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eAppendix 1. Model Selection 
As the 66 training cohorts had a wide range of representative samples (3-1020), using 

accuracy as a metric of performance of the classifiers would not necessarily 

demonstrate the ability of the classifier to discriminate between all 66 output classes. 

Therefore, the performance of the trained models was evaluated using the F1-score as 

a measure. The F1-score is the harmonic mean of precision and recall, with 1.0 being 

the most desirable value (precision and recall of 1.0 for all output categories), and 0 

representing a classifier that has 0 precision and 0 recall on all output categories. 

  Algorithmic Model Selection 
Several supervised learning algorithms were evaluated, including a baseline linear 

comparator discussed below. For the selection of an initial classifier based on the 

training data, we evaluated the performance of 4 supervised learning methods, 

namely multi-class support vector machines (SVM), random forests (RF), extra trees 

ensemble (ET), and an ensemble of neural networks. Figure 1 shows the cross-

validation results of the best performing model in each classification algorithm 

category. The optimal models for these comparators were selected with grid search 

across a space of model-specific parameters, using 5-CV to identify the best model. 

Shallow (1 hidden layer) feed-forward neural networks were trained with varying 

sizes of the hidden layer. In the selection of the optimal parameter set for the neural 

networks, our search space spanned a range of values for the learning rate and the 

regularizers (L1 and L2). 

SVMs, RFs, and ETs were implemented using the scikit-learn package in 

python, and training was done on CPU machines. The custom neural nets were 

defined and trained using the lasagne library[6] in Python, and training was done 

using NVIDIA GEForce GTX TITAN X GPUs. The F1-Score was used as the main 

metric of assessment, to account for class imbalances in the training and test sets. 

Baseline Linear Comparator 

Using pairwise ANOVA, 3000 genes were found to be significantly enriched for distinguishing 

between the 66 training tissue and cancer types. Cancer samples in the metastatic cohort were 

evaluated by calculating simple pair-wise spearman correlation for these genes, for every test sample 

versus the TCGA samples (separated by cancer type). The highest correlated cancer/normal type was 

chosen as the predicted class by this approach. 

  SCOPE Ensemble Construction 
Firstly, we found that synthetic minority oversampling (SMOTE) [5] resulted in improved 

classification of rare classes as compared to training with the class imbalanced dataset (eFigure 3). 
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Secondly, comparison of different data normalizations showed that using rank transformed RPKM- 

improved classification accuracy for the overall model. Based on these results, we extended the 

classifier into an ensemble of neural networks combining these data transformation techniques. The 

additional neural networks were selected using 5-CV. We also observed that each of these 5 

machines was better at classifying different classes within the training dataset, reflecting that they 

have each learnt different (unknown) modalities for classification of the 66 different tissue and cancer 

types. Based on this observation, we adopted weighted majority voting approach was used to obtain 

predictions for new samples from the ensemble. This resulted in a re-weighted vector of 66 values 

from each network. These reweighted predictions were then pooled using a majority-voting approach, 

providing an averaged probability score and a similarity confidence for each class.  

The architecture and details of data pre-processing of each network are as described in eTable 3. 

Learning rate was 0.001, with early stopping when validation cost increased for more than 3 epochs, 

or was stable for 3 continuous epochs. Maximum number of allowed epochs was 1000, thus training 

went until 1000 epochs or early stopping threshold, whichever came first.  
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eAppendix 2. Training Data 
 
Multi-platform RNA-Seq data was obtained from The Cancer Genome Atlas (TCGA, multi-platform - 

Illumina Hi-Seq 2000 and Genome Analyzer II, processed with TCGA RNA-Seq v2 RSEM processing 

pipeline), the National Cancer Institute (NCI) non-Hodgkin lymphoma dataset [1] (sequenced with 

Illumina Genome Analyzer II, median normalized), and non- cell-line primary tumor data from the 

Terry Fox Research Institutes Glioblastoma Multiforme (TFRI-GBM) project. 2 in-house cancer 

cohorts, adult medulloblastoma (MB-Adult) and follicular lymphoma (FL), further supplemented this 

dataset (sequenced with Illumina HiSeq 2500). Colon and rectum adenocarcinomas from TCGA were 

combined into a single cohort (COADREAD) due to their geographical proximity in primary lesions, 

supported by findings from our initial quality control that showed insufficient decomposition of these 

two cancer types based on their transcriptomic data. The TCGA RNA-Seq libraries were prepared by 

various different sequencing centers, but to facilitate harmonization across samples, the TCGA RNA-

Seq v2 RSEM processing pipeline treated all RNA-Seq reads as unstranded. This resulted in a dataset 

of 10,822 transcriptomes spanning 40 different untreated primary tumor types and 26 adjacent normal 

tissue types (66 classes), with individual class sizes ranging from 3 to 1095 samples (eTable 1). No 

feature selection was done on the consolidated set of transcriptomes besides filtering for (a) genes with 

a recorded RPKM value in every sample (n=21,220), and (b) genes that overlapped with available 

annotations for our independent test sets (n=17,688). This resulted in a set of 10,822 samples, spanning 

66 different tumor and adjacent normal classes, and with each sample represented by 17,688 distinct 

median normalized gene RPKM values. eTable 1 shows the annotations used, following TCGA 

nomenclature. The table also shows the number of training samples available for each cancer type. 

