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Supplementary Information Text

1 Evolutionary dynamics of a daisy drive construct

We first describe a daisy drive system consisting of only two elements. This simple case demonstrates
the principle behind daisy drive engineering. We then describe a daisy drive system with an arbitrary
number of elements.

1.1 Model for the evolutionary dynamics of a 2-element daisy drive

We consider a wild population of diploid organisms and focus on two loci, “1” and “2”. The wild-type
alleles at the two loci are 1W and 2W , and we denote by 1WW 2WW the genotype of an individual
that is homozygous for both. Using CRISPR genome editing technology, one can engineer what we
refer to as “daisy” alleles at both loci (1D and 2D). They function as follows. The 1D allele effects
cutting of the 2W allele in an individual’s germline. We assume that the two loci are independent
and that a single copy of 1D always induces cutting of the 2W allele. If an individual has genotype
1WD2WW or 1DD2WW , then the drive allele at the first locus cuts and disrupts both wild-type
alleles at the second locus, and the resulting gametes are nonviable. If an individual has genotype
1WD2WD or 1DD2WD, then the drive allele at the first locus cuts the wild-type allele at the second
locus, and one of two things can happen. If a homing event occurs, then the drive allele at the
second locus is successfully copied into the position of the shredded wild-type allele, resulting in
gametes that necessarily have the drive allele at the second locus. If a homing event does not occur,
then the resulting gametes are nonviable. This results in super-Mendelian inheritance of the 2D
allele in a 1D-mediated fashion. Importantly, the 1D allele undergoes standard inheritance and does
not facilitate its own spread similarly.

(Notice that in this simplified treatment, we do not explicitly study evolution with a resistant
allele, as described in the main text. This simplified model illustrates the principle behind daisy drive
engineering without concern for complications arising from emergence of resistance. In Section 2 of
this Supplementary Information, we introduce resistance into the model.)

To see how the daisy drive works, consider Table 1, which is understood as follows:

Genotype 1W 2W 1W 2D 1D2W 1D2D

1WW 2WW 1 0 0 0

1WW 2WD
1
2F

1
2F 0 0

1WW 2DD 0 F 0 0

1WD2WW 0 0 0 0

1WD2WD 0 1
2HF 0 1

2HF

1WD2DD 0 1
2F 0 1

2F

1DD2WW 0 0 0 0

1DD2WD 0 0 0 HF

1DD2DD 0 0 0 F

Table 1: Gamete production table showing the relative rates at which individuals of each genotype
(rows) produce gametes of each haplotype (columns).

Gametes of haplotype 1W 2W are produced in the following ways:
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• 1WW 2WW individuals produce only 1W 2W gametes. We set the rate of production of 1W 2W
gametes by 1WW 2WW individuals to be 1.

• 1WW 2WD individuals produce gametes with a wild-type allele at the second locus with prob-
ability 1/2. There is a fitness effect, F , due to the payload of the drive allele at the second
locus. So 1WW 2WD individuals produce 1W 2W gametes at relative rate F/2.

Gametes of haplotype 1W 2D are produced in the following ways:

• 1WW 2WD individuals produce gametes with a drive allele at the second locus with probability
1/2. There is a fitness effect, F , due to the payload of the drive allele at the second locus. So
1WW 2WD individuals produce 1W 2D gametes at relative rate F/2.

• 1WW 2DD individuals produce only 1W 2D gametes. There is a fitness effect, F , due to the
payload of the drive allele at the second locus. So 1WW 2DD individuals produce 1W 2D gametes
at relative rate F .

• 1WD2WD individuals produce gametes with a wild-type allele at the first locus with probability
1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the second
locus, and homing occurs with probability H. There is a fitness effect, F , due to the payload
of the drive allele at the second locus. So 1WD2WD individuals produce 1W 2D gametes at
relative rate HF/2.

• 1WD2DD individuals produce gametes with a wild-type allele at the first locus with probability
1/2. There is a fitness effect, F , due to the payload of the drive allele at the second locus. So
1WD2DD individuals produce 1W 2D gametes at relative rate F/2.

Gametes of haplotype 1D2D are produced in the following ways:

• 1WD2WD individuals produce gametes with a drive allele at the first locus with probability
1/2. The action of the drive allele at the first locus is to cut the wild-type allele at the second
locus, and homing occurs with probability H. There is a fitness effect, F , due to the payload
of the drive allele at the second locus. So 1WD2WD individuals produce 1D2D gametes at
relative rate HF/2.

• 1WD2DD individuals produce gametes with a drive allele at the first locus with probability
1/2. There is a fitness effect, F , due to the payload of the drive allele at the second locus. So
1WD2DD individuals produce 1D2D gametes at relative rate F/2.

• 1DD2WD individuals have only the drive allele at the first locus. The action of the drive allele
at the first locus is to cut the wild-type allele at the second locus, and homing occurs with
probability H. There is a fitness effect, F , due to the payload of the drive allele at the second
locus. So 1DD2WD individuals produce 1D2D gametes at relative rate HF .

• 1DD2DD individuals produce only 1D2D gametes. There is a fitness effect, F , due to the
payload of the drive allele at the second locus. So 1DD2DD individuals produce 1D2D gametes
at relative rate F .

(Notice that if H is interpreted as the homing probability and F is interpreted as the fitness effect
due to the drive payload, then Table 1 is naturally interpreted as describing drive that occurs in the
embryo. That is, individuals with at least one copy of the drive allele at the first locus and a single
copy of the drive allele at the second locus shred the wild-type allele at the second locus during
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embryonic development. And if homing does not occur, then the resulting, mature individuals
are nonviable since the W (or D) allele is haploinsufficient. But Table 1 also effectively describes
the production of gametes in the case of meiotic drive. The subtle distinction in that case would
be that, if cutting occurs and homing does not follow, then 1WD2WD and 1DD2WD individuals
produce a nonzero amount of gametes with a mutilated wild-type allele at the second locus. But
when those gametes pair with any other gamete, the resulting individuals are necessarily nonviable,
and so, effectively, 1WD2WD and 1DD2WD individuals only produce gametes with a drive allele at
the second locus.)

Using these rules, we can formally express the rates at which the four types of gametes are
produced in the population. We denote by g(z) the rate (with implicit time-dependence) at which
gametes with haplotype z are produced by individuals in the population.

g(1W 2W ) = x(1WW 2WW ) +
1

2
Fx(1WW 2WD)

g(1W 2D) =
1

2
Fx(1WW 2WD) + Fx(1WW 2DD) +

1

2
HFx(1WD2WD) +

1

2
Fx(1WD2DD)

g(1D2W ) = 0

g(1D2D) =
1

2
HFx(1WD2WD) +

1

2
Fx(1WD2DD) +HFx(1DD2WD) + Fx(1DD2DD)

Here, x(z) is the frequency of individuals with genotype z.
The selection dynamics are then modeled by the following system of equations:

ẋ(1WW 2WW ) = g(1W 2W )2 − ψ2x(1WW 2WW )

ẋ(1WW 2WD) = 2g(1W 2W )g(1W 2D)− ψ2x(1WW 2WD)

ẋ(1WW 2DD) = g(1W 2D)2 − ψ2x(1WW 2DD)

ẋ(1WD2WW ) = 2g(1W 2W )g(1D2W )− ψ2x(1WD2WW )

ẋ(1WD2WD) = 2g(1W 2D)g(1D2W ) + 2g(1W 2W )g(1D2D)− ψ2x(1WD2WD)

ẋ(1WD2DD) = 2g(1W 2D)g(1D2D)− ψ2x(1WD2DD)

ẋ(1DD2WW ) = g(1D2W )2 − ψ2x(1DD2WW )

ẋ(1DD2WD) = 2g(1D2W )g(1D2D)− ψ2x(1DD2WD)

ẋ(1DD2DD) = g(1D2D)2 − ψ2x(1DD2DD)

Here, an overdot denotes the time derivative, d/dt. Throughout this Supplementary Information, we
omit explicitly writing the time dependence of our dynamical quantities. Note that this formulation
assumes random mating, i.e., that two random gametes come together to form an individual. Also
note that products g(y)g(z) represent the pairings of different gametes. At any given time, we
require that the total number of individuals sums to one:∑

z

x(z) = 1

To enforce this density constraint, we set

ψ = g(1W 2W ) + g(1W 2D) + g(1D2W ) + g(1D2D)
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1.2 Model for the evolutionary dynamics of an n-element daisy drive

We can apply the same engineering to a daisy drive chain of arbitrary length, n, where the drive
allele at one locus induces cutting of the wild-type allele at the next locus in the sequence. To
describe this mathematically, it is helpful to generalize our notation.

