
Appendix D Discount factor inference

D.1 Model specification

The main idea we will try to develop here is that the discount factor γ can be
considered as a latent random variable, so that inference is made about its value in
order to get the most precise estimate of the posterior predictive distribution of the long
term return of an action p(V (s, a)|x≤j).

For practical reasons, it is easier to model separately the factorized distribution of
the current, immediate state-action reward p(r(s, a)) and the discounted value of the
future state p(γv(s′|s, a)). In this notation, γv(s′|s, a) is a random variable representing
the discounted long-term value of taking the action a in state s minus the value of the
reward received while performing this action r(s, a):

V (s, a) = r(s, a) + γv(s′|s, a)

Following this logic, we define the following factorized distribution:

p
(
r(s, a), v(s′|s, a)

)
= p
(
r(s, a)|µr(s, a), σr(s, a)

)
p
(
v(s′|s, a)|µv(s, a), σv(s′|s, a), γ

)
where r(s, a) is normally distributed and v(s′|s, a) is distributed according to the
following modified Gaussian distribution:

p (v(s′|s, a)|µv(s, a), σv(s, a), γ) = γ

exp

{
(µv(s,a)−γv(s′|s,a))

2

2σv(s,a)2

}
√

2π σv(s, a)
.

It becomes clear that this distribution integrates to 1 over v(s′|s, a), and that it
corresponds to a Normal distribution over γv(s′|s, a). Therefore, the probability
distribution of V (s, a) = r(s, a) + γv(s′|s, a) can be written as:

p(V (s, a)) = N (µr(s, a) + µv(s, a), σr(s, a)
2

+ σv(s, a)
2
).

This joint probability distribution encodes, for each state-action pair the probability
distribution of the associated long-term, discounted return.

We naturally define the prior probability of the discounting factor γ ∈ [0; 1] at j = 1
as a Beta distribution with parameters B(αγ0 , β

γ
0 ), and a NG−1 prior over the Gaussian

parameters {µr(s, a), σr(s, a), µv(s, a), σv(s, a)}.

D.2 Learning from observed transitions and rewards

We now tackle the question of how to estimate the value of the state that has been
reached v(s′|s, a). Indeed, this value, contrary to the reward, is not directly observed
but must be inferred from the state of arrival s′. We consider the following state-value
inference model:

v(s′|s, a) = Eπ(a′|s′) [V (s′, a′)]

= Eπ(a′|s′) [r(s′, a′) + v(s′|s, a)] .
(9)

Eq 9 stated that the agent assumes that the expected value of the next state is equal to
the average of the various state-action values available, weighted by the probability of
selection the corresponding action (the observed policy π(a′|s′)). We assume that the
agent does not have a direct access to the complete description of the policy (meaning
that, whereas she can make a decision efficiently, she cannot retrieve the summary
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statistics of this policy). This assumption is in accordance with the decision process
described in 2.6. This policy can, however, be learned similarly to r(s, a) using a
multinomial distribution with a Dirichlet (or Beta in the case of Two-Alternative Forced
Choice tasks) prior and approximate posterior: at each trial, the agent observes the
action she has performed, and update her belief of the current policy.

Let us now consider how the expected log-joint probability of v(s′|s, a) would appear
in the ELBO if this value was observed under the mean-field assumption:

Eqj+1(µv(s,a),σv(s,a)2,γ)

[
log p(v(s′|s, a)|µv(s, a), σv2, γ)

]
= −1

2
Eqj+1(σv(s,a)2)

[
log σv(s, a)

2
]

− 1

2
Eqj+1(µv(s,a),σv(s,a)2)

[
(γv(s′|s, a)− µv(s, a))2

σv(s, a)
2

]
+ Eqj+1(γ) [log γ] + cst.