 

Training data was randomly split up into 4/5th model training data, and 1/5th held-out test data. The 

training and test splits maintained relative class frequencies. In classes with less than 5 samples (6 

classes, all adjacent normal), 1 sample was randomly assigned to the held-out test set, and the 

remaining samples were kept in the model training set. All models discussed in this paper were trained 

on the 4/5th model training data, with the held-out test set used as the first external validation of 

performance of the fully trained models. Stratified 5-fold Cross Validation (5-CV) was used for 

hyperparameter selection for each algorithm. The StratifiedKFold function in the scikit-learn package 

in Python was used to generate class-balanced CV folds [2]. 



© 2019 Grewal JK et al. JAMA Network Open.  

eAppendix 3. Test Data 
  Primary Mesotheliomas 

Mesothelioma is a rare and aggressive cancer arising in the linings of lung, abdomen, 

or the heart. The Genentech Mesothelioma dataset has 211 transcriptomes from 

untreated, primary lung biopsies of mesothelioma, spanning 4 distinct molecular 

subtypes of mesothelioma sarcomatoid (n=29), epitheliod (n=54), biphasic-epitheliod 

(n=72), and biphasic-sarcomatoid (n=56). The RNA-seq libraries were pre- pared 

using TruSeq RNA Sample Preparation kit (unstranded, polyA+) from Illumina, and 

sequenced on the HiSeq 2500 ( 66 million paired-end reads per sample) [3]. 

 

  Metastatic disease and CUPs 
The Personalized OncoGenomics (POG) project at the BC Cancer Agency (BCCA) 

was established in 2011 with the aim to sequence patients with cancers that no longer 

respond to standard treatment [4]. The project analyses the genomic and gene 

expression (transcriptomic) data of each patient, in order to identify drugs that can 

target the individual cancer. The vast majority of patients enrolled into POG 

presented with metastatic disease with a known primary diagnosis and location. 

Biopsies are collected from the metastatic site in most cases. In a minority of cases, 

the tissue is taken from the original site of disease presentation (noted as such in 

main text, Table 2). This could be due to the intrinsic biology of the cancer in the 

form of LGG and GBM, or from multiple factors including site and size of lesion. 

Clinical laboratories at the BCCA assess the site of origin of POG cancer biopsies 

according to established protocols. The primary role of the pathologist in this context 

is to perform quality assurance of the tissue, in the determination of cellularity and 

percentage tumor content, to assist in downstream genomic interpretation. 

Secondarily, she reviews the patient’s clinical history for information pertaining to 

other archival pathology specimens particularly the initial untreated diagnostic tissue, 

often obtained from the primary site. Histological information of that tissue should 

match the subsequent specimen from the metastatic site. Typically, protein expression 

pattern, in the form of immunohistochemical (IHC) profile, should be similar but not 

necessarily identical. Lineage- specific markers that define the cell- of- origin of the 

tumor, such as specific cytokeratin markers, should be stable in its expression 

regardless of site. However, other biomarkers are more dynamic or labile, and their 

changes could represent alteration in the state of differentiation (for example, 

neuroendocrine dedifferentiation, malignant transformation) of the tumor or changes 

in the hormonal status and both could have significant impact on the biology of the 
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tumor and its management. A minimum pathology estimated tumor content of 40% in 

the tissue section is required prior to sequencing. Subsequently, standard Illumina 

protocols are followed for whole genome sequencing (WGS) for the tumor and 

peripheral blood (as control), and transcriptome sequencing for the tumor. The RNA-

Seq libraries were prepared using strand specific RNA-Seq (ssRNA-Seq) Sample 

Preparation kit (stranded, polyA+) from Illumina, and sequenced on the Illumina 

HiSeq 2500 ( 200 million paired-end reads per sample). For the analysis presented in 

this paper, metastatic cases were selected from the POG cohort based on the 

following criteria (a) a primary of origin was identified, based on a joint 

consideration of clinical/pathology/genomic data, and (b) cDNA libraries prepared 

from the biopsy sample passed in-house quality control. Based on these criteria, we 

identified 201 samples spanning 26 different cancer types, summarized in (eTable 2). 

eTable 2 shows the annotations used, following TCGA nomenclature. The table also 

shows the number of training samples available for each cancer type. 

Additionally, the POG cohort contained 16 cases where the primary site of 

origin could not be determined by initial pathology analysis. Genomic and 

transcriptomic analysis as part of the POG project determined the corresponding 

cancer type for 15 of these cases, which was used as gold standard for assessing the 

prediction from the classifier. The classification was performed retroactively after the 

closest suitable cancer type had been determined based on detailed pathway-level and 

genomic analyses of the cancer. 
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eAppendix 4. Metrics Used 
Since the trained cancer and normal cohorts had variable representation in the 

training set (3 for adjacent normal subcutaneous melanoma, to 1095 for breast 

cancer), we used the F1-score as a measure of overall performance of the classifier. 

The F1-score is the harmonic mean of precision and recall, with 1.0 being the most 

desirable value (precision and recall of 1.0 for all output categories), and 0 

representing a classifier that has 0 precision and 0 recall on all output categories. 

For a given input, the ensemble generates a pooled confidence score for each 

of the 66 output classes. Predicted classes are jointly ordered by the confidence score 

and number of machines in agreement. This max vote-pooling method was used to 

obtain a quantitative confidence score for each category. This confidence score was 

taken as a proxy for differential diagnosis when assessing metastatic samples. Thus, 

in the event that the prediction from the ensemble classifier was split between 

different cancer types, the correctness of the prediction was assessed by comparing 

the diagnosed cancer type against the pool of confident predictions. 
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eAppendix 5. Data Pre-processing 
  Data normalization 

Technical artifacts in the training data can be amplified if not filtered out, resulting in 

over-fitting while training a classifier. This results in a classifier that performs quite 

well on the training data, but does not generalize to samples that it has not seen 

during training. Data transformation is one way to avoid over fitting to the input data. 