Consider a daisy drive construct with only two loci, as in Section 1.1. We use a “1” bit to denote
a wild-type allele, and we use a “0” bit to denote a daisy drive allele. To represent genotypes, we
introduce vectors a = (a1, a2) and b = (b1, b2), where each a1, a2, b1, b2 ∈ {0, 1}. We construct these
vectors such that a1 and b1 represent the two alleles at the first locus, while a2 and b2 represent the
two alleles at the second locus. A full genotype is then a list of the two vectors, [a, b]. We write the
nine possible genotypes for a two-element drive system as:

1WW 2WW = [(1, 1), (1, 1)]

1WW 2WD = [(1, 1), (1, 0)]

1WW 2DD = [(1, 0), (1, 0)]

1WD2WW = [(1, 1), (0, 1)]

1WD2WD = [(1, 1), (0, 0)]

1WD2DD = [(1, 0), (0, 0)]

1DD2WW = [(0, 1), (0, 1)]

1DD2WD = [(0, 1), (0, 0)]

1DD2DD = [(0, 0), (0, 0)]

Notice that if an individual is heterozygous at a particular locus, then this notation allows for two
ways of writing the alleles at that locus. For example, genotype 1WD2WD can be written in any
one of four equivalent ways: [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(1, 0), (0, 1)], or [(0, 1), (1, 0)].

When modeling daisy drives with a large number of loci, it is helpful to adopt shorthand notation.
To do this, we extend the lengths of a and b to be equal to the number of loci, n. That is, we let
a = (a1, . . . , an) and b = (b1, . . . , bn), where each ai, bj ∈ {0, 1}. For example, the genotype
1WW 2DD3WD can be written [a, b] = [(1, 0, 1), (1, 0, 0)] or, equivalently, [a, b] = [(1, 0, 0), (1, 0, 1)].

We denote by xab the frequency of individuals with genotype [a, b]. We denote by gb the rate at
which gametes with haplotype b are produced. For an n-element daisy drive, gb is given by

gb =
∑
α,β

xαβF
1−αnβn

×
n∏
i=1

{
δαibiδβibi [δ0,bi + αi−1βi−1δ1,bi ] + (1− δαiβi)

[
αi−1βi−1

2
+ (1− αi−1βi−1)Hδ0,bi

]} (1)

Here, we have defined α0 = β0 = 1. δij is the Kronecker delta, defined by δij = 1 if i = j and
δij = 0 if i 6= j. In Equations (1), in the sum over α, β when enumerating genotypes, heterozygous
loci (αi 6= βi) are each counted once, so there is no double-counting. gb is linear in each xαβ , where
all genotypes [α, β] are summed over.

We understand the terms in the factors in brackets as follows. Consider just a single factor in
brackets for a particular value of i.

• If αi = βi = bi = 0, then individuals of genotype [α, β] have two identical copies of allele 0 at
the ith locus, and those individuals create only gametes with allele 0 at position i.
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• If αi = βi = bi = 1 and αi−1βi−1 = 1, then individuals of genotype [α, β] have two identical
copies of allele 1 at the ith locus and no copy of allele 0 at the (i − 1)th locus, and those
individuals create only gametes with allele 1 at position i.

• If αi 6= βi and αi−1βi−1 = 1, then individuals of genotype [α, β] have a single copy of allele bi
at the ith locus, and without any action from the daisy drive, those individuals create gametes
with allele bi and allele (1 + (−1)bi)/2 at position i in equal proportion.

• If αi 6= βi and αi−1βi−1 = 0, then individuals of genotype [α, β] have a single copy of allele
bi at the ith locus, and the daisy drive allele at the (i− 1)th locus cuts the wild-type allele at
the ith locus. Homing then occurs with probability H, and gametes with allele 0 at position
i are created.

The prefactor F 1−αnβn is the fitness cost associated with the payload. It appears if there is at least
one copy of the daisy drive allele at the last position, n, in the daisy chain.

The selection dynamics for an n-element daisy drive are modeled by the following equations:

ẋab =
∑
α

gα
∑
β

gβ

n∏
i=1

[δaibiδαiaiδβibi + (1− δaibi)(1− δαiβi)]− ψ
2xab (2)

In Equations (2), the haplotypes α and β are summed independently. There is one such equation
for each possible genotype [a, b].

We make sense of Equations (2) as follows. Each pair of gametes gα and gβ makes a new
individual.

• If ai = bi = αi = βi, then gametes of haplotypes α and β pair to make only individuals with
genotype [ai, bi] at locus i.

• If ai 6= bi and αi 6= βi, then gametes of haplotypes α and β pair to make only individuals with
genotype [ai, bi] at locus i.

We impose the density constraint ∑
a,b

xab = 1 (3)

As already noted for Equations (1), in the sum over a, b when enumerating genotypes, heterozygous
loci (ai 6= bi) are each counted once, so there is no double-counting. We use the following identity:

∑
a,b

n∏
i=1

[δaibiδαiaiδβibi + (1− δaibi)(1− δαiβi)] = 1

The form of ψ that enforces the density constraint is

ψ =
∑
α

gα (4)

2 Evolutionary dynamics of daisy drive resistance

Thus far in this Supplementary Information, we have assumed that there are exactly two alleles at
each daisy drive locus: the daisy drive element, D, and the corresponding wild-type, W . However,
additional alleles could arise in various ways: standing genetic variation, de novo mutation, or
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misrepair after cutting could all result in alleles with mismatches between the engineered guide
RNAs and their corresponding recognition sequences. Such alleles would be resistant to the future
effects of daisy-mediated cutting.

Our previous consideration of only two classes of allele was motivated by our presumed biological
design: each daisy element was to target a highly conserved essential gene using multiple guide
RNAs, and the corresponding daisy drive construct was to contain a genetically recoded copy of the
target gene. Under these assumptions, we would expect low rates of standing genetic variation and
de novo mutation, and targets resulting from misrepair would almost certainly produce nonviable
offspring.

However, these assumptions are fairly restrictive. It could be difficult, in practice, to locate
highly conserved regions, recode essential genes, and design multiple guide RNAs for every daisy
element in a large chain, particularly in time-sensitive situations, such as responding to release of
a rogue drive. Thus, in this section, we relax these earlier assumptions by extending our model to
account for drive-resistant alleles.

2.1 Two elements

We begin by considering the special case of two daisy drive elements, as in Section 1.1 above. The
relevant loci are denoted 1 and 2 as before. Now, however, there are three alleles: the wild-type,
W , the drive element, D, and a resistant allele, R, which is immune to the effects of the drive.
We assume that resistant alleles primarily arise as the result of misrepair following cutting events
(standing genetic variation could be accounted for by simply varying the initial frequency of the R
allele). Because only the second locus is acted upon by the drive, we ignore resistance at the first
locus.

Now, we consider the case where there is at least one drive element at the first locus (e.g., an
individual with genotype 1WD or 1DD). Then there are six cases, depending on the genotype at the
second locus:

• WW : The drive element cuts at both W alleles until both are resistant to further cutting.
The individual thus converts to genotype 2RR at this locus, and all gametes contain the 2R
allele.

• WD: The drive element cuts at the W allele. Subsequent repair occurs by homologous
recombination with probability H, or by nonhomologous end-joining with probability 1−H.
In the former case, the individual converts to genotype 2DD and all gametes have the 2D
allele. In the latter case, the individual converts to 2DR and produces gametes with 2D or 2R
alleles with equal proportions.

