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Figure S1. The demo of the filtration device setup and the detail. The kiethley instrument provide 
the voltage on the cell-filtration device. The peristaltic pump controls the contaminated water 
loading rate.



The way to get the activated materials mass loading is according to this formula:
M=M3-M1-(M2-M1)/2

M1 is the weight of carbon felt. M2 is the weight after coated slurry(Super P and PAN). M3 is the 
weight after reaction.
Than we can get the capacity of this polymer:

E=(C0-Cx)×V/M
C0 is the concentration of the original contaminated water. Cx is the concentration after deposition 
at that time. V means the current volume in the container. So that we can realize the filtration 
capability clearly from the curve in the Figure S2. 

Figure S2. SEM image of carbon fiber. a) Commercial carbon felt. b), PAN-Ami/C coated carbon 
felt. The insert image shows the ~50nm carbon black nano particles are bound on the fiber surface 
with help of polymer film. 



Figure S3. The hydrophilia comparison between three different materials. a) Commercial CF, the 
contact angle is over 120o. b) PCCF, the contact angle is less than 30o. c) PACCF. the droplet 
instantly soaked into the material.



Figure S4. The electrical impedances of CF and coated CF. The black dots are the CF, the red dots 
are PACCF. All the tests used 0.1 M Na2SO4 as electrolyte.



Figure S5. Flow test of Hg2+ removal under long term running. 



Figure S6. a), b) and c) are capacity tests of PACCF under bias and no bias in the stirring system 
dealing with 1000 ppm Pb2+, Cd2+, Cu2+ contaminated water, respectively (The electrode size is 1 
cm2×3.18 cm. The polymer loading weights are 5.9 mg, 5.5 mg and 5.8 mg.). d), e) and f) are 
optimization tests of 100ppb single-ion simulated water by the flowing device dealing with 100 
ppb Pb2+, Cd2+, Cu2+ contaminated water, respectively. The red dashes show the safe levels for 
each cation.



Figure S7. EDX images of the deposit on the boundary between polymer coated area and blank 
area under 10 V.



Figure S8. The removal for stirring system with 1000 ppm of single element (Cu2+,Cd2+, Pb2+) 
simulated water. Each concentration of residue is under the drinking safety level. a) The SEM of 
these three kinds of deposition covered on the electrodes after 5 min. The inset SEM of Cu shows 
their assembling cubic structure. b) The XRD of the deposition according to the samples in a) 
respectively. c) The XPS of the deposition according to the samples in a) respectively.



Figure S9. The removal for long term flowing with single element (Cu2+,Cd2+, Pb2+) simulated 
water. a) The SEM of depositions on the fibers after filtrating 3 days. Respectively, b), c), d) 
figures show the different nanostructures of heavy metals located on three areas, like cubic 
structure of Cu and flower-like flake shapes of Cd and Pb.



   As we know, each metal ion has its own reduction potential in the same electrochemical 
working condition. These potential gaps can be used to separate the different metal. So this 
attempt had been applied in large concentration contaminated water (1000 ppm). In such high 
concentration, using alternating current instead of direct current can limit the hydrogen evolution 
and prevent all the ions deposit as hydroxide. Here square-wave alternating current had been 
applied in 100 Hz. Their reduction potentials are +0.34V (Cu2+/Cu), −0.13 V (Pb2+/Pb) and −0.40 
V (Cd2+/Cd) versus SHE (pH=0), respectively. The pH of our simulated water was around 6, so 
that the reduction potential of hydrogen here was around −0.35 V according to the Nernst equation. 
Theoretically, the metal ions can be taken out one by one under step-up voltage. But in real 
experiment, the Cu and Pb were always taken out together. Then the strategy changed the Pb and 
Cu ions were extracted first as metal in a low voltage (+3.3 V), and switch to the high voltage (1.2 
V) to oxidize the Pb (to form PbO2) and solve the Cu. After 5 hours, over 99% Pb ions had been 
taken out alone. (−0 V, 4.2 V) voltage was applied to attract the Cu ions, after another 5 hours 
operation, over 99% Cu had been deposit and less than 1% Cd ions left in the mother solution. For 
the remaining Cd ions, 5 V of DC was applied to rapidly collect them in 2 hours. This direct 
separation and recovery of heavy metal ions has great value on resources recycling comparing 
with traditional treatments.

Figure S10. First, AC (1, +3.3V) applied, the Pb ions were removed by 99.99%. Then AC (0, 
+4.2V) applied, the Cu ions were removed by 99.99%. Last step, 5V of DC applied, the Cd ions 
were taken out nearly 99.99% (Origin mixture water contained 1000 ppm of Cu2+, Cd2+, Pb2+ ions 
each, the frequency of AC was 100 Hz). 



Note 1. Power Consumption Analysis:
Unlike other pollutants adsorbents,1-16 the energy consumption mainly generated by applying 
direct current on the device. So it’s necessary to summarize the rough number of cost which can 
prove it worth to use or not.
The price of electricity used was 4~10 ¢ /kWh in most area of US.
Highest cost:

Cmax = $ 0.10 × 10-3 × V × Imax × 1 h × 1000 kg / 0.3 kg = $ 6.67 × 10-3

Lowest cost:
Cmin = $ 0.04 × 10-3 × V × Imin × 1 h × 1000 kg / 0.3 kg = $ 1.33 × 10-3

In the flow device tests with a small piece of materials (1 cm2×3.18 cm), the voltage used was 10 
V. In one hour, it could deal with 300 ml contaminated water (0.3 kg). The current showed was 
1~2 mA. So we can get the maximum and minimum cost according to the formula above. The 
price of electricity in different state can really change the cost a lot. But the base line of electric 
charge were extremely low. 
 



Table S1. 

DFT calculation of binding energy between metals and different monomers.a

a Values are calculated based on coordination modes reported before.

Cu2+ (eV) Cd2+ (eV) Pb2+ (eV)
Amidoxime 66.81 61.96 59.61

Nitrile 6.74 16.56 12.94
Acylamino 9.09 8.14 6.32

Fluoride 11.30 6.30 5.56



Table S2. 
Performance comparison of other methods before with ours.

Capacity
mg/g

Efficiency (Initial C0)
% (ppm)

Current density
A/m2

Flow rate
L/h

PH Ref.
Adsorbents

Cu Cd Pb Cu Cd Pb
Electroextraction with 

resins
1.8 >87.5 (40) 2 0.09 - 17

Palm shell activated 
carbon

7.1 - 23.1 88.8 
(50)

- 96.8 
(50)

0.1 0.5 5 18

LMOF-263 - 7.0 18.7 - 30 (10) 80 (10) - - - 19

Fe3O4/HA 46.3 50.4 92.4 > 95 (0.1) - - 6 20

Lime and Na2S - - 95 - - - 8.5 21

 Few-layered
GO nanosheets/HA

- 163 - - 50 - - - 6 22

Graphene-c-MWCNT 
hybrid aerogel

33.8 - 104.9 - - - - - - 23

Electric driven 
3D-GMOs 

3820 882 434 > 96.0 (100) - - 2 24

Electrospun APAN 
nanofiber mats

 150.6 -  60.6 90.5 
(200)

- 97.0 
(200)

- - 4 25

> 99.9 (1000) - -This work 2300 2600 2800
> 95.0 (0.1) 0.001 0.3

6 -
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