This is generally done by re-scaling the input data to fall within a certain range of 

values, or by forcing it to follow a certain distribution (ex. normal distribution for 

expression data). We assessed the utility of data transformation in improving the best 

performing model, the shallow neural network trained with RPKM input. To this end, 

various scaling and data transformation methods, namely minmax scaling, L2 norm 

scaling, and rank normalization (average), were assessed separately. The performance 

of each approach was assessed by stratified 5-CV. Our assessment of normalization 

methods and feature selection (vs using the entire transcriptome) showed that (a) the 

actual RPKM profile across the 17,688 genes has a better classification performance 

than using feature selection or feature subsetting to known cancer-associated genes, 

and that (b) there is a performance gain with rank normalization of RPKM data prior 

to training. 

  Class expansion 
A supervised machine learning based classifier works by seeing multiple different 

samples representing each cancer/tissue type and steadily learning which genes 

(features) are most valuable in identifying each type of interest. A common problem 

with this approach is that a classifier can sometimes fail to appreciate the features 

that characterize the smaller cancer/tissue types. This class imbalance can be 

overcome by pre-processing the training set in specific ways by duplicating some of 

the samples in the smaller class(es), by punishing the classifier more for making a 

mistake with the smaller classes, or by supplementing the smaller classes with 

synthetic samples. One such method for adding synthetic samples to smaller classes 

is Synthetic Minority Oversampling (SMOTE). We trained and assessed the 

performance of the RPKM-based neural network classifier method using 3 different 

class expansion approaches, (a) duplicating samples randomly in the smaller cohorts 

to inflate their total sample size to the largest class, (b) adding an inverse weight 

factor for mis-classification of smaller classes (i.e. making it more expensive for the 

classifier to mislabel a sample from a smaller class during training), (c) adding 

synthetic samples using SMOTE, and compared these 3 approaches to (d) doing no 

class expansion. Duplicated/synthetic samples were only added to the training folds, 
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so that the cross-validation test fold always only contained non-synthetic samples 

that were absent in the training folds. The synthetic sampling algorithm is as adapted 

from Chawla et al [5]. The results over stratified 5-CV for each type of class 

expansion showed that there was an increase in overall F-score when SMOTE was 

used to expand the training folds. 
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eAppendix 6. Feature Weight Analysis 
Following training of each neural network, the weights and biases for the fully connected layers were 

extracted using the lasagne.layers.get˙all˙param˙values(network) function. Subsequently, following the 

rules of weight propagation in fully connected neural networks, a forward multiplication loop was 

evaluated, resulting in a matrix of dimensions [Number of genes, Number of output categories]. For 

each output category, the resultant network weights were sorted, and the top-100 genes with the 

highest weights for the class were saved. This was done over 5-cross validation models for each neural 

network, resulting in 25 lists of top-100 genes. For a given neural network, genes found to be top-

ranked in atleast 3 out of 5 CV folds were identified. Subsequently, for each category, the NN-specific 

top genes were filtered for occurrence in atleast 3/5 neural networks, resulting in the presented list of 

important genes in each class (eTable 4).
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eAppendix 7. Differences in Performance on Held-out Set for Feature Selection Algorithms 

As can be seen in main Figure 1(A), the performance of the different models is better on the held-out 

set than that quantified through cross-validation. This is because cross-validation only happens on 80% 

of the data, which in turn is split into 80% training and 20% cross-validation test fold. This impacts the 

smaller classes, which have fewer samples to train on in a cross-validation run. As a result, the 

performance of the classifier is poorer on the cross-validation test folds for such classes. However, 

when testing on the 20% heldout set, we are training the model on the entire 80% of the data. While 

this is of little consequence to classes that are well represented, the smaller classes are more thoroughly 

learnt during the training. This impact is evident in eFigure 6.  
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eTable 1. Cancer Types and Corresponding Abbreviations Used for Training, and Referenced in Text. 

The training cohort sizes are indicated for the adjacent normal and primary tumor.  
Abbreviation Full Name Case count – 

Normal 
Case count - 
Tumor 

ACC Adrenocortical Carcinoma - 79 
BLCA Urothelial Bladder Carcinoma 19 408 
BRCA Breast Ductal Carcinoma 113 1095 
CESC_CAD Cervical and Endocervical Adenocarcinoma 3 47 
CESC_SCC Cervical Squamous Cell Carcinoma 6 257 
CHOL Cholangiocarcinoma 27 36 
COADREAD Colorectal Adenocarcinoma 51 372 
DLBC Diffuse Large B-Cell Lymphoma - 48 
DLBC_BM DLBCL Blood/Bone Marrow - 11 
ESCA Esophageal Carcinoma 3 15 
ESCA_EAC Esophageal Adenocarcinoma 24 79 
ESCA_SCC Esophageal Squamous Cell Carcinoma 6 90 
FL Follicular Lymphoma - 50 
GBM Glioblastoma Multiforme 15 161 
HNSC Head and Neck Squamous Cell Carcinoma 44 520 
KICH Chromophobe Renal Cell Carcinoma / Kidney 