• WR: The drive element cuts at the W allele. Subsequent repair by either repair pathway
results in a resistant allele, so the individual converts to genotype 2RR. Thus, all gametes
produced contain the 2R allele.

• DD: No cutting occurs, so all gametes contain the 2D allele.

• DR: No cutting occurs, so gametes are produced containing the 2D or 2R allele with equal
proportions.

• RR: No cutting occurs, so all gametes contain the 2R allele.

The cases above describe the production probabilities of the various alleles. But what are their
effects on fitness? We assume that the payload element, 2D, confers a dominant fitness cost, c; the
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Genotype 1W 2W 1W 2D 1W 2R 1D2W 1D2D 1D2R Fitness

1WW 2WW 1 0 0 0 0 0 1

1WW 2WD
1
2

1
2 0 0 0 0 F

1WW 2WR
1
2 0 1

2 0 0 0 K

1WW 2DD 0 1 0 0 0 0 F

1WW 2DR 0 1
2

1
2 0 0 0 FK

1WW 2RR 0 0 1 0 0 0 K

1WD2WW 0 0 1
2 0 0 1

2 G

1WD2WD 0 1+H
4

1−H
4 0 1+H

4
1−H
4 FG

1WD2WR 0 0 1
2 0 0 1

2 GK

1WD2DD 0 1
2 0 0 1

2 0 FG

1WD2DR 0 1
4

1
4 0 1

4
1
4 FGK

1WD2RR 0 0 1
2 0 0 1

2 GK

1DD2WW 0 0 0 0 0 1 G

1DD2WD 0 0 0 0 1+H
2

1−H
2 FG

1DD2WR 0 0 0 0 0 1 GK

1DD2DD 0 0 0 0 1 0 FG

1DD2DR 0 0 0 0 1
2

1
2 FGK

1DD2RR 0 0 0 0 0 1 GK

Table 2: Gamete production probabilities and genotype fitnesses for two-element daisy drive with
resistant alleles.

upstream drive element, 1D, confers a dominant fitness cost, d; and the resistant allele confers a
dominant fitness cost, s. We assume that the all-wild-type individual has maximum fitness 1, so
that 0 ≤ c, d, s ≤ 1. We then define the shorthand notation F = 1− c, G = 1− d, and K = 1− s.
These assumptions are summarized in Table 2.

Using these rules, we can formally express the rates at which the six types of gametes are
produced in the population. We denote by g(z) the rate (with implicit time-dependence) at which
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gametes with haplotype z are produced by individuals in the population.

g(1W 2W ) = x(1WW 2WW ) +
1

2
Fx(1WW 2WD) +

1

2
Kx(1WW 2WR)

g(1W 2D) =
1

2
Fx(1WW 2WD) + Fx(1WW 2DD) +

1

2
FKx(1WW 2DR) +

1 +H

4
FGx(1WD2WD)

+
1

2
FGx(1WD2DD) +

1

4
FGKx(1WD2DR)

g(1W 2R) =
1

2
Kx(1WW 2WR) +

1

2
FKx(1WW 2DR) +Kx(1WW 2RR) +

1

2
Gx(1WD2WW )

+
1−H

4
FGx(1WD2WD) +

1

2
GKx(1WD2WR) +

1

4
FGKx(1WD2DR)

+
1

2
GKx(1WD2RR)

g(1D2W ) = 0

g(1D2D) =
1 +H

4
FGx(1WD2WD) +

1

2
FGx(1WD2DD) +

1

4
FGKx(1WD2DR)

+
1 +H

2
FGx(1DD2WD) + FGx(1DD2DD) +

1

2
FGKx(1DD2DR)

g(1D2R) =
1

2
Gx(1WD2WW ) +

1−H
4

FGx(1WD2WD) +
1

2
GKx(1WD2WR)

+
1

4
FGKx(1WD2DR) +

1

2
GKx(1WD2RR) +Gx(1DD2WW )

+
1−H

2
FGx(1DD2WD) +GKx(1DD2WR) +

1

2
FGKx(1DD2DR)

+GKx(1DD2RR)

Here, x(z) is the frequency of individuals with genotype z.
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The selection dynamics are then modeled by the following system of equations:

ẋ(1WW 2WW ) = g(1W 2W )2 − ψ2x(1WW 2WW )

ẋ(1WW 2WD) = 2g(1W 2W )g(1W 2D)− ψ2x(1WW 2WD)

ẋ(1WW 2WR) = 2g(1W 2W )g(1W 2R)− ψ2x(1WW 2WR)

ẋ(1WW 2DD) = g(1W 2D)2 − ψ2x(1WW 2DD)

ẋ(1WW 2DR) = 2g(1W 2D)g(1W 2R)− ψ2x(1WW 2DR)

ẋ(1WW 2RR) = g(1W 2R)2 − ψ2x(1WW 2RR)

ẋ(1WD2WW ) = 2g(1W 2W )g(1D2W )− ψ2x(1WD2WW )

ẋ(1WD2WD) = 2g(1W 2D)g(1D2W ) + 2g(1W 2W )g(1D2D)− ψ2x(1WD2WD)

ẋ(1WD2WR) = 2g(1W 2R)g(1D2W ) + 2g(1W 2W )g(1D2R)− ψ2x(1WD2WR)

ẋ(1WD2DD) = 2g(1W 2D)g(1D2D)− ψ2x(1WD2DD)

ẋ(1WD2DR) = 2g(1W 2D)g(1D2R) + 2g(1W 2R)g(1D2D)− ψ2x(1WD2DR)

ẋ(1WD2RR) = 2g(1W 2R)g(1D2R)− ψ2x(1WD2RR)

ẋ(1DD2WW ) = g(1D2W )2 − ψ2x(1DD2WW )

ẋ(1DD2WD) = 2g(1D2W )g(1D2D)− ψ2x(1DD2WD)

ẋ(1DD2WR) = 2g(1D2W )g(1D2R)− ψ2x(1DD2WR)

ẋ(1DD2DD) = g(1D2D)2 − ψ2x(1DD2DD)

ẋ(1DD2DR) = 2g(1D2D)g(1D2R)− ψ2x(1DD2DR)

ẋ(1DD2RR) = g(1D2R)2 − ψ2x(1DD2RR)

Note that this formulation assumes random mating as before, i.e., that two random gametes come
together to form an individual. Also note that products g(y)g(z) represent the pairings of different
gametes. At any given time, we require that the total number of individuals sums to one:∑

z

x(z) = 1

To enforce this density constraint, we set

ψ = g(1W 2W ) + g(1W 2D) + g(1W 2R) + g(1D2W ) + g(1D2D) + g(1D2R)

2.2 Evolutionary dynamics of an n-element daisy drive with resistance

As in Section 1.2 above, we now apply the same concept to a daisy drive chain of arbitrary length,
n. To describe this mathematically, we return to and amend our previous notation for an n-element
system.

Consider a daisy drive construct with only two loci, as in Section 2.1. We use “W ” to denote a
wild-type allele, “D” to denote a daisy drive allele, and “R” to denote a resistant allele. To represent
genotypes, we introduce vectors a = (a1, a2) and b = (b1, b2), where each a1, a2, b1, b2 ∈ {W,D,R}.
We construct these vectors such that a1 and b1 represent the two alleles at the first locus, while a2
and b2 represent the two alleles at the second locus. A full genotype is then a list of the two vectors,
[a, b].

10



Below are a few examples of this naming convention applied to the genotypes of the two-element
system:

1WW 2WW = [(W,W ), (W,W )]

1WW 2WD = [(W,W ), (W,D)]

1WW 2DD = [(W,D), (W,D)]

1WW 2DR = [(W,D), (W,R)]

1WD2WW = [(W,W ), (D,W )]

1WD2WD = [(W,W ), (D,D)]

To consider daisy drives of arbitrary length, we extend the lengths of the vectors a and b
to be equal to the number of loci, n. That is, we let a = (a1, . . . , an) and b = (b1, . . . , bn),
where each ai, bj ∈ {W,D,R}. Again, notice that if an individual is heterozygous at a particular
locus, then this notation allows for two ways of writing the alleles at that locus. For example,
the genotype 1DD2RR3DR can be written [a, b] = [(D,R,D), (D,R,R)] or, equivalently, [a, b] =
[(D,R,R), (D,R,D)].

