
Appendix C Counterfactual learning update
equations

C.1 Continuous Updating

We consider that the agent adopts some update policy based on a family of inferred
update distributions

∼
xj+1∼ f

(
θj(s, a),θ0(s, a),φj ,φ0,β0

)
. As our notation suggests,

this update distribution is either a function of the previous approximate posterior θj , of
the prior θ0 or both.

If
∼
xj+1∼ f(θj(s, a)), we are in the presence of an optimistic limit case where the

agent does not consider that the environment will change anymore when she has
selected an action: once some rτ (s, a) with τ ∈ 1 : j is observed, the resulting posterior
predictive distribution is used to update the variational parameters in the next trials
until a is selected again.

Conversely, the pessimistic model of evolution of
∼
xj+1 considers that the upcoming

values of r(s, a) are extremely variable, and that the agent should not trust anything
more than its broad, initial marginal prior p(

∼
xj+1 |θ0).

A third case of update distribution can be used: the agent can actually consider that
the new value of

∼
xj+1 would likely be drawn from a mixture of the prior and posterior

approximate marginal distributions, similar to the distribution implemented in Eq 9
(and possibly Eq 13):

∼
xj+1 ∼ p(∼xj+1 |z)

z ∼ p(z|w(θj(s, a)− θ0(s, a)) + θ0).
(7)

The next section details the update equation in these three cases.

C.2 Approximate posterior updating of non-selected actions

In order to develop the update equations of the variational parameters in the case of
counterfactual learning, one must first derive an ELBO for this specific case. Recall
that, if xj+1 were observed, the ELBO would have the form:

Lj+1(q(µ, σ, w, b)) = E(µ,σ,w,b) [log p(xj+1, µ, σ, w, b|θj+1,θ0)− log q(µ, σ, w, b)] .

In the case of an unobserved datapoint, we take the expected value of the ELBO under
some model of the evolution of xj+1 ∼ f(θj ,θ0)

Ef [Lj+1(q(µ, σ, w, b))] = Ef
[
E(µ,σ,w,b) [log p(xj+1, µ, σ, w, b|θj+1,θ0)− log q(µ, σ, w, b)]

]
.

One can easily see that the update of the variational parameters of the action not
taken under the optimistic assumption that the environment will not change takes the
form of:

µµj+1 =
ŵκµj µ

µ
j + (1− ŵ)κµ0µ

µ
0

κµj+1

+
x̂j+1

κµj+1

κµj+1 = ŵκµj + (1− ŵ)κµ0 + 1

ασj+1 = ŵασj + (1− ŵ)ασ0 +
1

2
βσj+1 = ŵβσj + (1− ŵ)βσ0 +

1

2

(
ŵκµj+1(µµj+1 − µ

µ
j )2 + (1− ŵ)κµ0 (µµj+1 − µ

µ
0 )2 + (x̂j+1 − µµj+1)2 + Var[xj+1]

)
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where x̂j+1 = Eq [Ep [xj+1]]

= µµj

and Var[xj+1] = Eq
[
Ep
[
x2
j+1

]]
− Eq [Ep [xj+1]]

2

=
βσj

ασj − 1
+

βσj
κµj (ασj − 1)

.

Note that the posterior predictive variance of xj+1 is equal to the sum of the expected
variance and the variance of the mean. A similar update paradigm can be used for the
opposite limit case where it is assumed that the distribution of xj+1 is totally
undetermined (i.e. that it has come back to the marginal prior distribution p(xj |θ0)):

x̂j+1 = Eq [Ep [xj+1]]

= µµ0

Var[xj+1] = Eq
[
Ep
[
x2
j+1

]]
− Eq [Ep [xj+1]]

2

=
βσ0

ασ0 − 1
+

βσ0
κµ0 (ασ0 − 1)

.

Finally, the mixed approach consist in considering that the value xj+1 is a weighted
average of the two given the learned mixing coefficient:

x̂j+1 = µµ∗

Var[xj+1] =
βσ∗

ασ∗ − 1
+

βσ∗
κµ∗ (ασ∗ − 1)

where

µµ∗ =
ŵκµj µ

µ
j + (1− ŵ)κµ0µ

µ
0

κµ∗
κµ∗ = ŵκµj + (1− ŵ)κµ0

ασ∗ = ŵασj + (1− ŵ)ασ0

βσ∗ = ŵβσj + (1− ŵ)βσ0 +

1

2

(
ŵκµj (µµ∗ − µ

µ
j )2 + (1− ŵ)κµ0 (µµ∗ − µ

µ
0 )2
)
.

Using this update scheme, the agent erases his memory of the posterior distribution at a
rate dictated by the stability of the environment, and θj → θ0 as j →∞. Together
with the decision algorithm presented in 2.6, this result shows that, as the posterior
distributions broadens and approaches the initial prior, the likelihood of choosing this
action will also increase because the expected random noise of the evidence
accumulation process will also increase.

C.3 Delayed approximate posterior updating

Another approach for the agent to consider the evolution of the environment when
selecting an action whose outcome has not been seen for a long time is to simulate the
expected waning of the previous update across the elapsed interval of time.

Let us consider the case where the agent has chosen an action (e.g. left) at the trial
j, and then the opposite action (right) for n trials. We assume that, during these n
trials, she has been updating only the value of the right action, leaving the approximate
posterior over the distribution parameters of the value of the left action untouched.
When selecting left at the trial j + n, she considers that the weight of the posterior
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component of the prior distribution has decreased exponentially for n trials. The prior
then looks like:

p(z|θj−n)w
n

p(z|θ0)1−wn

Z

In order to compute the NCVMP update of the approximate posterior parameters over
w, we then need to compute the expected value of wn. If qj(w) is set to be a beta
distribution with parameters φj = {φ1j , φ2j}, we have

Eqj(w) [wn] =
Γ(φ2j)Γ(φ1j + n)

B(φ1j , φ2j)Γ(φ1j + ω2j + n)
(8)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) . The expected value of the squared decay w2n (used to

compute the variance in the expected value of the second order Taylor expansion of the
log-partition function, see A) can be computed readily with the same formula by
replacing n by 2n.

Unlike the previous method, the shape parameter of the gamma distribution over
the variance does not need to be greater than 1 here, as we do not need to simulate the
variance of the non-selected action value. However, this is true only for the single
stage-case, as the multi-stage case also bases its value updates on expected squared
values of rewards, thereby requiring ασ0 > 1 too.
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