-1} p_{S_k D, R_i} f_{S_k D} X_{S_k D}^{(\ell)} \end{split}$$

From conservation of probability, we have

$$p_{R_kD,D} + \sum_{i=k}^{N} p_{R_kD,R_i} = 1$$
$$p_{S_kD,D} + \sum_{i=k}^{N} p_{S_kD,S_i} + \sum_{i=k+1}^{N} p_{S_kD,R_i} = 1$$

Since type $R_N D$ and type $S_N D$ individuals are fully resistant to being manipulated by the drive construct, they show standard Mendelian segregation in their production of gametes, and we have

$$p_{R_{\mathcal{N}}D,R_{\mathcal{N}}} = p_{S_{\mathcal{N}}D,S_{\mathcal{N}}} = \frac{1}{2}$$

For modeling the dynamics of a self-propagating gene drive on five islands, we use the following equations:

The dynamics of individuals of genotype DD on each island are given by

$$\dot{X}_{DD}^{(1)} = \left(F_{D}^{(1)}\right)^{2} + C_{DD}^{(1)} + r\left(X_{DD}^{(2)} - X_{DD}^{(1)}\right) - \left(\left(\Psi^{(1)}\right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(1)}\right) X_{DD}^{(1)}$$

$$\dot{X}_{DD}^{(2)} = \left(F_{D}^{(2)}\right)^{2} + C_{DD}^{(2)} + r\left(X_{DD}^{(3)} + X_{DD}^{(1)} - 2X_{DD}^{(2)}\right) - \left(\left(\Psi^{(2)}\right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(2)}\right) X_{DD}^{(2)}$$

$$\dot{X}_{DD}^{(3)} = \left(F_{D}^{(3)}\right)^{2} + C_{DD}^{(3)} + r\left(X_{DD}^{(4)} + X_{DD}^{(2)} - 2X_{DD}^{(3)}\right) - \left(\left(\Psi^{(3)}\right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(3)}\right) X_{DD}^{(3)}$$

$$\dot{X}_{DD}^{(4)} = \left(F_{D}^{(4)}\right)^{2} + C_{DD}^{(4)} + r\left(X_{DD}^{(5)} + X_{DD}^{(3)} - 2X_{DD}^{(4)}\right) - \left(\left(\Psi^{(4)}\right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(4)}\right) X_{DD}^{(4)}$$

$$\dot{X}_{DD}^{(5)} = \left(F_{D}^{(5)}\right)^{2} + C_{DD}^{(5)} + r\left(X_{DD}^{(4)} - X_{DD}^{(5)}\right) - \left(\left(\Psi^{(5)}\right)^{2} + \sum_{\alpha,\beta} C_{\alpha\beta}^{(5)}\right) X_{DD}^{(5)}$$

The dynamics of individuals of genotype $R_i D$ on each island are given by

$$\begin{split} \dot{X}_{R_{i}D}^{(1)} &= 2F_{R_{i}}^{(1)}F_{D}^{(1)} + C_{R_{i}D}^{(1)} + r\left(X_{R_{i}D}^{(2)} - X_{R_{i}D}^{(1)}\right) - \left(\left(\Psi^{(1)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(1)}\right)X_{R_{i}D}^{(1)} \\ \dot{X}_{R_{i}D}^{(2)} &= 2F_{R_{i}}^{(2)}F_{D}^{(2)} + C_{R_{i}D}^{(2)} + r\left(X_{R_{i}D}^{(3)} + X_{R_{i}D}^{(1)} - 2X_{R_{i}D}^{(2)}\right) - \left(\left(\Psi^{(2)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(2)}\right)X_{R_{i}D}^{(2)} \\ \dot{X}_{R_{i}D}^{(3)} &= 2F_{R_{i}}^{(3)}F_{D}^{(3)} + C_{R_{i}D}^{(3)} + r\left(X_{R_{i}D}^{(4)} + X_{R_{i}D}^{(2)} - 2X_{R_{i}D}^{(3)}\right) - \left(\left(\Psi^{(3)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(3)}\right)X_{R_{i}D}^{(3)} \\ \dot{X}_{R_{i}D}^{(4)} &= 2F_{R_{i}}^{(4)}F_{D}^{(4)} + C_{R_{i}D}^{(4)} + r\left(X_{R_{i}D}^{(5)} + X_{R_{i}D}^{(3)} - 2X_{R_{i}D}^{(4)}\right) - \left(\left(\Psi^{(4)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(4)}\right)X_{R_{i}D}^{(4)} \\ \dot{X}_{R_{i}D}^{(5)} &= 2F_{R_{i}}^{(5)}F_{D}^{(5)} + C_{R_{i}D}^{(5)} + r\left(X_{R_{i}D}^{(4)} - X_{R_{i}D}^{(5)}\right) - \left(\left(\Psi^{(5)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(5)}\right)X_{R_{i}D}^{(5)} \end{split}$$

The dynamics of individuals of genotype $S_i D$ on each island are given by

$$\begin{split} \dot{X}_{S_{i}D}^{(1)} &= 2F_{S_{i}}^{(1)}F_{D}^{(1)} + C_{S_{i}D}^{(1)} + r\left(X_{S_{i}D}^{(2)} - X_{S_{i}D}^{(1)}\right) - \left(\left(\Psi^{(1)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(1)}\right)X_{S_{i}D}^{(1)} \\ \dot{X}_{S_{i}D}^{(2)} &= 2F_{S_{i}}^{(2)}F_{D}^{(2)} + C_{S_{i}D}^{(2)} + r\left(X_{S_{i}D}^{(3)} + X_{S_{i}D}^{(1)} - 2X_{S_{i}D}^{(2)}\right) - \left(\left(\Psi^{(2)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(2)}\right)X_{S_{i}D}^{(2)} \\ \dot{X}_{S_{i}D}^{(3)} &= 2F_{S_{i}}^{(3)}F_{D}^{(3)} + C_{S_{i}D}^{(3)} + r\left(X_{S_{i}D}^{(4)} + X_{S_{i}D}^{(2)} - 2X_{S_{i}D}^{(3)}\right) - \left(\left(\Psi^{(3)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(3)}\right)X_{S_{i}D}^{(3)} \\ \dot{X}_{S_{i}D}^{(4)} &= 2F_{S_{i}}^{(4)}F_{D}^{(4)} + C_{S_{i}D}^{(4)} + r\left(X_{S_{i}D}^{(5)} + X_{S_{i}D}^{(3)} - 2X_{S_{i}D}^{(4)}\right) - \left(\left(\Psi^{(4)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(4)}\right)X_{S_{i}D}^{(4)} \\ \dot{X}_{S_{i}D}^{(5)} &= 2F_{S_{i}}^{(5)}F_{D}^{(5)} + C_{S_{i}D}^{(5)} + r\left(X_{S_{i}D}^{(4)} - X_{S_{i}D}^{(5)}\right) - \left(\left(\Psi^{(5)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(5)}\right)X_{S_{i}D}^{(5)} \end{split}$$

The dynamics of individuals of genotype $R_i S_j$ on each island are given by

$$\begin{split} \dot{X}_{R_{i}S_{j}}^{(1)} &= 2F_{R_{i}}^{(1)}F_{S_{j}}^{(1)} + C_{R_{i}S_{j}}^{(1)} + r\left(X_{R_{i}S_{j}}^{(2)} - X_{R_{i}S_{j}}^{(1)}\right) - \left(\left(\Psi^{(1)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(1)}\right)X_{R_{i}S_{j}}^{(1)} \\ \dot{X}_{R_{i}S_{j}}^{(2)} &= 2F_{R_{i}}^{(2)}F_{S_{j}}^{(2)} + C_{R_{i}S_{j}}^{(2)} + r\left(X_{R_{i}S_{j}}^{(3)} + X_{R_{i}S_{j}}^{(1)} - 2X_{R_{i}S_{j}}^{(2)}\right) - \left(\left(\Psi^{(2)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(2)}\right)X_{R_{i}S_{j}}^{(2)} \\ \dot{X}_{R_{i}S_{j}}^{(3)} &= 2F_{R_{i}}^{(3)}F_{S_{j}}^{(3)} + C_{R_{i}S_{j}}^{(3)} + r\left(X_{R_{i}S_{j}}^{(4)} + X_{R_{i}S_{j}}^{(2)} - 2X_{R_{i}S_{j}}^{(3)}\right) - \left(\left(\Psi^{(3)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(3)}\right)X_{R_{i}S_{j}}^{(3)} \\ \dot{X}_{R_{i}S_{j}}^{(4)} &= 2F_{R_{i}}^{(4)}F_{S_{j}}^{(4)} + C_{R_{i}S_{j}}^{(4)} + r\left(X_{R_{i}S_{j}}^{(5)} + X_{R_{i}S_{j}}^{(3)} - 2X_{R_{i}S_{j}}^{(4)}\right) - \left(\left(\Psi^{(4)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(4)}\right)X_{R_{i}S_{j}}^{(4)} \\ \dot{X}_{R_{i}S_{j}}^{(5)} &= 2F_{R_{i}}^{(5)}F_{S_{j}}^{(5)} + C_{R_{i}S_{j}}^{(5)} + r\left(X_{R_{i}S_{j}}^{(4)} - X_{R_{i}S_{j}}^{(5)}\right) - \left(\left(\Psi^{(5)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(5)}\right)X_{R_{i}S_{j}}^{(5)} \end{split}$$