We denote by xab the frequency of individuals with genotype [a, b]. We denote by gb the rate at
which gametes with haplotype b are produced. For an n-element daisy drive, gb is given by

gb =
∑
α,β

xαβf(α, β)pα,β(b) (5)

Here we have used shorthand notation: f(α, β) is the fitness of an individual with genotype [α, β],
and pα,β(b) is the probability that an individual with genotype [α, β] produces a gamete with
haplotype b. Notice that this is the same form as our Equations (1) above, with the fitness and
gamete production components clearly identified.

The fitness of an [α, β] individual, f(α, β), is given by:

f(α, β) =

n∏
i=1

F
1−(1−δαi,D)(1−δβi,D)

i K
1−(1−δαi,R)(1−δβi,R)
i (6)

Here, Fi = 1− ci, where ci is the fitness cost associated with the ith daisy drive element. Similarly,
Ki = 1− si, where si is the fitness cost of resistance at the ith position. δij is the Kronecker delta,
defined by δij = 1 if i = j and δij = 0 if i 6= j. This formulation assumes dominance of each fitness
cost and mutual independence of all costs, as in the two-element system in Section 2.1 above.

Although the above formulation allows us to assign arbitrary costs at each position, we make
the following simplifying assumptions in our simulations:

• The cost of resistance at upstream (non-payload) elements is zero: K1 = · · · = Kn−1 = 1.

• All upstream (non-payload) drive elements have identical associated fitness costs: F1 = · · · =
Fn−1 = 1− d.

• We define a cost, s, associated with resistance to the payload element: Kn = 1− s.

• We define a cost, c, associated with the payload element itself: Fn = 1− c.
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Then, the probability, pα,β(b), of an [α, β] individual producing gamete b is given by:

pα,β(b) =
n∏
i=1

{(
1− γDαi−1,βi−1

(0)
)

×
[
δbi,Rγ

W
αi,βi

(2) + δbi,Rγ
R
αi,βi

(1)γWαi,βi(1)

+ δbi,Rγ
R
αi,βi

(2) +
1

2
δbi,Rγ

R
αi,βi

(1)γDαi,βi(1) +
1−H

2
δbi,Rγ

W
αi,βi

(1)γDαi,βi(1)

+ δbi,Dγ
D
αi,βi

(2) +
1

2
δbi,Dγ

D
αi,βi

(1)γRαi,βi(1) +
1 +H

2
δbi,Dγ

D
αi,βi

(1)γWαi,βi(1)
]

+ γDαi−1,βi−1
(0)

×
[
δbi,Wγ

W
αi,βi

(2) +
1

2
δbi,Wγ

W
αi,βi

(1)γDαi,βi(1) +
1

2
δbi,Wγ

W
αi,βi

(1)γRαi,βi(1)

+ δbi,Dγ
D
αi,βi

(2) +
1

2
δbi,Dγ

D
αi,βi

(1)γRαi,βi(1) +
1

2
δbi,Dγ

D
αi,βi

(1)γWαi,βi(1)

+ δbi,Rγ
R
αi,βi

(2) +
1

2
δbi,Rγ

R
αi,βi

(1)γWαi,βi(1) +
1

2
δbi,Rγ

R
αi,βi

(1)γDαi,βi(1)
]}

(7)

Here, we use shorthand notation, γcαi,βi(k), to count the number of a particular allele at a particular
locus: we define γcαi,βi(k) = 1 if there are k copies (k = 0, 1, 2) of allele c (c ∈ {W,D,R}) at position
i in an individual with genotype [α, β]. Otherwise, γcαi,βi(k) = 0. This is given by:

γcαi,βi(k) = δk,0 [(1− δαi,c)(1− δβi,c)] + δk,1 [δαi,c(1− δβi,c) + δβi,c(1− δαi,c)] + δk,2 [δαi,cδβi,c] .

For example, γWαi,βi(2) = 1 if there are two copies of a wild-type allele at position i in an [α, β]

individual; otherwise γWαi,βi(2) = 0. We also define α0 = β0 = W .
We understand Equations (7) as follows. Inheritance at each locus is independent, so the total

probability pα,β(b) is the product of inheritance probabilities at each individual position. Consider
locus i. There are two possibilities. Either there is a daisy drive allele at the previous locus, which
entails γDαi−1,βi−1

(0) = 0. (This eliminates the sum in the second pair of square brackets.) Or there
is no daisy drive allele at the previous locus, which entails γDαi−1,βi−1

(0) = 1. (This eliminates the
sum in the first pair of square brackets.)

If there is a daisy drive allele at the previous locus, then the value of the factor in the product
of Equations (7) depends on the genotype at the current locus:

• (αi, βi) = (W,W ). This entails γWαi,βi(2) = 1. Only R alleles are produced at locus i. Thus,
the factor is 1 if δbi,R = 1. Otherwise, it is zero.

• (αi, βi) = (W,D). This entails γWαi,βi(1)γDαi,βi(1) = 1. By the action of the drive, D alleles
are produced at locus i with probability (1 +H)/2, or R alleles are produced at locus i with
probability (1−H)/2. So if δbi,D = 1, then the factor is (1 +H)/2. Or if δbi,R = 1, then the
factor is (1−H)/2. Otherwise, it is zero.

• (αi, βi) = (W,R). This entails γWαi,βi(1)γRαi,βi(1) = 1. Only R alleles are produced at locus i.
Thus, the factor is 1 if δbi,R = 1. Otherwise, it is zero.

• (αi, βi) = (D,D). This entails γDαi,βi(2) = 1. Only D alleles are produced at locus i. Thus,
the factor is 1 if δbi,D = 1. Otherwise, it is zero.
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• (αi, βi) = (D,R). This entails γDαi,βi(1)γRαi,βi(1) = 1. Here, D and R alleles are produced at
locus i in equal proportions. Thus, the factor is 1/2 if δbi,D = 1 or if δbi,R = 1. Otherwise, it
is zero.

• (αi, βi) = (R,R). This entails γRαi,βi(2) = 1. Only R alleles are produced at locus i. Thus,
the factor is 1 if δbi,R = 1. Otherwise, it is zero.

Similarly, if there is no daisy drive allele at the previous locus, then the value of the factor in the
product of Equations (7) depends on the genotype at the current locus. However, because there is
no drive, the inheritance probabilities are simply Mendelian:

• (αi, βi) = (W,W ). This entails γWαi,βi(2) = 1. Only W alleles are produced at locus i. Thus,
the factor is 1 if δbi,W = 1. Otherwise, it is zero.

• (αi, βi) = (W,D). This entails γWαi,βi(1)γDαi,βi(1) = 1. There is no drive action, so W alleles
and D alleles are produced at locus i in equal proportions. Thus, if δbi,W = 1 or δbi,D = 1,
then the factor is 1/2. Otherwise, it is zero.

• (αi, βi) = (W,R). This entails γWαi,βi(1)γRαi,βi(1) = 1. Here, W alleles and R alleles are
produced at locus i in equal proportions. Thus, if δbi,W = 1 or δbi,R = 1, then the factor is
1/2. Otherwise, it is zero.

• (αi, βi) = (D,D). This entails γDαi,βi(2) = 1. Only D alleles are produced at locus i. Thus,
the factor is 1 if δbi,D = 1. Otherwise, it is zero.

• (αi, βi) = (D,R). This entails γDαi,βi(1)γRαi,βi(1) = 1. Here, D alleles and R alleles are
produced at locus i in equal proportions. Thus, the factor is 1/2 if δbi,D = 1 or δbi,R = 1.
Otherwise, it is zero.