Chromophobe 
25 66 

KIRC Renal Clear Cell Carcinoma 72 533 
KIRP Papillary Renal Cell Carcinoma 32 290 
LAML Acute Myeloid Leukemia - 173 
LGG Lower Grade Glioma - 516 
LIHC Liver Hepatocellular Carcinoma 50 371 
LUAD Lung Adenocarcinoma 59 515 
LUSC Lung Squamous Cell Carcinoma 50 501 
MB-Adult Adult Medulloblastoma - 143 
MESO Mesothelioma - 87 
NCI_GPH_DLBCL Diffuse Large B-Cell Lymphoma (NCI 

cohort) 
- 111 

OV Ovarian Serous Cystadenocarcinoma - 305 
PAAD Pancreatic Ductal Adenocarcinoma 12 178 
PCPG Paraganglioma & Pheochromocytoma 9 179 
PRAD Prostate Adenocarcinoma 52 497 
SARC Sarcoma 6 259 
SKCM Cutaneous Melanoma 3 469 
STAD Stomach Adenocarcinoma 35 415 
TFRI_GBM_NCL Glioblastoma Multiforme (TFRI cohort) - 52 
TGCT Testicular Germ Cell Cancer - 150 
THCA Thyroid Carcinoma 59 505 
THYM Thymoma 6 120 
UCEC Uterine Corpus Endometrial Carcinoma 24 177 
UCS Uterine Carcinoma - 57 
UVM Uveal Melanoma - 80 
  805 10,017 
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eTable 2. Breakdown of Cancer Types in the External Metastatic Cohort 

 
Abbreviation Organ System Full Name Case 

count  
ACC Endocrine Adrenocortical Carcinoma 2 
BRCA Breast Breast Ductal Carcinoma 69 
CESC_CAD Gynecologic Cervical and Endocervical 

Adenocarcinoma 
1 

CHOL Gastrointestinal Cholangiocarcinoma 5 
COADREAD Gastrointestinal Colorectal Adenocarcinoma 22 
DLBC Hematologic Diffuse Large B-Cell Lymphoma 1 
ESCA_EAC Gastrointestinal Esophageal Adenocarcinoma 2 
ESCA_SCC Gastrointestinal Esophageal Squamous Cell Carcinoma 4 
FL Hematologic Follicular Lymphoma 1 
GBM Central Nervous System Glioblastoma Multiforme 4 
KIRP Urologic Papillary Renal Cell Carcinoma 2 
LIHC Gastrointestinal Liver Hepatocellular Carcinoma 1 
LGG Central Nervous System Lower Grade Glioma 2 
LUAD Thoracic Lung Adenocarcinoma 18 
LUSC Thoracic Lung Squamous Cell Carcinoma 1 
MESO Thoracic Mesothelioma 5 
OV Gynecologic Ovarian Serous Cystadenocarcinoma 7 
PAAD Gastrointestinal Pancreatic Ductal Adenocarcinoma 11 
PRAD Urologic Prostate Adenocarcinoma 1 
SARC Soft Tissue Sarcoma 23 
SKCM Skin Cutaneous Melanoma 3 
STAD Gastrointestinal Stomach Adenocarcinoma 3 
TGCT Urologic Testicular Germ Cell Cancer 1 
THYM Hematologic Thymoma 1 
UCEC Gynecologic Uterine Corpus Endometrial Carcinoma 6 
UCS Gynecologic Uterine Carcinoma 5 
 201 
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eTable 3. Architecture and Identifying Names for Each Neural Network That Makes up the 
SCOPE Ensemble Classifier.  

Model Name  Architecture Data pre-processing Additional Rules 
None17k 17688 x 17000 x 66 None (RPKM) None 
None17kDropout 17688 x 17000 x 17000 x 66 None (RPKM) Dropout (10%) input in 

training 
SmoteNone17k 17688 x 17000 x 66 None (RPKM) + SMOTE 

samples  
None 

Rm500 17688 x 500 x 66 Rank norm + Minmax(0,1) 
scaling 

None 

Rm500Dropout 17688 x 500 x 500 x 66 Rank norm + Minmax(0,1) 
scaling 

Dropout (10%) input in 
training 
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eTable 4. Important Genes Based on Frequency Analysis of Gene Weights for Each Neural Network 
in SCOPE 

Abbreviation Malignancy Organ System Important Genes 

ACC Tumor Endocrine 
CYP11A1, CYP17A1, CYP21A2, DLK1, GSTA1, IGF2, 
NPTX2, STAR 

BLCA 
Adjacent 
Normal 

Urologic 
ACTG2, CNN1, DES, DHRS2, GPX2, KRT13, KRT5, 
LY6D, OLFM4, PLA2G2A, S100P, SPRR3, UPK2 

BLCA Tumor Urologic 
AKR1C2, DES, DHRS2, GATA3, GPX2, KRT13, 
KRT17, KRT5, PSCA, S100P, SPINK1, UPK1B, UPK2 

BRCA 
Adjacent 
Normal 

Breast 
ADH1B, ADIPOQ, APOD, AZGP1, GATA3, KRT14, 
LPL, MUCL1, PIP, PLIN1, S100A1, SAA1, SCGB1D2, 
SCGB2A2, TFF1 

BRCA Tumor Breast 
AGR3, AZGP1, CALML5, CRABP2, EFHD1, FABP4, 
GATA3, KRT14, KRT6B, LTF, MMP11, MUCL1, 
NPY1R, PIP, SCGB2A2, SERPINA3, SPDEF, TFF1 