The dynamics of individuals of genotype $R_i R_j$ on each island are given by

$$\dot{X}_{R_{i}R_{j}}^{(1)} = (2 - \delta_{ij})F_{R_{i}}^{(1)}F_{R_{j}}^{(1)} + C_{R_{i}R_{j}}^{(1)} + r\left(X_{R_{i}R_{j}}^{(2)} - X_{R_{i}R_{j}}^{(1)}\right) - \left(\left(\Psi^{(1)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(1)}\right)X_{R_{i}R_{j}}^{(1)}$$

$$\dot{X}_{R_{i}R_{j}}^{(2)} = (2 - \delta_{ij})F_{R_{i}}^{(2)}F_{R_{j}}^{(2)} + C_{R_{i}R_{j}}^{(2)} + r\left(X_{R_{i}R_{j}}^{(3)} + X_{R_{i}R_{j}}^{(1)} - 2X_{R_{i}R_{j}}^{(2)}\right) - \left(\left(\Psi^{(2)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(2)}\right)X_{R_{i}R_{j}}^{(2)}$$

$$\dot{X}_{R_{i}R_{j}}^{(3)} = (2 - \delta_{ij})F_{R_{i}}^{(3)}F_{R_{j}}^{(3)} + C_{R_{i}R_{j}}^{(3)} + r\left(X_{R_{i}R_{j}}^{(4)} + X_{R_{i}R_{j}}^{(2)} - 2X_{R_{i}R_{j}}^{(3)}\right) - \left(\left(\Psi^{(3)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(3)}\right)X_{R_{i}R_{j}}^{(3)}$$

$$\dot{X}_{R_{i}R_{j}}^{(4)} = (2 - \delta_{ij})F_{R_{i}}^{(4)}F_{R_{j}}^{(4)} + C_{R_{i}R_{j}}^{(4)} + r\left(X_{R_{i}R_{j}}^{(5)} + X_{R_{i}R_{j}}^{(3)} - 2X_{R_{i}R_{j}}^{(4)}\right) - \left(\left(\Psi^{(4)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(4)}\right)X_{R_{i}R_{j}}^{(4)}$$

$$\dot{X}_{R_{i}R_{j}}^{(5)} = (2 - \delta_{ij})F_{R_{i}}^{(5)}F_{R_{j}}^{(5)} + C_{R_{i}R_{j}}^{(5)} + r\left(X_{R_{i}R_{j}}^{(4)} - X_{R_{i}R_{j}}^{(5)}\right) - \left(\left(\Psi^{(5)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(5)}\right)X_{R_{i}R_{j}}^{(5)}$$

The dynamics of individuals of genotype $S_i S_j$ on each island are given by

$$\dot{X}_{S_{i}S_{j}}^{(1)} = (2 - \delta_{ij})F_{S_{i}}^{(1)}F_{S_{j}}^{(1)} + C_{S_{i}S_{j}}^{(1)} + r\left(X_{S_{i}S_{j}}^{(2)} - X_{S_{i}S_{j}}^{(1)}\right) - \left(\left(\Psi^{(1)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(1)}\right)X_{S_{i}S_{j}}^{(1)}$$

$$\dot{X}_{S_{i}S_{j}}^{(2)} = (2 - \delta_{ij})F_{S_{i}}^{(2)}F_{S_{j}}^{(2)} + C_{S_{i}S_{j}}^{(2)} + r\left(X_{S_{i}S_{j}}^{(3)} + X_{S_{i}S_{j}}^{(1)} - 2X_{S_{i}S_{j}}^{(2)}\right) - \left(\left(\Psi^{(2)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(2)}\right)X_{S_{i}S_{j}}^{(2)}$$

$$\dot{X}_{S_{i}S_{j}}^{(3)} = (2 - \delta_{ij})F_{S_{i}}^{(3)}F_{S_{j}}^{(3)} + C_{S_{i}S_{j}}^{(3)} + r\left(X_{S_{i}S_{j}}^{(4)} + X_{S_{i}S_{j}}^{(2)} - 2X_{S_{i}S_{j}}^{(3)}\right) - \left(\left(\Psi^{(3)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(3)}\right)X_{S_{i}S_{j}}^{(3)}$$

$$\dot{X}_{S_{i}S_{j}}^{(4)} = (2 - \delta_{ij})F_{S_{i}}^{(4)}F_{S_{j}}^{(4)} + C_{S_{i}S_{j}}^{(4)} + r\left(X_{S_{i}S_{j}}^{(5)} + X_{S_{i}S_{j}}^{(3)} - 2X_{S_{i}S_{j}}^{(4)}\right) - \left(\left(\Psi^{(4)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(4)}\right)X_{S_{i}S_{j}}^{(4)}$$

$$\dot{X}_{S_{i}S_{j}}^{(5)} = (2 - \delta_{ij})F_{S_{i}}^{(5)}F_{S_{j}}^{(5)} + C_{S_{i}S_{j}}^{(5)} + r\left(X_{S_{i}S_{j}}^{(4)} - X_{S_{i}S_{j}}^{(5)}\right) - \left(\left(\Psi^{(5)}\right)^{2} + \sum_{\alpha,\beta}C_{\alpha\beta}^{(5)}\right)X_{S_{i}S_{j}}^{(5)}$$

The density constraints are

$$X_{DD}^{(\ell)} + \sum_{i=1}^{\mathcal{N}} X_{R_iD}^{(\ell)} + \sum_{i=0}^{\mathcal{N}} X_{S_iD}^{(\ell)} + \sum_{i=1}^{\mathcal{N}} \sum_{j=0}^{\mathcal{N}} X_{R_iS_j}^{(\ell)} + \sum_{i=1}^{\mathcal{N}} \sum_{j=1}^{i} X_{R_iR_j}^{(\ell)} + \sum_{i=0}^{\mathcal{N}} \sum_{j=0}^{i} X_{S_iS_j}^{(\ell)} = 1$$

To enforce these density constraints, we set

$$\Psi^{(\ell)} = F_D^{(\ell)} + \sum_{i=1}^{\mathcal{N}} F_{R_i}^{(\ell)} + \sum_{i=0}^{\mathcal{N}} F_{S_i}^{(\ell)}$$

Fig. S1. $B \rightarrow A$ "split" drives and daisy drive family tree analysis. (*A*) Family tree resulting from a single-organism release of a $B \rightarrow A$ split drive in a large wild-type population in the absence of selection. (In reality, B elements would be deleterious and thus decline in frequency over time.) For comparison, a $C \rightarrow B \rightarrow A$ daisy drive is shown in main text Fig. 1C. Green mice have at least one copy of the cargo A element, while grey mice have only the wild-type allele at that locus. (*B*) A graphical depiction of total alleles in a population per generation for $B \rightarrow A$ through $D \rightarrow C \rightarrow B \rightarrow A$ daisy drives. Throughout, chromosome illustrations represent genotypes of germline cells after drive has occurred.

Fig. S2. A potential means of reducing the fitness cost resulting from incorrect repair. One strategy might involve targeting a gene whose loss impairs gametogenesis, such as a ribosomal gene. Increased replication of correctly repaired cells carrying the drive system could potentially result in a wild-type number of gametes, all of which carry the drive system.

Fig. S3. Fold-change in daisy drive cargo frequency after 20 generations for various daisy chain lengths relative to a release of organisms only containing the cargo. (left) Homing efficiency is assumed to be 60%, and (middle) 80% and (right) 95%. All figures assume 10% cargo fitness cost, 0.01% upstream element cost and neutral resistance. Solid lines correspond to a single release with initial release frequency indicated by the horizontal axes, while dashed lines correspond to continuous releases with frequency indicated by the horizontal axes. See SI Text Section 2.3 for details on our continuous release implementation.

Fig. S4. Analysis of the time that a 3-element (CBA) daisy-chain cargo element remains above 50% frequency in a single population. In each plot, the parameter indicated on the horizontal axis is varied, and the other parameters are fixed. The fixed values in the first four panels are: cargo element (A) fitness cost, c, 5%, release frequency 10%, upstream element (C, B) fitness cost, d, 0.01%, homing efficiency, H, 95%, cargo resistance cost, s, 0. In the far-right panel, all parameters are identical except the release frequency is 1%. In the first panel, we additionally plot a function a/c, fitted with a=9.99, to illustrate the inverse relationship between cargo time above 50% and cargo fitness cost, c, when c is low. The model used throughout is described in SI Text Section 2.2.

Fig. S5. Further analysis of the 5-population model, shown in Fig. 4 of the main text and described in SI Text Section 5. Three drive systems are considered, as in main text Fig. 4: CBA daisy-chain drive (left), self-propagating drive (middle) and inundative non-drive release (right). We assume 5 equally-sized populations connected in a chain via one constant migration rate, which varies on the horizontal axes from 10^{-4} to 10^{-1} . (e.g., 10^{-2} corresponds to a scenario where each population is connected to its neighbors via a migration rate of 10^{-2} in each direction.) Maximum frequencies of each allele in each population over 500 generations are then plotted as functions of the migration rate.