• (αi, βi) = (R,R). This entails γRαi,βi(2) = 1. Only R alleles are produced at locus i. Thus,
the factor is 1 if δbi,R = 1. Otherwise, it is zero.

The selection dynamics for an n-element daisy drive are then modeled by the following equations:

ẋab =
∑
α

gα
∑
β

gβ

n∏
i=1

∆αiβi
aibi
− ψ2xab (8)

Here, as shorthand notation, we define

∆αiβi
aibi

= δaibiδαiaiδβibi

+ γWai,bi(1)γDai,bi(1)γWαi,βi(1)γDαi,βi(1)

+ γWai,bi(1)γRai,bi(1)γWαi,βi(1)γRαi,βi(1)

+ γDai,bi(1)γRai,bi(1)γDαi,βi(1)γRαi,βi(1)

In Equations (8), the haplotypes α and β are summed independently. There is one such equation
for each possible genotype [a, b].

We impose the density constraint ∑
a,b

xab = 1. (9)
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We use the following identity: ∑
a,b

n∏
i=1

∆αiβi
aibi

= 1

And, as before, the form of ψ that enforces the density constraint is

ψ =
∑
α

gα. (10)

2.3 Continuous release

To model a continuous release of individuals carrying the daisy drive construct into a population,
we use the following equations:

ẋab =
∑
α

gα
∑
β

gβ

n∏
i=1

∆αiβi
aibi

+ Cab −

ψ2 +
∑
α,β

Cαβ

xab (11)

A nonzero value of Cab models a flow of individuals of genotype [a, b] into the population. Equa-
tions (11) are thus a generalization of Equations (8). ψ is given by Equation (10), and the density
constraint, Equation (9), holds at all times.

3 Two-population model for an n-element daisy drive with resis-
tance

We now extend the model from Section 2.3 to include a simple spatial component: two populations
connected by gene flow.

3.1 Two-population model without gene flow

First, we consider two populations whose evolutionary dynamics are decoupled. We denote by xab
the frequency of individuals with genotype [a, b] among individuals in the target population, and we
denote by yab the frequency of individuals with genotype [a, b] among individuals in the mainland
population. We denote by g(T )b the rate at which gametes with haplotype b are produced in the
target population, and we denote by g(M)

b the same for the mainland population. For an n-element
daisy drive, g(T )b and g(M)

b are given by

g
(T )
b =

∑
α,β

xαβf(α, β)pα,β(b)

g
(M)
b =

∑
α,β

yαβf(α, β)pα,β(b)
(12)

Here, f(α, β) is the fitness of the genotype [α, β], and pα,β(b) is the probability that an individ-
ual of genotype [α, β] produces a gamete with haplotype b. These two quantities are given by
Equations (6) and (7), respectively.

Equations (12) are essentially identical to Equations (5), except we assume that only individuals
in the target population contribute to the target population gamete pool and similarly for the
mainland. Thus, the difference between Equations (12) and Equations (5) arises from the separation
of the two populations via g(T )b , g(M)

b , xαβ , and yαβ .

14



The selection dynamics for an n-element daisy drive system in two populations are then modeled
by the following equations:

ẋab =
∑
α

g(T )α

∑
β

g
(T )
β

n∏
i=1

∆αiβi
aibi

+ C
(T )
ab −

(ψ(T )
)2

+
∑
α,β

C
(T )
αβ

xab

ẏab =
∑
α

g(M)
α

∑
β

g
(M)
β

n∏
i=1

∆αiβi
aibi

+ C
(M)
ab −

(ψ(M)
)2

+
∑
α,β

C
(M)
αβ

 yab

Notice that each population experiences selection dynamics identical to the single-population model
given by Equations (11). A nonzero value of C(T )

ab models a flow of individuals of genotype [a, b]

into the target population, and a nonzero value of C(M)
ab models a flow of individuals of genotype

[a, b] into the mainland population.
The density constraints are ∑

a,b

xab = 1

∑
a,b

yab = 1

To enforce these density constraints, we set

ψ(T ) =
∑
α

g(T )α

ψ(M) =
∑
α

g(M)
α

3.2 Two-population model with gene flow

Next, we assume that there is a nonzero rate of migration of individuals from the target popula-
tion to the mainland population and vice versa. For notational clarity, we define new frequency
variables. We denote by Xab (with an uppercase X) the frequency of individuals with genotype
[a, b] among individuals in the target population when there is migration, and we denote by Yab
(with an uppercase Y ) the frequency of individuals with genotype [a, b] among individuals in the
mainland population when there is migration. We denote by G(T )

b (with an uppercase G) the rate
at which gametes with haplotype b are produced in the target population when there is migration,
and we denote by G(M)

b (with an uppercase G) the same for the mainland population when there is
migration. G(T )

b and G(M)
b are given by

G
(T )
b =

∑
α,β

Xαβf(α, β)pα,β(b)

G
(M)
b =

∑
α,β

Yαβf(α, β)pα,β(b)
(13)

Here, f(α, β) is the fitness of the genotype [α, β], and pα,β(b) is the probability that an individual of
genotype [α, β] produces a gamete with haplotype b. These two quantities are given by Equations (6)
and (7), respectively.

We assume that, over a given time interval, the number of individuals migrating in each direction
is equal, so that the population sizes of the target and the mainland each remain constant. The rate
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of migration is quantified by the parameter r. We also denote by R the fraction of all individuals
that are on the target. (Similarly, 1−R is the fraction of all individuals that are on the mainland.)
The selection dynamics for an n-element daisy drive system in two populations that are connected
by gene flow are then modeled by the following equations:

Ẋab =
∑
α

G(T )
α

∑
β

G
(T )
β

n∏
i=1

∆αiβi
aibi

+ C
(T )
ab +

r

R
(Yab −Xab)−

(Ψ(T )
)2

+
∑
α,β

C
(T )
αβ

Xab

Ẏab =
∑
α

G(M)
α

∑
β

G
(M)
β

n∏
i=1

∆αiβi
aibi

+ C
(M)
ab +

r

1−R
(Xab − Yab)−

(Ψ(M)
)2

+
∑
α,β

C
(M)
αβ

Yab

(14)
The density constraints are ∑

a,b

Xab = 1

∑
a,b

Yab = 1

To enforce these density constraints, we set Ψ(T ) (with an uppercase Ψ) and Ψ(M) (with an uppercase
Ψ) to equal

Ψ(T ) =
∑
α

G(T )
α

Ψ(M) =
∑
α

G(M)
α

4 N-population model for an n-element daisy drive with resistance

The above treatment is readily extended to a population that consists of N islands. Denote the
frequency of individuals of genotype [a, b] on island ` (for 1 ≤ ` ≤ N) as X(`)

ab . Gametes with
haplotype b are produced on island ` at rate G(`)

b , where G(`)
b is given by

G
(`)
b =

∑
α,β

X
(`)
αβf(α, β)pα,β(b)

The rate of migration of individuals between islands ` and ω is quantified by the parameter r`ω = rω`.
The fraction of all individuals in the population that are on island ` is denoted by R`. The dynamics
of X(`)

ab are given by

Ẋ
(`)
ab =

∑
α

G(`)
α

∑
β

G
(`)
β

n∏
i=1

∆αiβi
aibi

+ C
(`)
ab +

N∑
ω=1
ω 6=`

r`ω
R`

(
X

(ω)
ab −X

(`)
ab

)
−

(Ψ(`)
)2

+
∑
α,β

C
(`)
αβ

X
(`)
ab

(15)
The density constraints are ∑

a,b

X
(`)
ab = 1

To enforce these density constraints, we set Ψ(`) (with an uppercase Ψ) to equal

Ψ(`) =
∑
α

G(`)
α
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5 Particular case: Daisy-chain versus self-propagating drives on
five islands

It is instructive to contrast the evolutionary dynamics of a daisy-chain gene drive with a self-
propagating gene drive, where in both cases the evolution occurs in a population consisting of five
islands. For simplicity, we assume that individuals are only exchanged between nearby islands, i.e.,
there is gene flow between islands 1 and 2, between islands 2 and 3, between islands 3 and 4, and
between islands 4 and 5. We further assume that these rates of gene flow are all equal, and we
assume that each island has the same number of individuals.