CESC_CAD 
Adjacent 
Normal 

Gynecologic DES 

CESC_CAD Tumor Gynecologic CEACAM5, CLDN3, KRT7, MMP11, PIGR, SCGB2A1 

CESC_SCC 
Adjacent 
Normal 

Gynecologic CNN1 

CESC_SCC Tumor Gynecologic 
CALML3, KRT13, KRT14, KRT19, KRT5, KRT6A, 
MMP11 

CHOL Tumor Gastrointestinal 
AGT, ALB, AMBP, CEACAM6, CRP, FGA, FGB, FGG, 
ORM1, REG1A, TM4SF4, TTR 

COADREAD  Gastrointestinal 
AQP8, CA1, CEACAM7, CLCA1, DES, FABP1, 
FAM3D, GPX2, GUCA2A, KRT20, SLC26A3, SPINK4, 
ZG16 

COADREAD  Gastrointestinal 

CDH17, CDX2, CEACAM5, CEACAM6, DPEP1, 
FABP1, FAM3D, GPX2, LGALS4, MUC13, MUC2, 
PLA2G2A, PPP1R1B, REG4, S100P, SPINK4, TSPAN8, 
VIL1 

DLBC Tumor Hematologic - 
DLBC_BM Tumor Hematologic - 

ESCA 
Adjacent 
Normal 

Gastrointestinal KRT13 

ESCA Tumor Gastrointestinal CLDN18, CST1, MALAT1, REG1A, REG3A, SPINK1 

ESCA_EAC 
Adjacent 
Normal 

Gastrointestinal ACTG2, DES, LIPF, PGA3, PGA4 

ESCA_EAC Tumor Gastrointestinal 
CEACAM5, CST1, KRT13, LGALS4, MALAT1, 
MUC13, PIGR, PLA2G2A, S100A7, SPRR3, TSPAN8, 
UBD 

ESCA_SCC 
Adjacent 
Normal 

Gastrointestinal SPRR1B 

ESCA_SCC Tumor Gastrointestinal 
CALML3, CST1, DES, KRT14, KRT5, LY6D, 
MALAT1, S100A7, SPRR1B, SPRR3, TRIM29 

FL Tumor Hematologic CCL21 

GBM Tumor 
Central 
Nervous 
System 

AQP4, CHI3L1, GFAP 

HNSC 
Adjacent 
Normal 

Head and Neck 
ACTA1, CALML5, CKM, KRT13, KRT4, MB, MUC7, 
MYH2, MYL1, MYL2, MYLPF, PIP, PRB3, SAA1, 
SCGB3A1, SMR3B, STATH, TCAP, TGM3, TNNC2 
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HNSC Tumor Head and Neck 
ACTA1, CALML3, CALML5, KRT13, KRT14, 
LGALS7, MMP1, SPRR2A, SPRR3 

KICH 
Adjacent 
Normal 

Urologic ALDOB, AQP2, FXYD2, UMOD 

KICH Tumor Urologic 
ATP6V0A4, ATP6V0D2, CDH16, DEFB1, RHCG, 
SPINK1, SPP1, TMEM213 

KIRC 
Adjacent 
Normal 

Urologic AQP2, CDH16, SLC34A2, UMOD 

KIRC Tumor Urologic 
ANGPTL4, CA12, CA9, DEFB1, EGLN3, ESM1, 
FXYD2, GSTA1, NAT8 

KIRP 
Adjacent 
Normal 

Urologic AQP2, PIGR, UMOD 

KIRP Tumor Urologic C19orf33, MAL, MMP7, PIGR, SST, WFDC2 

LAML Tumor Hematologic 
AZU1, CSF3R, FOSB, MPO, PRTN3, RNASE2, 
S100A8 

LGG Tumor 
Central 
Nervous 
System 

EEF1A1P9, GFAP, PTPRZ1 

LIHC 
Adjacent 
Normal 

Gastrointestinal IGFBP1 

LIHC Tumor Gastrointestinal 
ALB, APCS, APOA2, APOC3, CRP, FGA, FGB, GC, 
HULC, ITIH2, RBP4, TF, TM4SF4, UBD, VTN 

LUAD 
Adjacent 
Normal 

Thoracic 
HBA1, NAPSA, SCGB1A1, SCGB3A1, SCGB3A2, 
SFTPA1, SFTPB, SFTPC, SFTPD, SLPI 

LUAD Tumor Thoracic 
C8orf4, CEACAM5, CRABP2, FGG, NAPSA, PGC, 
S100P, SCGB1A1, SCGB3A1, SCGB3A2, SFTA2, 
SFTPA1, SFTPA2, SFTPB, SLC34A2, SPINK1 

LUSC 
Adjacent 
Normal 

Thoracic 
CCL21, NAPSA, RPS4Y1, SCGB1A1, SCGB3A1, 
SCGB3A2, SFTA2, SFTPA1, SFTPA2, SFTPB, SFTPC, 
SFTPD, SLC34A2 

LUSC Tumor Thoracic 

AKR1C2, CALML3, CES1, KRT15, KRT16, KRT19, 
KRT5, KRT6A, KRT6B, NAPSA, NTS, SCGB1A1, 
SCGB3A2, SFTPA1, SFTPA2, SFTPB, SFTPC, 
SPRR2A 

MB-Adult Tumor 
Central 
Nervous 
System 

GFAP, STMN2 

MESO Tumor Thoracic 
C19orf33, CALB2, EFEMP1, ITLN1, KRT19, KRT7, 
MSLN, UPK3B 

NCI_GPH_D
LBCL 

Tumor Hematologic - 

OV Tumor Gynecologic 
CHI3L1, CLDN3, FOLR1, KLK6, KLK7, MALAT1, 
MSLN, PAX8, SCGB2A1, SOX17, SST 