Fig. S6. Daisy drive systems can be constructed using orthogonal Cas9 elements. Such a drive system is resistant to conversion into a daisy necklace, which would require a recombination event that moved the entire Cas9 gene and associated guide RNAs into a subsequent locus in the daisy-chain. Ensuring that all the Cas9 proteins are expressed appropriately without re-using promoters and thereby creating homology between elements could be challenging.

template	1	
Br S nuogonog	1	
Br_s.pyogenes	1	AGC-AAGTTAAAATAAGGC
Br_S.dysagalact	1	A <u>AGTTAAAAATAAGGC</u> <u>TTGTTCGAAAA</u> C <u>AACG</u> T <u>AGC</u> _A <u>AGTTAAAAATAAGGC</u>
Br_S.equi	1	<mark>AGC</mark> AAGTTAAAATAAGGCTT
Br S.thermophil	1	AG-CTACAAGTACAGTTACTTAAATCTTGCAGAAG-CTACAAAGATAAGGC
Br S salivarius	1	
Br S gallolytic	1	
BI_S.gailoiycic	-	
Br_S.lutetiensi	T	AGT - GAGTTAAAATAAGGCTI
Br_S.anginosisB	1	A <u>AGM/AAAA//AAGGC</u> M
Br_S.mitis	1	<mark>AGCAAAGTTAAAAATAAGGC</mark> TTCGAAACAACACACACACACACACACAAGTTAAAAATAAGGC
Br ⁻ S.sanguinis	1	
Br S oralis	1	
	1	
BI_S. mutans	-	
Br_S.intermediu	T	AAG-CTACAAAG <mark>ATAAGGC</mark>
Br S.anginosusA	1	AG-CTACACAGTTACTTAAAATCTTGCAGAAG-CTACAAAGATAAGGC
Br S.thermophil	1	AG-CTACAAGTACACAGTTACTTAAAATCTTGCAGAAG-CTACAAAGATAAGGC
Br S vestibular	1	
Br 8 gordonii	1	
BI_3.gordonii	1	
Br_S.parasangui	T	AAG-CTACAAGATAAGGC
Br_S.orisratti	1	AGG_CTACAAAAAGGCCCCAGTTACMMAAAATCMTGOAG <u>AGG</u> _CTACAAAAGAMAAAGGCMAA
Br S.henryi	1	<u>AGC</u> -CTACAAGTTACTTAAAATCTTGCTGAGC-CTACAAAGATAAGGC
Br S.infantariu	1	
Ch C jejuni	1	
Ch E nominido	1	
Ch_F. HOVICIDA	1	
Ch_S.thermophil	T	TTGTGGTTWGAAACCATTCGAAACAACACACAGC-GAGTTAAAATAAGGCTT
Ch_M.mobile	1	TGTATTTCGAAATACAGA <mark>TGT</mark> ACAGTTA <u>A</u> GAAT <u>ACATAAG</u> ATGATACA-TCAC <mark>TAAAA</mark> AAAGGC
Ch_L.innocua	1	
Ch_S_pyogenes	1	
Ch 8 mutana	1	
ch_3.mutans	1	
Ch_S.thermophil	1	TTGTGGTTTGAAACCATTCGAAACAACACACAGC-GAGTTAAAATAAGGCTT
Ch_N.meningitid	1	CCG_TTGCMANAGGCCCCCCGCACHGCGCAAAHGAGAACCGCTTGCMACAANAAGGCCCC
Ch P.multocida	1	ACG-TTGCAATAAGGC
template Br S.pvogenes	21 45	ACTCCCTYHYCANNNNGRRANNNNC-CCACCCAKTCCCTCC
template Br_S.pyogenes Br_S.dysagalact	21 45 45	AGTCCGTYHYCANNNNGRRANNNNG-GCACCGAKTCGGTGC AGTCCGTTATCAACTTGAAAAAGTG-GCACCGAGTCGGTGCTTTTTTT
template Br_S.pyogenes Br_S.dysagalact Br_S.egui	21 45 45	ACTCCGTYHYCANNNNGRRA NNNNG-GCACCGAKTCGGTGC
template Br_S.pyogenes Br_S.dysagalact Br_S.equi	21 45 45 47	AGTCCGTYHYCANNNNGRRA-NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTTT- AGTCCGTTATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTT TGTCCGTAATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTT TGTCCGTAATCAACCTGAAA-AGGGGAGCACCGAGTCGGTGCTTTTTT-
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil	21 45 47 47	AGTCCGTYHYCANNNNCRRANNNNG-GCACCGAKTCGGTGC AGTCCGTTATCAACTTGARAAAGTG-GCACCGAGTCGGTGCTTTTTTT
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius	21 45 45 47 47 47	AGTCCGTYHYCANNNNGRRA-NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTCAAA-AAGTG-GCACCGAGTCGGTGCTTTTTT- AGTCCGTTATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTT- TGTCCGTAATCAACCTGAAA-AGGGGAGCACCGAGTCGGTGCTTTTTT- AGTCCGTAATCAACCTGAAA-AGGTG-GCACCGATTCGGAAGGCTTCATGCCGAAATCAACACCCT AGTCCGTATTCAACTTGAAA-AGGTG-GCACCGATTCGGTGCTTTTTT-
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius Br_S.gallolytic	21 45 47 47 47 47	AGTCCGTYHYCANNNNGRRA-NNNNG-GCACCGAKTCGGTGC
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi	21 45 47 47 47 46 46	AGTCCGTYHYCANNNNGRRA-NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTTT- AGTCCGTAATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTT GTCCGTAATCAACCTGAAA-AGGGG-GCACCGATCGGTGCTTTTTT- AGTCCGTACTGAAA-AGGGG-GCACCGATTCGGAGGCTTCATGCCGAAATCAACACCCT AGTCCGTACTGAAA-AGGGG-GCACCGATTCGGTGCTTTTT GTCCGTACTGAAA-AAGTGGCACCGATTCGGTGCGTTTTTT- GTCCGTACCACACTTGTAA-AAGTGGCACCCGATTCGGTGCGTTTTTT-
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.anginosisB	21 45 47 47 46 46	AGTCCGTYHYCANNNNGRRANNNNG-GCACCGAKTCGGTGC
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.anginosisB Br_S mitis	215457 47747646444444444444444444444444444	AGTCCGTYHYCANNNNGRRA-NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTTT- AGTCCGTAATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTT- GTCCGTACTGAAA-AGGGCACCGACCGATCGGGGGCTTTTTT- AGTCCGTACTGAAA-AGGG-GCACCGATTCGGAGGCC- TCCCGTACTGAAA-AGTG-GCACCGATTCGGGGGCCTTTTT GTCCGTACTGAAA-AAGTG-GCACCCGATTCGGGTGCGTTTTTT- GTCCGTACTGAAA-AAGTG-GCACCCGATTCGGGTGCGTTTTTT- TGTCCGTACTGAAA-AAGTGCCGCCCCGATTCGGGTGCGTTTTTT- TCCCGTACTGAAA-AAGTGCCGCCCGATTCGGGTGCGTTTTTT- TCCCGTACTGAAA-AAGTGCCGCCCGATTCGGGTGCATTTTT-
template Br S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.anginosisB Br_S.mitis	21 45 47 47 46 46 46	AGTCCGTYHYCANNNNGRRANNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAAAAGTG-GCACCGAKTCGGTGCTTTTTT- AGTCCGTATCAACTTGAAAAAGTG-GCACCGAGTCGGTGCTTTTTT- GTCCGTAATCAACCTGAAAAGGGG-GCACCGATTCGGAAGGCTTCATGCCGAAATCAACACCCT AGTCCGTATTCAACTTGAAAAGGTG-GCACCGATTCGGAAGGCTTCATGCCGAAATCAACACCCT GTCCGTACTCAACTTGAAAAAGTG-GCACCGATTCGGGAGGCTTTTTT- TGTCCGTACACATTGTAAAAGTGGCACCCGATTCGGGGGCTTTTTTT- TGTCCGTACAACTTGTAAAAGTGGCACCCGATTCGGAGGCATTTTTT- TGTCCGTACTAACTTAAAAGTGGCACCCGATTCGGATGCATTTTT- TGTCCGTACTACATTAAAAGTGCCGCACCCGATTCGGATGCATTTTT- TGTCCGTACTACATT-AAAAAGTGCCGCACCCGATTCGGTGCTTTTTT- TGTCCGTACACATTGAAAAAGTGCCGCACCCGATTCGGTGCTTTTTT- TGTCCGTACACATTGAAAAAGTGCCGCACCCGATTCGGTGCTTTTTT-
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.thermophil Br_S.gallolytic Br_S.lutetiensi Br_S.anginosisB Br_S.mitis Br_S.sanguinis	21 45 47 46 46 46 46	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TT
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.gallolytic Br S.lutetiensi Br S.utetiensi Br S.mitis Br S.sangunois Br S.sangunis Br S.oralis	21 45 47 46 46 46 46 46	AGTCCGTYHYCANNNNGRRA-NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA-AAGTG-GCACCGAGTCGGTGCTTTTTT- AGTCCGTAATCAACTTGAAA-AGGGGCGCCGAGTCGGTGCTTTTTT- TGTCCGTACTCAACTTGAAA-AGGGGGCGCCGAGTCGGTGCTTTTTT- AGTCCGTACTCAACTTGAGA-AGGGGGCGCGCGCTTTTTTT- TGTCCGTACTCAACTTGAGA-AAGTGGCACCGATTCGGTGCTTTTTT- TGTCCGTACTCAACTTGTTA-AAGTGGCACCGATTCGGTGGCTTTTTT- TGTCCGTACTCAACTTGTTA-AAGTGGCACCGATTCGGTGCGTTTTTT- TGTCCGTACTCAACTTGAAA-AGGTGCGCACCGATTCGGTGCTTTTTT- TGTCCGTACTCAACTTGAAA-AAGTGCGCACCGATTCGGTGCTTTTTT- TGTCCGTACACACTTGAAA-AAGTGCGCACCGATTCGGTGCTTTTTT- TGTCCGTACACACTTGAAA-AAGTGCCACCGATTCGGTGCTTTTTT- TGTCCGTACCAACTTGAAA-AAGTGCCGCACCGATTCGGTGCTTTTTT- TGTCCGTACCAACTTGAAA-AAGTGCCGCACCGATTCGGTGCTTTTTT- TGTCCGTACCAACTTGAAA-AAGTGCCGCACCGATTCGGTGCTTTTTT-
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.mitis Br_S.mitis Br_S.sanguinis Br_S.oralis Br_S.mutans	21 45 47 47 46 46 46 46 46 47	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT GTCCGTATCAACTTGAAA - AGGTG-GCACCGATTCGGAAGGC AGTCCGTATCAACTTGAAA - AGGTG-GCACCGATTCGGAAGGC TGTCCGTATCGAACTTGAAA - AAGTG-GCACCGATTCGGGAGGCTTTTT TCTCCGTATCGAACTTGAA - AAGTG-GCACCGATTCGGGTGCTTTTTT GTCCGTACACACTTGTAA - AAGTGGCACCGATTCGGGTGCGTTTTTT TGTCCGTACACACTTGTAA - AAGTGGCACCGATTCGGGTGCGTTTTTT TGTCCGTACACACTTGTAA - AAGTGGCACCGATTCGGGTGCGTTTTTT TGTCCGTACACAACTTGTAA - AAGTGGCACCGATTCGGGTGCTTTTTT TGTCCGTACACACTTGTAA - AAGTGCCACCGATTCGGTGCTTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGGTGCTTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGGTGCTTTTTT TGTCCGTACACAACTTGAAA - AAGTGCCCACCGATTCGGTGCTTTTTT TGTCCGTACACAACTTGAAA - AAGTGCCCACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGACCGATTCGTGCTTTTT TCTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGTGTGTTTTT
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.thermophil Br_S.gallolytic Br_S.lutetiensi Br_S.anginosisB Br_S.mitis Br_S.sanguinis Br_S.oralis Br_S.mutans Br_S.intermediu	2 4 5 5 4 4 7 7 4 4 6 6 6 7 4 4 6 6 7 4 4 6 6 7 4 7	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTTT AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT GTCCGTACTCAACTTGAAA - AGGGGCGCGATCGGTGCTTTTTT GTCCGTACTCAACTTGAAA - AGGGGCGCGATCGGTGCTTTTTT GTCCGTACTCAACTTGAAA - AAGTGGCACCGATCCGGTGCTTTTTT GTCCGTACCAACTTGTAA - AAGTGGCACCGATTCGGTGCGTTTTTT TGTCCGTACACACTTGTAA - AAGTGGCACCGATTCGGTGCGTTTTTT GTCCGTACACACTTGTAA - AAGTGGCACCGATTCGGTGCGTTTTTT GTCCGTACACACTTGAAA - AAGTGCCACCGATTCGGTGCGTTTTTT GTCCGTACACACTTGAAA - AAGTGCCACCGATTCGGTGCTTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CGTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CGTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACACCTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT CGTCCGTACACACCTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT CGTCCGTACCACACCTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT CGTCGCGAACCACCTGAAA - AAGTGCCGCACCGATCGGTGTTTTT CGTCGCGAACCACCTGCAAA - AAGTGCCGCACCGATCCGGTGCTTTTT CGTCGCGAACCACCTGCAAA - AAGTGCCGCACCGATCGGTGTTTTT