(10)

Once the agent reaches the next state ŝ′, inference of the value E
[
v(s′|s, a)|s′ = ŝ′

]
can be achieved by using the posterior predictive expectation of this formula:

E
[
v(s′|s, a)|s′ = ŝ′

]
= Ep(v|x≤j)

[
v(ŝ′|s, a)

]
≈ Eqj(z)

[
Ep(V,π|z)

[
Eπ
[
V (ŝ′, a′)

]]]
= Eqj(z)

[
Ep(r,v,π|z)

[
Eπ
[
r(ŝ′, a′) + γv(s′′|s′, a′)

]]]
= Eqj(z)

[
Ep(r,v,π|z)

[∑
a′∈A

π(a′|ŝ′)(r(ŝ′, a′) + γv(s′′|ŝ′, a′))

]]

=
∑

a′∈a1,a2

δπj (ŝ′, a′)∑
a∈A δ

π
j (ŝ′, a)

(µrj(ŝ
′, a′) + µvj (ŝ

′, a′))

(11)

where A is the set of actions available, and where we indexed with j each variational
parameter to emphasize the fact that this expectation is made with respect to the
previous posterior belief.

Eq 10 being linear and quadratic wrt v(s′|s, a), we also need to solve the expected

value E
[
v(s′|s, a)

2|s′ = ŝ′
]
:

Ep(v|x≤j)
[
v(s′|s, a)

2
]
≈

Eqj(z)

[
Ep(r,v,π|z)

[( ∑
a′∈A

π(a′|s′)(r(s′, a′) + γv(s′′|s′, a′))
)2]]

.
(12)

The expression in Eq 12 can be computed iteratively (Algorithm 1):
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Algorithm 1: Ep(v(s′|s,a)|x≤j)

[
v(s′|s, a)

2|s′ = ŝ′
]

iterative computation

input :Factorized approximate posterior distribution qj−1, state reached at trial j

ŝ′

1 Results: Posterior predictive estimate ν = Ep(v(s′|s,a)|x≤j)

[
v(s′|s, a)

2|s′ = ŝ′
]

2 ν = 0
3 for a ∈ A do
4 for a′ ∈ A do
5 if a == a′ then
6 ν += Eqj−1

[
π(a|s′)2

]
× // Eq 17

7
(
Eqj−1

[
Ep
[
r(s′, a)

2
]]

+ Eqj−1

[
Ep
[
(γv(s′′|s′, a))2

]]
// Eq 14,Eq 16

8 +2Eqj−1
[Ep [r(s′, a)]]Eqj−1

[Ep [γv(s′′|s′, a)]]
)

// Eq 13,Eq 15

9 else
10 ν += Eqj−1 [π(a|s′)π(a′|s′)]× // Eq 18

11 (Ep [r(s′, a)] + Eqj−1
[Ep [γv(s′′|s′, a)]])× // Eq 13,Eq 15

12 (Ep [r(s′, a′)] + Eqj−1
[Ep [γv(s′′|s′, a′)]]) // Eq 13,Eq 15

13 end

14 end

using the following equivalences

Eqj−1

[
Ep(r|µr,σr) [r]

]
= µrj−1 (13)

Eqj−1

[
Ep(r|µr,σr)

[
r2
]]

= µrj−1
2 +

βrj−1

(αrj−1 − 1)κrj−1

+
βrj−1

(αrj−1 − 1)
(14)

Eqj−1

[
Ep(v|µv,σv,γ) [γv]

]
= µvj−1 (15)

Eqj−1

[
Ep(v|µv,σv,γ)

[
(γv)2

]]
= µvj−1

2 + σvj−1
2 (16)

Eqj−1

[
π(a|s)2

]
=

(
δ
π(a|s)
j−1

δ0

)2

+
δ
π(a|s)
j−1 (δ0 − δπ(a|s)

j−1 )

δ2
0(δ0 + 1)

(17)

Eqj−1
[π(a|s)π(a′|s)] =

δ
π(a|s)
j−1 δ

π(a′|s)
j−1

δ2
0

−
δ
π(a|s)
j−1 δ

π(a′|s)
j−1

δ2
0(δ0 + 1)

(18)

with δ0 =
∑
a′∈A

δπ(a′|s)

where we have dropped several state-action indices for clarity.

We can now take the expectation of Eq 10 under Eq 11 and Eq 12.

This formula has the advantage that the learning of the current distribution of
V (s, a) takes into account the uncertainty about the policy, about the reward
distribution at the next trial and about the long-term discounted return of the actions
in the next state.
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