PAAD 
Adjacent 
Normal 

Gastrointestinal 
CELA3A, CPA1, CPB1, CRP, CTRB1, CTRB2, CTRC, 
CTSE, GCG, INS, PNLIP, PPY, PRSS1, REG1A, 
REG3A, TTR 

PAAD Tumor Gastrointestinal 
AGR2, CEACAM5, CHGB, CTRB1, CTRB2, GCG, 
INS, PNLIP, PPY, REG1A, REG4, S100P, SFRP2, 
SPINK1, SST, TFF1, TFF2, TTR 

PCPG 
Adjacent 
Normal 

Endocrine CYP11B1, CYP17A1, DLK1, GSTA1, STAR 

PCPG Tumor Endocrine CHGA, CHGB, DBH, DLK1, NPY, PENK 

PRAD 
Adjacent 
Normal 

Urologic 
ACPP, KLK2, KLK3, KLK4, NPY, OLFM4, PIP, 
SEMG1 
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PRAD Tumor Urologic 
ACTG2, AZGP1, DES, FOLH1, FOXA1, KLK2, KLK3, 
KLK4, NKX3-1, NPY, PLA2G2A, SLC45A3 

SARC Tumor Soft Tissue DLK1 

SKCM 
Adjacent 
Normal 

Skin DCT, MLANA, PRAME, TYR 

SKCM Tumor Skin 
APOD, DCT, EDNRB, KRT6B, MLANA, PLP1, 
PRAME, S100A1, SERPINE2, SOX10, TYR, TYRP1, 
VGF 

STAD 
Adjacent 
Normal 

Gastrointestinal 
ACTG2, APOA1, APOA4, CLDN18, DES, GKN1, 
HSPB6, PGA4, PGC, PI3, REG3A 

STAD Tumor Gastrointestinal 
ACTG2, CEACAM6, CST1, MALAT1, PGC, REG4, 
SPINK1, TFF1, TFF3 

TFRI_GBM_
NCL 

Tumor 
Central 
Nervous 
System 

MALAT1, PCDHGA1, PCDHGA8, PCDHGC4, PMP2 

TGCT Tumor Urologic DPPA3, DPPA5, GDF3, NANOG, POU5F1 

THCA 
Adjacent 
Normal 

Endocrine CCL21, HBA2, MT1G, PAX8, TG, TPO 

THCA Tumor Endocrine 
C16orf89, CLIC3, NKX2-1, S100A1, SFTA3, SFTPB, 
TG, TPO, ZCCHC12 

THYM 
Adjacent 
Normal 

Hematologic CALML3, CCL25, KRT5 

THYM Tumor Hematologic 
CALML3, CCL25, DNTT, KRT14, KRT15, KRT17, 
KRT19, KRT5, PAX1 

UCEC 
Adjacent 
Normal 

Gynecologic CNN1, DES 

UCEC Tumor Gynecologic 
MMP11, MSX1, PAX8, SCGB1D2, SCGB2A1, SFN, 
VTCN1 

UCS Tumor Gynecologic CRABP1, DLK1, PCOLCE, PRAME 

UVM Tumor 
Heand and 
Neck 

CITED1, MLANA, SOX10, TYR, TYRP1 
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eTable 5. Detailed Breakdown of Pprediction Trends in the Metastatic Cohort, With Classes of 
Mispredictions Listed.  
Number of cases mispredicted as a specific classes are listed alongside in brackets.  
aPrecision, as indicated, is equivalent to class-specific accuracy.  
bPrediction categories: Cases where predicted cancer type matched pathology diagnosis 
(Diagnosis) / was same as tissue type of biopsy site (Biopsy Site) / matched a cancer type with 
same organ-system of origin (Organ-system) / did not match any of the above (Other).  
AC = “Adenocarcinoma”, CA = “Carcinoma”, SCC = “Squamous Cell Carcinoma”, CESC – AC 
= “Cervical/Endocervical Adenocarcinoma”, UCEC= “Uterine Corpus Endometrial Carcinoma”  
GEJ_group: Esophageal AC, Esophageal SCC, Stomach AC, Liver Hepatocarcinoma, Papillary 
Kidney CA 
 

  Cohort metricsa Count of cases predicted asb 

Diagnosed Type 
Total 
Cases 

Precision Recall 
F1-
Score 

Diagnosis 
Biopsy 
Site 

Organ-
system 

Other 

Metastatic Site Biopsies 
Adenocortical 
CA 

1 1.00 1.00 1.00 1 - - - 

Follicular 
Lymphoma 

1 1.00 1.00 1.00 1 - - - 

Mesothelioma 1 1.00 1.00 1.00 1 - - - 
Prostate AC 1 1.00 1.00 1.00 1 - - - 
Testicular Germ 
Cell Tumor 

1 1.00 1.00 1.00 1 - - - 

Thymoma 1 1.00 1.00 1.00 1 - - - 
Colorectal AC 21 1.00 0.81 0.89 17 LIHC STAD(2) CHOL_n 
Papillary Kidney 
AC 