template Br S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.anginosisB Br_S.mitis Br_S.sanguinis Br_S.oralis Br_S.mutans Br_S.intermediu Br S.anginosusA	2 4 5 7 7 7 6 6 6 6 7 7 7 4 4 4 4 4 4 4 4 4 4	AGTCCGTYHYCANNNNGRRANNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAAAAGTG-GCACCGACGGGGTCGTGCTTTTT GTCCGTATCAACTTGAAAAGGGGACCGACCGAGTCGGTGCTTTTT AGTCCGTATCAACTTGAAAAGGGG-GCACCGATTCGGAGGCTTCATGCCGAAACACCCT AGTCCGTATTCAACTTGAAAAGGTG-GCACCGATTCGGAGGCTTCATGCCGAAATCAACACCCT GTCCGTACTCAACTTGTAAAGGTG-GCACCGATTCGGGGGGTTTTTT TCCCGTACACACTTGTAAAGGTG-GCACCGATTCGGGGGGTTTTTT TCTCCGTACACACTTGTAAAGGTGCCCCCGATTCGGGTGCGTTTTTT TCTCCGTACACACTTGAAAAGGTGCCCCCGATTCGGTGCGTTTTTT TCTCCGTACACACTTGAAAAGGTGCGCACCCGATTCGGATGCATTTTT TCTCCGTACACACTTGAAAAGGTGCGCACCGATTCGGTGCTTTTTT TCTCCGTACACACTTGAAAAGGTGCGCACCGATTCGGTGCTTTTTT TCTCCGTACACACTTGAAAAGGTGCGCACCGATTCGGTGCTTTTTT TCTCCGTACACACTTGAAAAGGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACACTTGAAAAGGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACACTTGAAAAGGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACTTGAAAAGGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACTTGAAAAGGTGCCGCACCGATTCGGTGCTTTTT CTCCGTACACACCTGGAAAAGGTGCGCACCGATTCGGTGCTTTTT CTCCGTACACACCTTGAAAAGGTGCCGCACCGATTCGGTGCTTTTT CTCCGTACACACCCT-GTC
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.gallolytic Br S.lutetiensi Br S.mitis Br S.sanguinis Br S.oralis Br S.mutans Br S.intermediu Br S.anginosusA Br S.thermophil	245577766667667777	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TT- AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT GTCCGTACTCAACTTGAAA - AGGGCGCCGATCGGTGCTTTTT GTCCGTACTCAACTTGAAA - AGGGCGCGCGATCCGGTGCTTTTT GTCCGTACCACCTGAAA - AAGTG-GCACCGATCCGGTGCTTTTT TTT GTCCGTACCACCTGTAA - AAGTGGCACCGATTCGGTGCGTTTTT TTT TCTCCGTACCACCTTATAA - AAGTGCGCACCGATTCGGTGCGTTTTT TCTCCGTACCACCTTATAA - AAGTGCGCACCGATTCGGTGCTTTTT TCTCCGTACCACCTTATAA - AAGTGCGCACCGATTCGGTGCTTTTT TCTCCGTACCACCTTATAA - AAGTGCGCACCGATTCGGTGCTTTTT TCTCCGTACCACACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TCTCCGTACCACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACCACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACCACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CATCCCGTACCACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CATCCCGTACCACACTTGAAA - AAGTGCCGCACCGATTCGGTGTTTTT CATCCCGTACCACACCTT - ATTTTAACGATACGGTGTTTTT CATCCCGTACCACACCT - ATCTATTTTAACGATGTTTT CATCCCGTACCCT - GTC - TATGACGGGGTGTTTT CATCCCGTACCACCCT - GTC - TATGACGGGGTGTTTT CATCCCGTACCACCCT - GTC - TATGACGGGGTGTTTT
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.salivarius Br S.gallolytic Br S.lutetiensi Br S.anginosisB Br S.mitis Br S.sanguinis Br S.oralis Br S.mutans Br S.intermediu Br S.thermophil Br S.thermophil	245577766667667777	AGTCCGTYHYCANNNNGRRANNNNG-GGACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAAAAGTG-GGACCGAKTCGGTGCTTTTTT- GTCCGTATCAACTTGAAAAGGGGACCGACCGAGTCGGTGCTTTTT AGTCCGTATCAACTGAAAAGGGGACGACCGATCCGGGGTGTTTTT GTCCGTATCAACTTGAAAAGGGCGACCGATCCGGGGGGTTTTTT GTCCGTACTCAACTTGAAAAGGGCGCCGATCCGGTGCGTTTTTT GTCCGTACTCAACTTGAAAAGGGCGCCCGATCCGGTGCGTTTTTT GTCCGTACACACTTGTAAAAGTGCGCACCGATTCGGAGGGCTTTTTT GTCCGTACACAACTTGTAAAAGTGCGCACCGATTCGGGGGGTGTTTTTT GTCCGTACACAACTTGAAAAAGTGCGCACCGATTCGGGGGGTGTTTTTT GTCCGTACACAACTTGAAAAAGTGCGCACCGATTCGGGGGCGTTTTTT GTCCGTACACAACTTGAAAAAGTGCGCACCGATTCGGTGCTTTTTT GTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTTT GTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTTT GTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTTT CGTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTTT CGTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTTT CGTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTTT CGTCCGTACACAACTTGAAAAAGTGCCGCACCGATTCGGTGCTTTTT CATGCCGAAATCAACACCCT - GTC
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.thermophil Br_S.gallolytic Br_S.gallolytic Br_S.lutetiensi Br_S.mitis Br_S.sanguinis Br_S.sanguinis Br_S.mutans Br_S.intermediu Br_S.thermophil Br_S.vestibular	244444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTTT GTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT GTCCGTACTCAACTTGAAA - AGGGAGCACCGATCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AAGTG-GCACCGATTCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AAGTG-GCACCGATTCGGTGGTTTTTT GTCCGTACTCACACTTGTAA - AAGTG-GCACCGATTCGGGTGGTTTTTT GTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGTTTTTT GTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGTTTTTT GTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGTTTTTT GTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGTTTTTT GTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGCTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACCTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACCTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACCTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACCTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACCTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACACCCT - GTC - TATGACGGGGTGTTTT CTCCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CTCCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CTCCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CTCCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CTCCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.salivarius Br S.gallolytic Br S.lutetiensi Br S.anginosisB Br S.sanguinis Br S.sanguinis Br S.oralis Br S.intermediu Br S.intermediu Br S.thermophil Br S.thermophil Br S.gordonii	244444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT TCCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT AGTCCGTAATCAACTTGAAA - AGGGGCGCCGATCGGTGGTTTTTT AGTCCGTATCAACTTGAAA - AAGTG-GCACCGATTCGGAGGCC
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.nitis Br_S.sanguinis Br_S.sanguinis Br_S.mutans Br_S.mutans Br_S.intermediu Br_S.thermophil Br_S.vestibular Br_S.gordonii Br_S.parasangui	24444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- ACTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT- AGTCCGTAATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT- GTCCGTACTCGAACTTGAAA - AGGGCACCGATCGGGGGCTTTTTT- CTCCGTACTCGAACTTGAAA - AGGGCACCGATTCGGAGGC- TTCATGCCGAATCAACTTGAAA - AAGTG-GCACCGATTCGGGTGCGTTTTT TCTCCGTACTCGAACTTGAAA - AAGTG-GCACCGATTCGGGTGCGTTTTT- TCTCCGTACTCAACTTGAAA - AAGTG-GCACCGATTCGGTGCGTTTTT TCTCCGTACACAACTTGAAA - AAGTG-GCACCGATTCGGTGCGTTTTT TCTCCGTACACAACTTATAA - AAGTGCCACCCGATTCGGTGCGTTTTT TCTCCGTACACAACTTATAA - AAGTGCCGCACCGATTCGGTGCGTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TCTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CATGCCGAAATCGAACACCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGCCGGATTCGGTGCTTTT CATGCCGAAATCAACACCCT - GTC TATGCCGGATTT- CATGCCGAAATCAACACCCT - GTC TATGCCGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGCCGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATATGCCGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TATATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TATATGCCGGGTGTTTT- CATGCCGAATCAACACCCT - GTC TATATGCCGGGTGTTTT- CATGCCGAATCAACACCCT - GTC TATATGCCGGGTGTTT-