In this section, we present the equations necessary to perform simulations of the evolutionary
dynamics for each of these scenarios.

5.1 5-population model for an n-element daisy drive

For modeling the dynamics of a daisy-chain gene drive on five islands, we use Equations (15).
Substituting r12/R1 = r21/R2 = r23/R2 = r32/R3 = r34/R3 = r43/R4 = r45/R4 = r54/R5 = r, and
setting all other migration rates equal to zero, we obtain

Ẋ
(1)
ab =

∑
α

G(1)
α

∑
β

G
(1)
β

n∏
i=1

∆αiβi
aibi

+ C
(1)
ab + r

(
X

(2)
ab −X

(1)
ab

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
ab

Ẋ
(2)
ab =

∑
α

G(2)
α

∑
β

G
(2)
β

n∏
i=1

∆αiβi
aibi

+ C
(2)
ab + r

(
X

(3)
ab +X

(1)
ab − 2X

(2)
ab

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
ab

Ẋ
(3)
ab =

∑
α

G(3)
α

∑
β

G
(3)
β

n∏
i=1

∆αiβi
aibi

+ C
(3)
ab + r

(
X

(4)
ab +X

(2)
ab − 2X

(3)
ab

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
ab

Ẋ
(4)
ab =

∑
α

G(4)
α

∑
β

G
(4)
β

n∏
i=1

∆αiβi
aibi

+ C
(4)
ab + r

(
X

(5)
ab +X

(3)
ab − 2X

(4)
ab

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
ab

Ẋ
(5)
ab =

∑
α

G(5)
α

∑
β

G
(5)
β

n∏
i=1

∆αiβi
aibi

+ C
(5)
ab + r

(
X

(4)
ab −X

(5)
ab

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
ab

5.2 5-population model for a self-propagating drive

The equations for modeling the dynamics of a self-propagating gene drive on five islands are based
on Section S7 of the Supplementary Materials for Noble et al. (2017) (Ref. 1). (For more details
and descriptions, please see the writing therein.)

For a self-propagating gene drive, consider that there are N guide RNAs. There are the drive
allele, D, N “costly” resistant alleles, Ri (with 1 ≤ i ≤ N ), N “neutral” resistant alleles, Si (with
1 ≤ i ≤ N ), and the wild-type allele, S0.

We use X(`)
ab to denote the frequency of individuals of genotype [a, b] on island `. The rates at
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which each of the 2N + 2 types of gametes are produced on island ` are given by

F
(`)
D = fDDX

(`)
DD +

N∑
k=1

pRkD,DfRkDX
(`)
RkD

+
N∑
k=0

pSkD,DfSkDX
(`)
SkD

F
(`)
Si

=

N∑
k=0

1 + δki
2

fSkSiX
(`)
SkSi

+
1

2

N∑
k=1

fRkSiX
(`)
RkSi

+
i∑

k=0

pSkD,SifSkDX
(`)
SkD

F
(`)
Ri

=

N∑
k=1

1 + δki
2

fRkRiX
(`)
RkRi

+
1

2

N∑
k=0

fRiSkX
(`)
RiSk

+

i∑
k=1

pRkD,RifRkDX
(`)
RkD

+

i−1∑
k=0

pSkD,RifSkDX
(`)
SkD

From conservation of probability, we have

pRkD,D +
N∑
i=k

pRkD,Ri = 1

pSkD,D +
N∑
i=k

pSkD,Si +
N∑

i=k+1

pSkD,Ri = 1

Since type RND and type SND individuals are fully resistant to being manipulated by the drive
construct, they show standard Mendelian segregation in their production of gametes, and we have

pRND,RN = pSND,SN =
1

2

For modeling the dynamics of a self-propagating gene drive on five islands, we use the following
equations:

The dynamics of individuals of genotype DD on each island are given by

Ẋ
(1)
DD =

(
F

(1)
D

)2
+ C

(1)
DD + r

(
X

(2)
DD −X

(1)
DD

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
DD

Ẋ
(2)
DD =

(
F

(2)
D

)2
+ C

(2)
DD + r

(
X

(3)
DD +X

(1)
DD − 2X

(2)
DD

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
DD

Ẋ
(3)
DD =

(
F

(3)
D

)2
+ C

(3)
DD + r

(
X

(4)
DD +X

(2)
DD − 2X

(3)
DD

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
DD

Ẋ
(4)
DD =

(
F

(4)
D

)2
+ C

(4)
DD + r

(
X

(5)
DD +X

(3)
DD − 2X

(4)
DD

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
DD

Ẋ
(5)
DD =

(
F

(5)
D

)2
+ C

(5)
DD + r

(
X

(4)
DD −X

(5)
DD

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
DD
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The dynamics of individuals of genotype RiD on each island are given by

Ẋ
(1)
RiD

= 2F
(1)
Ri
F

(1)
D + C

(1)
RiD

+ r
(
X

(2)
RiD
−X(1)

RiD

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
RiD

Ẋ
(2)
RiD

= 2F
(2)
Ri
F

(2)
D + C

(2)
RiD

+ r
(
X

(3)
RiD

+X
(1)
RiD
− 2X

(2)
RiD

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
RiD

Ẋ
(3)
RiD

= 2F
(3)
Ri
F

(3)
D + C

(3)
RiD

+ r
(
X

(4)
RiD

+X
(2)
RiD
− 2X

(3)
RiD

)
−

(Ψ(3)
)2

+
∑
α,β

C
(3)
αβ

X
(3)
RiD

Ẋ
(4)
RiD

= 2F
(4)
Ri
F

(4)
D + C

(4)
RiD

+ r
(
X

(5)
RiD

+X
(3)
RiD
− 2X

(4)
RiD

)
−

(Ψ(4)
)2

+
∑
α,β

C
(4)
αβ

X
(4)
RiD

Ẋ
(5)
RiD

= 2F
(5)
Ri
F

(5)
D + C

(5)
RiD

+ r
(
X

(4)
RiD
−X(5)

RiD

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
RiD

The dynamics of individuals of genotype SiD on each island are given by

Ẋ
(1)
SiD

= 2F
(1)
Si
F

(1)
D + C

(1)
SiD

+ r
(
X

(2)
SiD
−X(1)

SiD

)
−

(Ψ(1)
)2

+
∑
α,β

C
(1)
αβ

X
(1)
SiD

Ẋ
(2)
SiD

= 2F
(2)
Si
F

(2)
D + C

(2)
SiD

+ r
(
X

(3)
SiD

+X
(1)
SiD
− 2X

(2)
SiD

)
−

(Ψ(2)
)2

+
∑
α,β

C
(2)
αβ

X
(2)
SiD

Ẋ
(3)
SiD

= 2F
(3)
Si
F

(3)
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Ẋ
(5)
SiD

= 2F
(5)
Si
F

(5)
D + C

(5)
SiD

+ r
(
X

(4)
SiD
−X(5)

SiD

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
SiD

19



The dynamics of individuals of genotype RiSj on each island are given by
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Ẋ
(5)
RiSj

= 2F
(5)
Ri
F

(5)
Sj

+ C
(5)
RiSj

+ r
(
X

(4)
RiSj
−X(5)

RiSj

)
−

(Ψ(5)
)2

+
∑
α,β

C
(5)
αβ

X
(5)
RiSj

The dynamics of individuals of genotype RiRj on each island are given by
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The dynamics of individuals of genotype SiSj on each island are given by
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Fig. S1. B→A “split” drives and daisy drive family tree analysis. (A) Family tree resulting from 

a single-organism release of a B→A split drive in a large wild-type population in the absence of 

selection. (In reality, B elements would be deleterious and thus decline in frequency over time.) 