2 1.00 0.50 0.67 1 - - LUAD 

UCEC 5 1.00 0.40 0.57 2 - BRCA BLCA,STAD 
Uterine 
Carcinosarcoma 

4 1.00 0.25 0.40 1 - OV, SARC HNSC 

Breast CA 65 0.97 0.97 0.97 63 LIHC_n - BLCA 
Lung AC 14 0.93 1.00 0.97 14 - - - 

Sarcoma 17 0.90 0.53 0.67 9 LIHC - 

BRCA, 
DLBC (2), 
GBM, SKCM 
(2), KIRC 

Ovarian CA 7 0.86 0.86 0.86 6 - - PAAD 

Prostate AC 9 0.75 0.33 0.46 3 LIHC 
CHOL (3), 
LUSC 

BLCA 

Cholangio-CA 5 0.67 0.80 0.73 4 - STAD - 
Cutanous 
Melanoma 

2 0.50 1.00 0.67 2 - - - 

Diffuse Large B-
Cell Lymphoma 

1 0.33 1.00 0.50 1 - - - 

Stomach AC 3 0.25 0.67 0.36 2 LIHC - - 

CESC-AC 1 0.00 0.00 0.00 - - - STAD 

Esophageal AC 2 0.00 0.00 0.00 - LIHC STAD - 

Esophageal SCC 4 0.00 0.00 0.00 - LUSC(1) - 
CESC_SCC 
(2), LUSC (1) 

Primary Site Biopsies 
Adrenocortical 
CA 

1 1.00 1.00 1.00 1 - - - 
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Breast CA 4 1.00 1.00 1.00 4 - - - 

Colorectal AC 1 1.00 1.00 1.00 1 - - - 
Glioblastoma 
Multiforme 

4 1.00 1.00 1.00 4 - - - 

Brain Glioma 2 1.00 1.00 1.00 2 - - - 
Liver 
Hepatocarcinoma 

1 1.00 1.00 1.00 1 - - - 

Pancreatic AC 2 1.00 1.00 1.00 2 - - - 
Cutaneous 
Melanoma 

1 1.00 1.00 1.00 1 - - - 

Uterine 
Carcinosarcoma 

1 1.00 1.00 1.00 1 - - - 

Sarcoma 6 1.00 0.83 0.91 5 - - HNSC 

Lung AC 4 1.00 0.75 0.86 3 - LUSC - 

Mesothelioma 4 1.00 0.75 0.86 3 - - KIRC 

Lung SCC 1 0.50 1.00 0.67 1 - - - 

UCEC 1 0.00 0.00 0.00 - - CESC_SCC - 

 201 0.80 0.76 0.75 160 7 13 21 
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eTable 6. Detailed Version of Table 2, Whereby the Performance of the Smaller Classes Has Been 
Described in Detail.  
aTP = “True Positive Count”, TN = “True Negative Count”, FP = “False Positive Count”, FN = 
“False Negative Count” 

Precision, as indicated, is equivalent to class-specific accuracy.  
bPrediction categories: Cases where predicted cancer type matched pathology diagnosis 
(Diagnosis) / was same as tissue type of biopsy site (Biopsy Site) / matched a cancer type with 
same organ-system of origin (Organ-system) / did not match any of the above (Other)  
 
AC = “Adenocarcinoma”, CA = “Carcinoma”, SCC = “Squamous Cell Carcinoma”, CESC – AC 
= “Cervical/Endocervical Adenocarcinoma”, UCEC= “Uterine Corpus Endometrial Carcinoma”  
GEJ_group: Esophageal AC, Esophageal SCC, Stomach AC, Liver Hepatocarcinoma, Papillary 
Kidney CA 
 

 Cohort metricsa Count of cases predicted asb 

Diagnosed Type 
Total 
Cases 

TP TN FP FN 
Preci
sion 

Reca
ll 

F1-
Score 

Diagn
osis 

Biopsy 
Site 

Organ-
system 

Other 

Metastatic Site Biopsies 
Adenocortical CA 1 1 130 0 0 1.00 1.00 1.00 1 - - - 
Follicular 
Lymphoma 

1 1 130 0 0 1.00 1.00 1.00 1 - - - 

Mesothelioma 1 1 130 0 0 1.00 1.00 1.00 1 - - - 
Prostate AC 1 1 130 0 0 1.00 1.00 1.00 1 - - - 
Testicular Germ 
Cell Tumor 

1 1 130 0 0 1.00 1.00 1.00 1 - - - 

Thymoma 1 1 130 0 0 1.00 1.00 1.00 1 - - - 
Colorectal AC 21 17 114 0 4 1.00 0.81 0.89 17 1 2 1 
Papillary Kidney 
AC 

2 1 130 0 1 1.00 0.50 0.67 1 - - 1 

UCEC 5 2 129 0 3 1.00 0.40 0.57 2 - 1 2 
Uterine 
Carcinosarcoma 

4 1 130 0 3 1.00 0.25 0.40 1 - 2 1 

Breast CA 65 63 68 2 2 0.97 0.97 0.97 63 1 - 1 
Lung AC 14 14 117 1 0 0.93 1.00 0.97 14 - - - 
Sarcoma 17 9 122 1 8 0.90 0.53 0.67 9 1 - 7 
Ovarian CA 7 6 125 1 1 0.86 0.86 0.86 6 - - 1 
Pancreatic AC 9 3 128 1 6 0.75 0.33 0.46 3 1 4 1 
Cholangio-CA 5 4 127 2 1 0.67 0.80 0.73 4 - 1 - 
Cutanous 
Melanoma 

2 2 129 2 0 0.50 1.00 0.67 2 - - - 

Diffuse Large B-
Cell  Ly. 