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.thermophil Br S.gallolytic Br S.lutetiensi Br S.anginosisB Br S.mitis Br S.sanguinis Br S.sanguinis Br S.intermediu Br S.intermediu Br S.thermophil Br S.thermophil Br S.gordonii Br S.parasangui Br S.parasangui	24444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT TGTCCGTATCAACTTGAAA - AAGTG-GCACCGATCGGTGCTTTTTT AGTCCGTATCAACTTGAAA - AAGTG-GCACCGATCGGTGCTTTTTT TGTCCGTACTCAACTTGAGA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACCAACTTGTAA - AAGTG-GCACCGATTCGGTGCGTTTTTT TGTCCGTACACACTTGTAA - AAGTGCCACCGATTCGGTGCGTTTTTT TGTCCGTACACACTTGTAA - AAGTGCCACCGATTCGGTGCGTTTTTT TGTCCGTACACACTTGTAA - AAGTGCCACCGATTCGGTGCGTTTTTT TGTCCGTACACACTTGAAA - AAGTGCCACCGATTCGGTGCGTTTTT TGTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TGTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TGTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TGTCCGTACACACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT TGTCCGTACACACCTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACACCTGAAA - AAGTGCGCGCACCGATTCGGTGCTTTTT CGTCCGTACACACCTGAAA - AAGTGCGCGCACCGATTCGGTGCTTTTT CGTCCGTACACACCTGAAA - AAGTGCGCGCACCGATTCGGTGTTTT CGTCCGTACACACCTGAAA - AAGTGCGCGCACCGATTCGGTGCTTTT CGTCCGTACACACCCT - GTC - TATGACGGGTGTTTT CGTCCGAATCAACACCCT - GTC - TATGACGGCGGTGTTTT CGTCCGTACACACCCT - GTC - TATGACGGCGGTGTTTT CGTCCGTACACACCCT - GTC - TATGACGGCGGTGTTTT CGTCCGTACACACCCT - GTC - TTTTATGCCAGGGGTGTTTT CGTCCGAATCAACACCCT - GTC - TTTTATGCCAGGGGTGTTTT CGTCCGAATTCAACACCCT - GTC - TTTTATGCCAGGGGTGTTTT CGTCCGAATTCAACACCCT - GTC - TTTTATGCCAGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCAGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCAGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTTTCGCGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTTTTCGCGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CGTCCGAATTCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.lutetiensi Br_S.mitis Br_S.mitis Br_S.mitis Br_S.mutans Br_S.mutans Br_S.intermediu Br_S.thermophil Br_S.yearasangui Br_S.parasangui Br_S.parasangui Br_S.henryi	24444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGACGGTGCTTTTTTT GTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT CTCCGTATCAACTTGAAA - AGGGGACGACCGATTCGGAAGGC
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.salivarius Br S.gallolytic Br S.lutetiensi Br S.anginosisB Br S.sanguinis Br S.sanguinis Br S.oralis Br S.intermediu Br S.intermediu Br S.thermophil Br S.yorstibular Br S.gordonii Br S.parasangui Br S.orisratti Br S.henryi Br S.infantariu	244444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT AGTCCGTAATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT TGTCCGTACTCAACTTGAAA - AAGTG-GCACCGATCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AAGTG-GCACCGATCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AAGTG-GCACCGATCGGTGGTTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGCGTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTGCCGACCGATCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT CATGCCGTACCACACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT CATGCCGTACCACACCT - GTC - TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCAGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCAGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCAGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCAGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTATGCCAGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTTAGCCAGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTTTCGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTTTCGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTTCGCGCGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTTCGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTTTCGCGGGGTGTTTT CATGCCGAATCAACACCC - C TTTATGCCGGGGTGTTTT CATGCCGAATCAACACCC - C TTTTTCACGCGGGTGTTTT CATGCCGAATCAACACCC - C
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.thermophil Br S.thermophil Br S.utetiensi Br S.anginosisB Br S.sanguinis Br S.sanguinis Br S.sintermediu Br S.thermophil Br S.thermophil Br S.gordonii Br S.gordonii Br S.parasangui Br S.orisratti Br S.henryi Br S.infantariu Ch C isiyuni	2457776666766777777744444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TT- GTCCGTAATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT GTCCGTAATCAACTTGAAA - AGGGGAGCACCGAATCGGTGGTTTTTT GTCCGTATCAACTGAAA - AGGGCGCCGATCCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AAGTG-GCACCGATCCGGTGGTTTTTT TT- GTCCGTACTCAACTTGAAA - AAGTG-CCACCGATTCGGTGCGTTTTTT GTCCGTACACAACTTGTAA - AAGTGCGCACCCGATTCGGTGCGTTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCGTTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCGTTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT GTCCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTTT CTCCCGTACACAACCTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CTCCCGTACACAACCTGAAA - AAGTGCCGCGACCGATTCGGTGCTTTTT CATGCCGAAATCAACACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGGCGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGGCGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGGCGGGGTGTTT CATGCCGAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGGCAGGTGCTTTT CATGCCGAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGGCGGGGTGTTTT CATGCCGAATCAACACCCC - CCGT - TTTATGGCGGGGTGCTTTT CATGCCGAATCAACACCCC - CCGT - TTTATGGCGGGGTGCTTTT CATGCCGAATCAACCCC - CCGT - TTTATGGCGGGGGTGTTTT CATGCCGGAATCAACCCC - CCGT - TTTATGCGAGGTGCTTTT CATGCCGGAATCAACCCC - CCGT - TTTATGCGAGGTGCTTTT
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.salivarius Br S.gallolytic Br S.lutetiensi Br S.intis Br S.mitis Br S.mutans Br S.mutans Br S.intermediu Br S.intermediu Br S.thermophil Br S.vestibular Br S.gordonii Br S.parasangui Br S.nifantatiu Ch C.jejuni	244444444444444444444444444444444444444	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TGTCCGTAATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT GTCCGTACTCAACTTGAAA - AGGGCGCCGATCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AGGGCGCCGATCGGTGCTTTTT TGTCCGTACCACACTGGAA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACCACACTGGTAA - AAGTG-GCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-GCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGTAA - AAGTG-CGCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTG-CGCACCGATTCGGTGCTTTTT CGTCCGTACACAACCCT - GTC - TATGACGGGGTGTTTT CGTCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CGTCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CGTCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CGTCCGAAATCAACACCCT - GTC - TTTATGCCGGGGTGTTT CGTCCGAAATCAACACCCT - GTC - TTTATGCCGGGGTGTTT CGTCCGAAATCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CGTCCGAAATCAACACCCT - GTC - TTTATGCCGGGGTGTTT CGTCCGAATTCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CGTCCGAATTCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CGTCCGAATTCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CGTCCGAATTCAACACCCC - C
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.thermophil Br S.gallolytic Br S.lutetiensi Br S.anginosisB Br S.sanguinis Br S.sanguinis Br S.intermediu Br S.intermediu Br S.thermophil Br S.yestibular Br S.gordonii Br S.yearasangui Br S.nifantariu Ch C.jejuni Ch F.novicida	21 45 47 47 47 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKWCGGTGC- AGTCCGTATCAACTWCAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TT- AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TCCCGTATCAACTTGAAA - AGGGG-GCACCGATCCGGTGCTTTTT AGTCCGTATCAACTTGAAA - AGGTG-GCACCGATTCGGAGGC
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.thermophil Br_S.gallolytic Br_S.gallolytic Br_S.mitis Br_S.mitis Br_S.mutans Br_S.mutans Br_S.intermediu Br_S.thermophil Br_S.gordonii Br_S.gordonii Br_S.parasangui Br_S.henryi Br_S.henryi Br_S.infantariu Ch_F.novicida Ch_S.thermophil	$\begin{array}{c} 21\\ 45\\ 47\\ 47\\ 46\\ 46\\ 46\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47$	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TGTCCGTAATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT GTCCGTACTCAACTTGAAA - AGGGAGCGCGGTCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AGGGCGCGCGTTCGGTGGGTTTTTT TGTCCGTACTCAACTTGAAA - AAGTG-GCACCGATTCGGTGGGTTTTTT TGTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGGTTTTTT TGTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGGTTTTTT TGTCCGTACACACTTGTAA - AAGTG-GCACCGATTCGGTGGGTTTTTT TGTCCGTACACACTTGTAA - AAGTGCGCACCGATTCGGTGGTTTTTT TGTCCGTACACACTTGTAA - AAGTGCGCACCGATTCGGTGGTTTTTT TGTCCGTACACACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TGTCCGTACACACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TGTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CGTCCGTACACAACCT - GTC - TATGACAGGGGTGTTTT CGTCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTATGCCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTATGCCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTTATGCCGGGGTGCTTTT CATGCCGAATCAACACCCT - GTC - TTTTATGCCGGGGTGTTTT CATGCCGAATCAACCCCT - GTC - TTTTATGCCGGGGTGCTTTT CATGCCGAATCAACCCCT - GTC - TTTTATGCCGGGGTGCTTTT CATGCCGAATCAACCCCT -