For comparison, a C→B→A daisy drive is shown in main text Fig. 1C. Green mice have at least 

one copy of the cargo A element, while grey mice have only the wild-type allele at that locus. (B) 

A graphical depiction of total alleles in a population per generation for B→A through 

D→C→B→A daisy drives. Throughout, chromosome illustrations represent genotypes of 

germline cells after drive has occurred. 
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Fig. S2. A potential means of reducing the fitness cost resulting from incorrect repair. One 

strategy might involve targeting a gene whose loss impairs gametogenesis, such as a ribosomal 

gene. Increased replication of correctly repaired cells carrying the drive system could potentially 

result in a wild-type number of gametes, all of which carry the drive system. 
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Fig. S3. Fold-change in daisy drive cargo frequency after 20 generations for various daisy chain 

lengths relative to a release of organisms only containing the cargo. (left) Homing efficiency is 

assumed to be 60%, and (middle) 80% and (right) 95%. All figures assume 10% cargo fitness 

cost, 0.01% upstream element cost and neutral resistance. Solid lines correspond to a single 

release with initial release frequency indicated by the horizontal axes, while dashed lines 

correspond to continuous releases with frequency indicated by the horizontal axes. See SI Text 

Section 2.3 for details on our continuous release implementation. 
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Fig. S4. Analysis of the time that a 3-element (CBA) daisy-chain cargo element remains above 

50% frequency in a single population. In each plot, the parameter indicated on the horizontal axis 

is varied, and the other parameters are fixed. The fixed values in the first four panels are: cargo 

element (A) fitness cost, c, 5%, release frequency 10%, upstream element (C, B) fitness cost, d, 

0.01%, homing efficiency, H, 95%, cargo resistance cost, s, 0. In the far-right panel, all 

parameters are identical except the release frequency is 1%. In the first panel, we additionally 

plot a function a/c, fitted with a=9.99, to illustrate the inverse relationship between cargo time 

above 50% and cargo fitness cost, c, when c is low. The model used throughout is described in 

SI Text Section 2.2. 
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Fig. S5. Further analysis of the 5-population model, shown in Fig. 4 of the main text and 

described in SI Text Section 5. Three drive systems are considered, as in main text Fig. 4: CBA 

daisy-chain drive (left), self-propagating drive (middle) and inundative non-drive release (right). 

We assume 5 equally-sized populations connected in a chain via one constant migration rate, 

which varies on the horizontal axes from 10-4 to 10-1. (e.g., 10-2 corresponds to a scenario where 

each population is connected to its neighbors via a migration rate of 10-2 in each direction.) 

Maximum frequencies of each allele in each population over 500 generations are then plotted as 

functions of the migration rate. 
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Fig. S6. Daisy drive systems can be constructed using orthogonal Cas9 elements. Such a drive 

system is resistant to conversion into a daisy necklace, which would require a recombination 

event that moved the entire Cas9 gene and associated guide RNAs into a subsequent locus in the 

daisy-chain. Ensuring that all the Cas9 proteins are expressed appropriately without re-using 

promoters and thereby creating homology between elements could be challenging. 
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Fig. S7. Multiple sequence alignment of existing tracrRNA sequences from closely related Cas9 

systems with the tracrRNA component of our sgRNA template (i.e., the template from Fig. 5C, 

GTNNNAGAGNNN--GRRA--NNNCAAGTTVVVATAAGGCNAGTCCGTYHYCANNNN-

GRR-A-NNNNGGCACCGAKTCGGTGC). The sequences with names beginning “Br_” are 

taken from Fig. S2 of Briner et al., Mol. Cell (2014) (Ref. 36 in the main text), and the sequences 

with names beginning “Ch_” are taken from Fig. 4 of Chylinski et al., RNA Biol., (2013) (Ref. 45 

in the main text). Alignments were performed via the MAFFT program with default parameters 

(Refs. (46, 47) from the main text). Note that mismatches between the template above and the 

template shown in Fig. 5B-C were empirically tested and found to be tolerated. 

  

template           1 -----------------------------------------N----NNC-AAGTTVVVATAAGGC--------------N
Br_S.pyogenes      1 -----------------TTGTTGGAACCATTCAAAACAGCAT----AGC-AAGTTAAAATAAGGC--------------T
Br_S.dysagalact    1 -----------------TTGTTGGAACCATTCAAAACAACGT----AGC-AAGTTAAAATAAGGC--------------T
Br_S.equi          1 -----------------CCTATGGAACTATTCAATACAGCAT----AGCAAAGTTAAAATAAGGC-------------TT
Br_S.thermophil    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.salivarius    1 -----------------GGTTTGAAACCATTCGAAACAATAC----AGCAAAGTTAAAATAAGGC-------------TT
Br_S.gallolytic    1 -----------------TTGTTGGAGCTATTCGAAACAACAC----AGC-GAGTTAAAATAAGGC-------------TT
Br_S.lutetiensi    1 -----------------TTGTTGGAACTATTCGAAACAACAC----AGT-GAGTTAAAATAAGGC-------------TT
Br_S.anginosisB    1 -----------------ATGTTGGAATCATTCGAAACAACAC----AGC-AAGTTAAAATAAGGC-------------TT
Br_S.mitis         1 -----------------TCGTTGGAACTATTCGAAACAACAC----AGCAAAGTTAAAATAAGGC-------------TT
Br_S.sanguinis     1 -----------------TTGTTGGAACTATTCGAAACAACAC----AGC-AAGTTAAAATAAGGC-------------TT
Br_S.oralis        1 -----------------TTGTTGGAACTATTCGAAACAACAC----AGC-AAGTTAAAATAAGGC-------------TT
Br_S.mutans        1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.intermediu    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.anginosusA    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.thermophil    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.vestibular    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.gordonii      1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.parasangui    1 ----------------CTTACACAGTTACTTAAATCTTGCAG----AAG-CTACAAAGATAAGGC-------------TT
Br_S.orisratti     1 ----------------CTTGCACAGTTACTTAAATCTTGCAG----AGC-CTACAAAGATAAGGC-------------TT
Br_S.henryi        1 ----------------CTTGCACAGTTACTTAAATCTTGCTG----AGC-CTACAAAGATAAGGC-------------TT
Br_S.infantariu    1 ----------------CTTGCACGGTTACTTAAATCTTGCAG----AGC-CTACAAAGATAAGGC-------------TT
Ch_C.jejuni        1 ------------------------------AAGAAATTTAAA----AAG-GGACTAAAATAAAGAGTT--TGCGGGACTC
Ch_F.novicida      1 ----------------------------ATCTAAAATTATAA--ATGTA-CCAAATAATTAATGC-------------TC
Ch_S.thermophil    1 ------TTG-------TGGTTTGAAACCATTCGAAACAACAC----AGC-GAGTTAAAATAAGGC-------------TT
Ch_M.mobile        1 TGTATTTCGAAATACAGATGTACAGTTAAGAATACATAAGAATGATACA-TCACTAAAAAAAGGC-------------TT
Ch_L.innocua       1 -------------------ATTGTTAGTATTCAAAATAACAT----AGC-AAGTTAAAATAAGGC-------------TT
Ch_S.pyogenes      1 -------------------GTTGGAACCATTCAAAACAGCAT----AGC-AAGTTAAAATAAGGC--------------T
Ch_S.mutans        1 -------------------GTTGGAATCATTCGAAACAACAC----AGC-AAGTTAAAATAAGGCAGTGATTTTTAATCC
Ch_S.thermophil    1 ------TTG-------TGGTTTGAAACCATTCGAAACAACAC----AGC-GAGTTAAAATAAGGC-------------TT
Ch_N.meningitid    1 ---------------ACATATTGTCGCACTGCGAAATGAGAA----CCG-TTGCTACAATAAGGCC--------------
Ch_P.multocida     1 ---------------GCATATTGTTGCACTGCGAAATGAGAG----ACG-TTGCTACAATAAGGC---------------