1 1 130 2 0 0.33 1.00 0.50 1 - - - 

Stomach AC 3 2 129 6 1 0.25 0.67 0.36 2 1 - - 
CESC-AC 1 0 131 0 1 0.00 0.00 0.00 - - - 1 
Esophageal AC 2 0 131 0 2 0.00 0.00 0.00 - 1 1 - 
Esophageal SCC 4 0 131 0 4 0.00 0.00 0.00 - 1 0 3 
Primary Site 
Biopsies 

            

Adrenocortical CA 1 1 28 0 0 1.00 1.00 1.00 1 - - - 
Breast CA 4 4 25 0 0 1.00 1.00 1.00 4 - - - 
Colorectal AC 1 1 28 0 0 1.00 1.00 1.00 1 - - - 
Glioblastoma 
Multiforme 

4 4 25 0 0 1.00 1.00 1.00 4 - - - 
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Brain Glioma 2 2 27 0 0 1.00 1.00 1.00 2 - - - 
Liver 
Hepatocarcinoma 

1 1 28 0 0 1.00 1.00 1.00 1 - - - 

Pancreatic AC 2 2 27 0 0 1.00 1.00 1.00 2 - - - 
Cutaneous 
Melanoma 

1 1 28 0 0 1.00 1.00 1.00 1 - - - 

Uterine 
Carcinosarcoma 

1 1 28 0 0 1.00 1.00 1.00 1 - - - 

Sarcoma 6 5 24 0 1 1.00 0.83 0.91 5 - - 1 
Lung AC 4 3 26 0 1 1.00 0.75 0.86 3 - 1 - 
Mesothelioma 4 3 26 0 1 1.00 0.75 0.86 3 - - 1 
Lung SCC 1 1 28 1 0 0.50 1.00 0.67 1 - - - 
UCEC 1 0 29 0 1 0.00 0.00 0.00 - - 1 - 
 201 160 3128 19 41 0.80 0.76 0.75 160 7 13 21 
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eFigure 1. Performance of Various Models (Distinct Based on Feature Selection and Architecture) on the Held-
out Set.  
The x-axis has been ordered by increasing class size, indicated in the first panel, and performance is shown on 
the CV-folds (black) and on the held-out set (yellow). As can be seen, the difference between CV-fold 
performance and held-out performance is large for small classes, but peters off as the class size approaches 
>100. When the classifier is augmented by addition of synthetic samples in the training folds (last panel), we 
see that there is an overall increase in performance for the rare classes, and the gap between mean-CV-
precision and heldout precision is minimized. The line of best fit (loess) is indicated for each model, with 
standard error bounds in grey. The performance in different CV folds is shown by the black point (mean) with 
1 standard deviation bars.  
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eFigure 2. Performance of Algorithms on CV Folds During Training. 
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eFigure 3. Performance of SCOPE on the Held-out Set.  
All 66 classes are shown, (a) showing performance between tumors and normal counterpart classes, and 
(b) showing cross-calling patterns originating from the normal class samples in the held-out set. 
Performance of individual neural networks that make up SCOPE (n=5) are shown in grey points. 
a) The average and 1 standard deviation spread of class-specific F1-score across these is shown in black (black 
point = mean, error bars = standard deviation). The two panels separate the normal (n=26) and tumor (n=40) 
tissue classes. 

 
b) The average and 1 standard deviation spread of class-specific F1-scores across the ensemble machines is 
shown by the colored error bars. “_TS” and “_NS” indicate tumor and normal tissue classes respectively. 
Width of curves indicates proportion of cross-called samples from the originating class (direction indicated by 
arrow), with the smallest width corresponding to 15% of samples. As is evident, cross-calling is mostly 
between normal tissues from the same organ-system of origin. 
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eFigure 4. The Performance of Individual Neural Networks on the Held-out Set 
The SMOTE classifier is the 5th (bottom) panel. Class specific performances of each model, ordered by 
increasing class size, are shown. The names of the models are as defined in eTable 3. For the classes shown on 
the x-axis, _TS indicates a tumor class and _NS indicates a normal class. The performance of each model on 
each class is shown in grey points, and the line of best fit (loess) shown in blue with grey standard error 
bounds. Classes are ordered in increasing class size (class size shown in top panel).  
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eFigure 5. t-SNE Plot of Transcriptomic Data in TCGA Training Cohorts. All tumour types are shown.
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eFigure 6. t-SNE Plot of Transcriptomic Data in TCGA Training Cohorts.  

Relevant gynecologic and gastrointestinal cancer types are shown. 
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eFigure 7. A Detailed Version of Figure 2A, Whereby the Smaller Classes Are Shown Individually Instead of in Aggregate. AC = 
“Adenocarcinoma”, CA = “Carcinoma”, SCC = “Squamous Cell Carcinoma”, CESC – AC = “Cervical/Endocervical 
Adenocarcinoma”, UCEC= “Uterine Corpus Endometrial Carcinoma”  
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eFigure 8. The Distribution of Values for Tests of Association Between Classification Accuracy and a) Tumor 
Content (%), b) Confidence Score,  and c) Training Class Size Are Shown.  
A)                                                                                  B) 
 

 
 
C)  
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eFigure 9. Example Outputs From SCOPE in cases where the tested sample was (a) an 
epithelioid mesothelioma,  correctly identified, (b) sarcomatoid mesothelioma, predicted with split 
confidence between mesothelioma and sarcoma, (c) a metastatic colorectal cancer, correctly 
identified, and (d), a metastatic stomach adenocarcinoma biopsied from the liver, incorrectly 
identified as the site of biopsy. The point colors indicate the Organ System of origin, as shown by 
the legend.  

 
(a) 

 
(b) 
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(c) 

 
(d) 
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