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.thermophil Br S.gallolytic Br S.lutetiensi Br S.anginosisB Br S.intermediu Br S.sanguinis Br S.intermediu Br S.intermediu Br S.thermophil Br S.vestibular Br S.gordonii Br S.orisratti Br S.henryi Br S.infantariu Ch C.jejuni Ch F.novicida Ch M.mobile	$\begin{array}{c} 21\\ 45\\ 47\\ 47\\ 46\\ 46\\ 46\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47$	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TGCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TGCCGTATCAACTTGAAA - AAGTG-GCACCGATCGGTGCTTTTT AGTCCGTATCAACTTGAAA - AAGTG-GCACCGATCGGTGCTTTTT TGCCGTATCAACTTGAAA - AAGTG-GCACCGATCGGTGCTTTTT TGCCGTACCAACTTGTAA - AAGTG-GCACCGATCGGTGCGTTTTTT TGCCGTACCAACTTGTAA - AAGTGCCACCGATCGGTGGCTTTTT TGCCGTACCAACTTGTAA - AAGTGCCACCGATCGGTGCGTTTTTT TGCCGTACCAACTTGAAA - AAGTGCCACCGATCGGTGCGTTTTT TGCCGTACCAACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT TGCCGTACCAACTTGAAA - AAGTGCGCACCGATCGGTGCTTTTT TGCCGTACCAACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT TGCCGTACCAACTTGAAA - AAGTGCCGCACCGATCCGGTGCTTTTT TGCCGTACCAACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT TGCCGTACCAACTTGAAA - AAGTGCCGCACCGATCGGTGCTTTTT TGCCGTACCAACTTGAAA - AAGTGCGCGCCGACCGATCGGTGCTTTTT TGTCCGTACCAACTTGAAA - AAGTGCGCGCACCGATCGGTGCTTTTT TGTCCGTACCACACTTGAAA - AAGTGCGCGCACCGATCGGTGCTTTT TGTCCGTACCACACCT - GTC - TATGACGGGGTGTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTT CATGCCGAAATCAACACCCT - GTC - TTTTATGCCAGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCAGGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCAGGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCAGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCAGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCAGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CATGCCGAAATCAACCCCT - GTC - TTTTATGCCGGGGTGTTTT CATGCCGAAATCAAGCACCCC - C
template Br_S.pyogenes Br_S.dysagalact Br_S.thermophil Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.nitis Br_S.mitis Br_S.mitis Br_S.mutans Br_S.mutans Br_S.intermediu Br_S.thermophil Br_S.parasangui Br_S.parasangui Br_S.infantariu Ch_F.novicida Ch_S.thermophil Ch_M.mobile Ch_L.innocua	$\begin{array}{c} 21\\ 45\\ 47\\ 47\\ 46\\ 46\\ 46\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47$	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTTATCAACTGGAA - AAGTG-GCACCGAGTCGGTGCTTTTTT GTCCGTAATCAACTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT GTCCGTACTGAAA - AAGTG-GCACCGATCGGGTGCTTTTT GTCCGTACTCAACTGAGA - AAGTG-GCACCGATCGGGTGCTTTTT GTCCGTACTCAACTGAGA - AAGTG-GCACCGATTCGGTGGTTTTT GTCCGTACTCAACTGAGA - AAGTG-GCACCGATTCGGTGGGTGTTTTT GTCCGTACACAACTGAGA - AAGTG-GCACCGATTCGGTGGTGTTTTT GTCCGTACACAACTGAAA - AAGTG-GCACCGATTCGGTGGTGTTTTT GTCCGTACACAACTGAAA - AAGTGCCGCACCGATTCGGTGCGTTTTT GTCCGTACACAACTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT GTCCGTACACAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTTT CATGCCGAAACCAACTTGAAA - AAGTGCCGCACCGATTCGGTGCTTTT CATGCCGAAACCAACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATAGCGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TATAGCGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTTATGCCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGTTTT CATGCCGAATCAACCCCT - GTC TTTTTACATGGCGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTTTCAAGGGGTGCTTTT CTCGGTGTTCAACACCCT - GTC
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.thermophil Br S.gallolytic Br S.utetiensi Br S.anginosisB Br S.intis Br S.sanguinis Br S.oralis Br S.intermediu Br S.intermediu Br S.intermediu Br S.thermophil Br S.vestibular Br S.gordonii Br S.orisratti Br S.nifantariu Ch C.jejuni Ch F.novicida Ch S.thermophil Ch M.mobile Ch L.innocua	$\begin{array}{c} 21\\ 45\\ 47\\ 47\\ 46\\ 46\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47\\ 47$	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGAKTCGGTGC- AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TT- AGTCCGTATCAACTTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTT TGTCCGTACTCAACTTGAAA - AGGGG-GCACCGATCGGGTGCTTTTT GTCCGTACTCAACTTGAAA - AGGGG-GCACCGATCGGTGGTTTTTT GTCCGTACTCAACTTGAAA - AAGTGGCACCGATTCGGTGGTTTTTT TGTCCGTACCAACTTGTAA - AAGTGGCACCGATTCGGTGGCTTTTT TT- GTCCGTACCAACTTGTAA - AAGTGGCACCGATTCGGTGGCTTTTT TGTCCGTACCAACTTGTAA - AAGTGCCACCGATTCGGTGCGTTTTT TT- GTCCGTACCAACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TGTCCGTACACAACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TGTCCGTACACACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TGTCCGTACACAACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT TGTCCGTACACAACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT CATGCCGTACCACACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT CATGCCGTACACAACTTGAAA - AAGTGCGCACCGATTCGGTGCTTTTT CATGCCGAACACCACTGGAA - AAGTGCGCACCGATTCGGTGCTTTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC - TATGACGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC - TATTATGGCAGGGGTGTTTT CATGCCGAAATCAACACCCT - GTC - TTTATGCCGGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCGGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCGGGGCTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCGGGTGCTTTT CATGCCGAATCAACACCCT - GTC - TTTATGCCAGGGTGCTTTT CATGCCGAATCAAGCACCC - C CTTTATGCCAGGGCC - TTAGCCCGAATCAACACCCTACCTACACCCTACCTACACACCCTACCTACACACCCTACCTACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACACACCCTACCTACCACC
template Br_S.pyogenes Br_S.dysagalact Br_S.equi Br_S.thermophil Br_S.salivarius Br_S.gallolytic Br_S.mitis Br_S.mitis Br_S.mutans Br_S.mutans Br_S.mutans Br_S.intermediu Br_S.thermophil Br_S.parasangui Br_S.parasangui Br_S.parasangui Br_S.henryi Br_S.infantariu Ch_F.novicida Ch_S.thermophil Ch_M.mobile Ch_L.innocua Ch_S.pyogenes Ch_S.mutans	$\begin{array}{c} 2 1 5 \\ 4 5 5 \\ 4 7 7 \\ 4 4 7 \\ 4 4 6 \\ 4 4 7 \\ 4 4 7 \\ 4 7 \\ 4 7 \\ 7 \\ 4 7 \\ 7 \\ 4 7 \\ 7 \\ 4 7 \\ 7 \\ 4 7 \\ 7 \\ 4 7 \\ 7 \\ 5 0 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	AGTCCGTYHYCANNNGRRA - NNNG-GCACCGAKTCGGTGC ACTCCGTATCAACTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT ACTCCGTATCAACTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.salivarius Br S.gallolytic Br S.lutetiensi Br S.intis Br S.mitis Br S.mutans Br S.mutans Br S.intermediu Br S.intermediu Br S.thermophil Br S.parasangui Br S.parasangui Br S.infantariu Ch C.jejuni Ch S.thermophil Ch M.mobile Ch S.mutans Ch S.mutans	$\begin{array}{c} 2 1 5 \\ 4 5 5 \\ 4 7 7 \\ 4 4 7 \\ 4 4 6 \\ 4 4 7 \\ 4 4 7 \\ 4 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 4 7 \\ 5 5 \\ 6 7 \\ 4 3 \\ 5 5 \\ 6 7 \\ 4 3 \\ 5 5 \\ 6 7 \\ 4 3 \\ 5 7 \\ 6 7 \\ 4 3 \\ 5 7 \\ 6 7 \\ 4 3 \\ 5 7 \\ 6 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	AGTCCGTYHYGANNNNGRRANNNNG-GGACGACGACGAGTGGTGC- AGTCCGTATCAAGTTGAAAAGTG-GCACGAGTGGTGCTTTTT- AGTCCGTATCAAGTGGAAAGGGGGGGAGCACGAAGGGGGGTGTTTT- GTCCGTACTAAGTGGAAAGGGGGGCACGAAGGGC
template Br S.pyogenes Br S.dysagalact Br S.thermophil Br S.thermophil Br S.thermophil Br S.thermophil Br S.gallolytic Br S.lutetiensi Br S.sanguinis Br S.sanguinis Br S.intermediu Br S.intermediu Br S.intermediu Br S.thermophil Br S.vestibular Br S.gordonii Br S.parasangui Br S.infantariu Ch C.jejuni Ch F.novicida Ch S.thermophil Ch M.mobile	$\begin{array}{c} 2 1 5 \\ 4 4 5 \\ 4 7 7 \\ 4 4 6 \\ 4 4 7 \\ 4 4 6 \\ 4 4 7 \\ 4 4 7 \\ 7 7 \\ 4 4 7 \\ 7 7 \\ 4 4 7 \\ 7 7 \\ 4 3 7 \\ 5 6 7 \\ 4 4 3 \\ 5 0 \\ 7 \\ 5 0 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	AGTCCGTYHYCANNNNGRRA - NNNNG-GCACCGACGACGATCGGTGC- AGTCCGTTATCAACTGAAA - AAGTG-GCACCGAGTCGGTGCTTTTTT GTCCGTAATCAACTGAAA - AGTG-GCACCGAGTCGGAGGC- TTTTTTT GTCCGTAATCAACTGGAA - AGTG-GCACCGATCGGAGGC- TTTTTTT TGTCCGTACTCAACTGGAA - AGTG-GCACCGATCGGGTGCGTTTTT GTCCGTACTCAACTGGAA - AGTG-GCACCGATCGGGTGCGTTTTT TGTCCGTACTCAACTGAGA - AAGTG-GCACCGATCGGGTGCGTTTTT TGTCCGTACTCAACTGAAA - AGTG-GCACCGATCGGGTGCGTTTTT TGTCCGTACTCAACTGAAA - AGTG-GCACCGATCGGGTGCTTTTT TGTCCGTACTCAACTGAAA - AAGTG-GCACCGATCGGGTGCTTTTT TGTCCGTACTCAACTGAAA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACTCAACTGAAA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACACAACTGAAA - AAGTG-GCACCGATCGGTGCTTTTT TGTCCGTACACAACTGAAA - AAGTG-GCGACGATCGGTGCTTTTT TGTCCGTACACAACTGAAA - AAGTG-GCGACCGATCGGTGCTTTTT CATGCCGAATCAACACCCT - GTC TATGACGGGGTGTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGGTGTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGTGCTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGGTGTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGGTGCTTTT CATGCCGAATCAACACCCT - GTC TTTATGCCGGGGTGCTTTT CATGCCGAATCAACACCCT - GTC TTTTATGGCCGGGCTTTT CATGCCGTATCAACACCCT - GTC TTTTATGGCCGGGCCTTTT CATGCCGTATCAACACCCT - GTC TTTTATGGCCGGCCTTTT CATGCCGTATCAACTCCCTA - TTTATGGCAGGGCCTTTT CATGCCGTATCAACACCCT - GTC TTTTATGGCCGGCCTTTT CATGCCGTATCAACTCCCTA - TTTATAGGCAGGGCCTTTTT CATGCCGTATCAACTTTTATTATTATAGAACGGCCCCCCCC