template          21 AGTCCGTYHYCANNNNGRRA--NNNNG-GCACCGAKTCGGTGC-------------------------------------
Br_S.pyogenes     45 AGTCCGTTATCAACTTGAAA--AAGTG-GCACCGAGTCGGTGCTTTTTTT------------------------------
Br_S.dysagalact   45 AGTCCGTTATCAACTTGAAA--AAGTG-GCACCGAGTCGGTGCTTTTT--------------------------------
Br_S.equi         47 TGTCCGTAATCAACCTGAAA--AGGGGAGCACCGAATCGGTGCTTTTTT-------------------------------
Br_S.thermophil   47 AGTCCGTACTCAACTTGAAA--AGGTG-GCACCGATTCGGAAGGC-------------TTCATGCCGAAATCAACACCCT
Br_S.salivarius   47 AGTCCGTATTCAACTTGAGA--AAGTG-GCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.gallolytic   46 TGTCCGTACACAACTTGTAA--AAGTGGCACCCGATTCGGGTGCGTTTTTTT----------------------------
Br_S.lutetiensi   46 TGTCCGTACACAACTTATAA--AAGTGGCACCCGATTCGGATGCATTTTTT-----------------------------
Br_S.anginosisB   46 TGTCCGTACTCAACTT-AAA--AAGTGCGCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.mitis        47 TGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.sanguinis    46 TGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTTT-------------------------------
Br_S.oralis       46 TGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTT--------------------------------
Br_S.mutans       47 CATGCCGAAATCAACACCCT--ATCTATTATAAGATAGGGTGTTTT----------------------------------
Br_S.intermediu   47 CATGCCGAAATCAACACCCT--GTC-----TATGACGGGGTGTTTT----------------------------------
Br_S.anginosusA   47 CATGCCGAAATCAACACCCT--GTC-----TATGACGGGGTGTTTT----------------------------------
Br_S.thermophil   47 AGTCCGTACTCAACTTGAAA--AGGTG-GCACCGATTCGGAAGGC-------------TTCATGCCGAAATCAACACCCT
Br_S.vestibular   47 CATGCCGAAATCAACACCCT--GTCA-TTTTATGGCAGGGTGTTTT----------------------------------
Br_S.gordonii     47 CATGCCGAATTCAACACCCT--GTCA--TTTATGGCGGGGTGTTTT----------------------------------
Br_S.parasangui   47 CATGCCGAATTCAACACCCT--GTCA--TTTATGGCGGGGTGTTTT----------------------------------
Br_S.orisratti    47 TATGCCGAAATCAAGCACCC--C-----GTTTATACGAGGTGCTTTT---------------------------------
Br_S.henryi       47 CATGCCGAAATCAAGCACCC--CCGT-TTTTAACGAGGGGTGCTTTT---------------------------------
Br_S.infantariu   47 CATGCCGAATTCAAGCACCC--CA---TGTTTACATGGGGTGCTTTT---------------------------------
Ch_C.jejuni       44 TGCGGGGTTACAATCCCCTA--AAAC--------------CGCTTTT---------------------------------
Ch_F.novicida     37 TGTAATCATTTAAAAGTATTTTGAACGGACCTCTGTTTGACACGTCTGAATAACTAAAAA--------------------
Ch_S.thermophil   50 CATGCCGAAATCAACACCCT--GTCA-TTTTATGGCAGGGAAGGC-------------TTAGTCCGTACTCAACTTGAAA
Ch_M.mobile       67 TATGCCGTAACTACTACTTA-------TTTTCAAAATAAGTAGTTTTTTTT-----------------------------
Ch_L.innocua      44 TGTCCGTTATCAACTTTTAATTAAGTA-GCGCTGTTTCGGCGCTTTTTTT------------------------------
Ch_S.pyogenes     43 AGTCCGTTATCAACTTGAAA--AAGTG-GCACCGAGTCGGTGCTTTTTTT------------------------------
Ch_S.mutans       57 AGTCCGTACACAACTTGAAA--AAGTGCGCACCGATTCGGTGCTTTTTTATTT---------------------------
Ch_S.thermophil   50 CATGCCGAAATCAACACCCT--GTCA-TTTTATGGCAGGGAAGGC-------------TTAGTCCGTACTCAACTTGAAA
Ch_N.meningitid   47 ------------GTCTGAAA--AGATGTGCCGCAACGCTCTGCCCCTTAAAGCTTCTGCTTTAAGGGG---------CA-
Ch_P.multocida    46 ------------TTCTGAAA--AGAATGACCGTAACGCTCTGCCCCTTGTGATTCTTAATTGCAAGGGGCATCGTTTTT-

template             ---------------------------------------------------------------------
Br_S.pyogenes        ---------------------------------------------------------------------
Br_S.dysagalact      ---------------------------------------------------------------------
Br_S.equi            ---------------------------------------------------------------------
Br_S.thermophil  111 --GTCA-TTTTATGGCAGGGGTTTTTTTT------------------------------TGTTTT----
Br_S.salivarius      ---------------------------------------------------------------------
Br_S.gallolytic      ---------------------------------------------------------------------
Br_S.lutetiensi      ---------------------------------------------------------------------
Br_S.anginosisB      ---------------------------------------------------------------------
Br_S.mitis           ---------------------------------------------------------------------
Br_S.sanguinis       ---------------------------------------------------------------------
Br_S.oralis          ---------------------------------------------------------------------
Br_S.mutans          ---------------------------------------------------------------------
Br_S.intermediu      ---------------------------------------------------------------------
Br_S.anginosusA      ---------------------------------------------------------------------
Br_S.thermophil  111 --GTCA-TTTTATGGCAGGGGTTTTTTTT------------------------------TGTTTT----
Br_S.vestibular      ---------------------------------------------------------------------
Br_S.gordonii        ---------------------------------------------------------------------
Br_S.parasangui      ---------------------------------------------------------------------
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Fig. S8. Complete list of sequence-divergent guide RNAs generated and assayed using the 

transcriptional activation reporter.  
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Fig. S9. Results of the pilot screen of the first set of designed sgRNA sequences. #3-6, #10-13, 

and #17-20 all carried the extra insert; the latter 8 displayed markedly lower activity and were 

not further considered.  The cause of the difference is unclear, although it is worth noting that 

these all had longer stem-loops than did #3-6, all of which were closer to the activity of the 

standard or 'wild-type' sgRNA. 
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Fig. S10. Potential family tree of a C→B→A genetic load daisy drive for which the cargo in the 

A element disrupts a female fertility gene. The C element is male-linked, ensuring that it does 

not suffer a fitness cost from the loss of female fertility. Mating events between two parents 

carrying the A element (boxed) can produce sterile female offspring that will suppress the 

population. Males do not suffer a fitness cost due to disruption of female-specific fertility genes. 

Genome illustrations depict germline cells after drive has occurred. Females are placed on the 

right side in each pair of individuals. 
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Fig. S11. Utility of a costly daisy reversal drive with orthogonal Cas9 elements in achieving 

complete genetic reversal of an unwanted drive system to wild-type. Suppose an unwanted drive 

system has spread a harmful cargo (yellow) through the target locus A via the commonly used 

Cas9 protein from S. pyogenes. (A) A daisy reversal drive system uses guide RNAs for S. 

pyogenes Cas9 to copy all elements while overwriting the unwanted drive system and its cargo. 

(B) The same daisy reversal drive system spreads as a normal daisy drive using its own 

orthogonal CRISPR system (e.g. S. aureus Cas9) on encountering wild-type sequences. (C) An 

unwanted drive system is countered by releasing the daisy reversal system at multiple sites. The 

daisy drive system efficiently overwrites the unwanted drive system throughout its range, 

spreading into and through the wild-type sequences at the edges of that range to ensure that it 

reaches and eliminates every copy. This immediately eliminates the harmful cargo. Because the 

A element of the daisy drive system is costly and the other elements are always co-resident with 

it due to the daisy drive effect, all elements of the daisy drive will be outcompeted and 

eliminated by wild-type alleles over time, potentially leading to complete genetic reversal. 
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