Fig. S7. Multiple sequence alignment of existing tracrRNA sequences from closely related Cas9 systems with the tracrRNA component of our sgRNA template (i.e., the template from Fig. 5C, GTNNNAGAGNNN--GRRA--NNNCAAGTTVVVATAAGGCNAGTCCGTYHYCANNNN-GRR-A-NNNNGGCACCGAKTCGGTGC). The sequences with names beginning "Br_" are taken from Fig. S2 of Briner et al., *Mol. Cell* (2014) (Ref. 36 in the main text), and the sequences with names beginning "Ch_" are taken from Fig. 4 of Chylinski et al., *RNA Biol.*, (2013) (Ref. 45 in the main text). Alignments were performed via the MAFFT program with default parameters (Refs. (46, 47) from the main text). Note that mismatches between the template above and the template shown in Fig. 5B-C were empirically tested and found to be tolerated.

sgRNA_WT	GTTTT <mark>AGAG</mark> CTA	GAAA	-T-AG	CAAGTT	AAAATAAGO	G	AGTCCGTTATCA	ACTT-G	A-A <mark>A</mark> AA-G1	GGCACCGAGTCGGTGC
sgRNA2	GTTCT <mark>AGAG</mark> AGC	GGGA	GCT	CAAGTT	AGAATAAG	GC2	T <mark>AGTCCGT</mark> AT <mark>TCA</mark>	GTG-CG	GG-AGCA-C	GGCACCGATCGGTGC
sgRNA3	GTTCG <mark>AGAG</mark> GAC	GAGA	GTC	CAAGTT	CGAATAAG(CAGTGATTTTTAATC(AGTCCGTTATCA	ACA-GGG	A-G <mark>A</mark> C-CTC	GGCACCGAGTCGGTGC
sgRNA4	GTTCC <mark>AGAG</mark> TCG	GGAA	-C-GA	CAAGTT	GGAATAAGO	CAGTGTATTATATACO	AGTCCGTTATCA	TGCCGG	AA-GGCA	GGCACCGATCGGTGC
sgRNA5	GT TGT <mark>AGAG</mark> CGT-A	GA-A	ATACG	CAAGTT	ACAATAAG(CAGTGAATTAAATTC(AGTCCGTTATCA	AGC <mark>G</mark>	G-AAACGCI	GGCACCGAGTCGGTGC
sgRNA6	GTTGC <mark>AGAG</mark> AC-AC	GGGA	GT-GT	CAAGTT	GC <mark>AATAAG</mark>	CAGTGTTTATTAAAC(AGTCCGTTATCA	AGACGT <mark>G</mark>	G-GAACGTO	GGCACCGATCGGTGC
sgRNA7	GT TGG <mark>AGAG</mark> GCAT-	GAGA	AT-GC	CAAGTT	CC <mark>AATAAG</mark>	GC?	T <mark>AGTCCGT</mark> ACA <mark>CA</mark>	CCTAGG	AG- <mark>A</mark> CTAGO	GGCACCGAGTCGGTGC
sgRNA8	GTCTTAGAGTG-TG	GGAA	-CACA	CAAGTT	AAG <mark>ATAAG</mark> (GC!	AGTCCGTTATCA	TCAGGG	G-AACCTGA	AGGCACCGA <mark>T</mark> TCGGTGC
sgRNA9	GTCCT <mark>AGAG</mark> CCAT-	GAAA	AT-GG	CAAGTT	AGGATAAG	GC?	TAGTCCGTAT TCA	ACGCTG	AA-AAGCG1	GGCACCGAGTCGGTGC
sgRNA10	GTCCG <mark>AGAG</mark> AT-CC	GGGA	GG-AT	CAAGTT	CGGATAAG	CAGTCATTTTTAATG(AGTCCGTTATCA	GCTCAG	G-GATGAGO	GGCACCGATCGGTGC
sgRNA11	GTCCC <mark>AGAG</mark> GT-TC	GAGA	G-AAC	CAAGTT	GGGATAAG	C AGTCTATTATATAG(CAGTCCGTTATCA	CCAACG	A-GAGTTCO	GGCACCGAGTCGGTGC
sgRNA12	GTCGT <mark>AGAG</mark> TT-GG	GGAA	-CCAA	CAAGTT	ACGATAAG(C AGTCAATTAAATTG(CAGTCCGTTATCA	TCTCGG	G–AACGAGA	AGGCACCGA <mark>T</mark> TCGGTGC
sgRNA13	gt cgc <mark>agag</mark> catct	GAAA	AGATG	CAAGTT	GCGATAAG	C AGTCTTTATTAAAG(CAGTCCGTTATCA	AGCTCG	G-GAGAGCI	GGCACCGAGTCGGTGC
sgRNA14	gt cgg <mark>agag</mark> aacag	GGGA	CTGTT	CAAGTT	CCGATAAG	C	TAGTCCGTACACA	GTCGTG	AG-AACGAC	GGCACCGA <mark>T</mark> TCGGTGC
sgRNA15	GT GTT <mark>AGAG</mark> GGATA	GAGA	TATCC	CAAGTT	AA <mark>C</mark> ATAAGO	5C1	TAGTCCGTTATCA	CTGCAG	G-AATGCAC	GGCACCGAGTCGGTGC
sgRNA16	GTGCT <mark>AGAG</mark> TACGT	GGAA	ACGTA	CAAGTT	AG <mark>C</mark> ATAAG(GC[TAGTCCGTATTCA	TGT-CG	GAAACGACA	AGGCACCGATTCGGTGC
sgRNA17	gt gcg <mark>agag</mark> cttac	GAAA	G <mark>T</mark> AAG	CAAGTT	CGCATAAGO	CAGTGATATTTTATC(CAGTCCGTTATCA	ACAGCG	G-GAGCTGI	GGCACCGAGTCGGTGC
sgRNA18	GTGCC <mark>AGAG</mark> AGTAG	GGGA	CTACT	CAAGTT	GG <mark>C</mark> ATAAGO	CAGTGTAATATTTAC(CAGTCCGTTATCA	AGGTCAG	A-GATGACO	GGCACCGATCGGTGC
sgRNA19	GT GGT <mark>AGAG</mark> GACTT	GAGA	AAGTC	CAAGTT	ACCATAAG	CAGTGAAATTATTTC(CAGTCCGTTATCA	CACAGG	G-AACTGTO	GGCACCGAGTCGGTGC
sgRNA20	gt ggc <mark>agag</mark> tcatc	GGAA	GATGA	CAAGTT	CCC <mark>ATAAG</mark> (CAGTGTTAATTTAAC(CAGTCCGTTATCA	TCCGAG	A-AATCGGI	AGGCACCGATTCGGTGC
sgRNA21	gt ggg <mark>agag</mark> ccaaa	GAAA	TTTGG	CAAGTT	CCCATAAG	GC?	T <mark>AGTCCGT</mark> ACA <mark>CA</mark>	AGGTCG	GG-AGACCI	GGCACCGAGTCGGTGC
sgRNA22	GTTCG <mark>AGAG</mark> GAC	GAGA	GTC	CAAGTT	CGAATAAG(GC(CAGTCCGTTATCA	ACA-GGG	A-GAC-CTO	GGCACCGAGTCGGTGC
sgRNA23	GTTCC <mark>AGAG</mark> TCG	GGAA	-C- <mark>G</mark> A	CAAGTT	GGAATAAGO	6C <i>P</i>	AGTCCGTTATCA	TGCCGG	––AA–GGCI	AGGCACCGA <mark>T</mark> TCGGTGC
sgRNA24	GTTGT <mark>AGAG</mark> CGT-A	GA-A	ATACG	CAAGTT	ACAATAAG(GC(GAGTCCGTTATCA	AGC <mark>G</mark>	G-AAACGCI	GGCACCGAGTCGGTGC
sgRNA25	GTTGC <mark>AGAG</mark> AC-AC	GGGA	GT-GT	CAAGTT	G <mark>C</mark> AATAAG(GC(CAGTCCGTTATCA	GACGT <mark>G</mark>	G-GAACGTO	GGCACCGA <mark>T</mark> TCGGTGC
sgRNA26	GTCCG <mark>AGAG</mark> AT-CC	GGGA	GG-AT	CAAGTT	CGGATAAG(GC/	AGTCCGTTATCA	GCTCAG	G-GATGAGO	GGCACCGA <mark>T</mark> TCGGTGC
sgRNA27	GTCCC <mark>AGAG</mark> GT-TC	GAGA	G-AAC	CAAGTT	GGGATAAG	GC(GAGTCCGTTATCA	CCAACG	A-G <mark>A</mark> GTTCC	GGCACCGAGTCGGTGC
sgRNA28	GTCGT <mark>AGAG</mark> TT-GG	GGAA	-CCAA	CAAGTT	ACGATAAG(GC(CAGTCCGTTATCA	TCTCGG	G–AACGAGA	AGGCACCGA <mark>T</mark> TCGGTGC
sgRNA29	GTCGC <mark>AGAG</mark> CATCT	GAAA	AGATG	CAAGTT	GCGATAAG(GC2	AGTCCGTTATCA	AG <mark>CTC</mark> G	G-GAGAGC1	GGCACCGAGTCGGTGC
sgRNA30	GTGCG <mark>AGAG</mark> CTTAC	GAAA	G <mark>T</mark> AAG	CAAGTT	CGC <mark>ATAAG</mark> (GC(GAGTCCGTTATCA	ACAGCG	G-GAGCTGI	GGCACCGAGTCGGTGC
sgRNA31	gt gcc <mark>agag</mark> agtag	GGGA	CTACT	CAAGTT	GGC <mark>ATAAG</mark>	GC(AGTCCGTTATCA	IGGTCAG	A-GATGACO	GGCACCGATCGGTGC
sgRNA32	gt ggt <mark>agag</mark> gactt	GAGA	AAGTC	CAAGTT	ACCATAAG	GC/	AGTCCGTTATCA	CACAGG	G-AACTGTO	GGCACCGAGTCGGTGC
sgRNA33	gt ggc <mark>agag</mark> tcatc	GGAA	G <mark>AT</mark> GA	CAAGTT	CCC <mark>ATAAG</mark>	C(AGTCCGTTATCA	TCCGAG	A-AATCGGA	GGCACCGATCGGTGC

Fig. S8. Complete list of sequence-divergent guide RNAs generated and assayed using the transcriptional activation reporter.

Fig. S9. Results of the pilot screen of the first set of designed sgRNA sequences. #3-6, #10-13, and #17-20 all carried the extra insert; the latter 8 displayed markedly lower activity and were not further considered. The cause of the difference is unclear, although it is worth noting that these all had longer stem-loops than did #3-6, all of which were closer to the activity of the standard or 'wild-type' sgRNA.

Fig. S10. Potential family tree of a $C \rightarrow B \rightarrow A$ genetic load daisy drive for which the cargo in the A element disrupts a female fertility gene. The C element is male-linked, ensuring that it does not suffer a fitness cost from the loss of female fertility. Mating events between two parents carrying the A element (boxed) can produce sterile female offspring that will suppress the population. Males do not suffer a fitness cost due to disruption of female-specific fertility genes. Genome illustrations depict germline cells after drive has occurred. Females are placed on the right side in each pair of individuals.

Fig. S11. Utility of a costly daisy reversal drive with orthogonal Cas9 elements in achieving complete genetic reversal of an unwanted drive system to wild-type. Suppose an unwanted drive system has spread a harmful cargo (yellow) through the target locus A via the commonly used Cas9 protein from *S. pyogenes*. (*A*) A daisy reversal drive system uses guide RNAs for *S. pyogenes* Cas9 to copy all elements while overwriting the unwanted drive system and its cargo. (*B*) The same daisy reversal drive system spreads as a normal daisy drive using its own orthogonal CRISPR system (e.g. *S. aureus* Cas9) on encountering wild-type sequences. (*C*) An unwanted drive system is countered by releasing the daisy reversal system at multiple sites. The daisy drive system efficiently overwrites the unwanted drive system throughout its range, spreading into and through the wild-type sequences at the edges of that range to ensure that it reaches and eliminates every copy. This immediately eliminates the harmful cargo. Because the A element of the daisy drive system is costly and the other elements are always co-resident with it due to the daisy drive effect, all elements of the daisy drive will be outcompeted and eliminated by wild-type alleles over time, potentially leading to complete genetic reversal.

References

1. Noble, C., Olejarz, J., Esvelt, K. M., Church, G. M. & Nowak, M. A. Evolutionary dynamics of CRISPR gene drives. *Sci. Adv.* **3**, (2017).