
Appendix E VPI

VPI [1–5] solves this problem by giving a positive bonus to each action value
corresponding to the potential payoff of selecting this action given the current
uncertainty about its value distribution. Formally, this bonus is computed as the
posterior expectation of the gain of performing an action given the belief we have of the
value taken by the other actions:

V PI(a) =

∫
p(µ(a)|x<j)Gaina(µ(a)) dµ(a)

where Gaina(µ(a)) =


E [µ(a2)]− µ(a) if a = a1 and µ(a) < E [µ(a2)]

−E [µ(a1)] + µ(a) if a 6= a1 and µ(a) > E [µ(a1)]

0 otherwise

(19)

and where we have used the convention that a1 and a2 are the actions with the highest
and second highest reward respectively. Eq E shows that the bonus of a given action is
proportional to the expected gain of discovering that this action leads to a higher
reward than all the others when it was thought to be sub-optimal, plus the expected
gain of discovering that this action is sub-optimal when it was thought to be optimal.

Interestingly, low threshold of the NIGDM 2.6 favor choices that would have been
also favored by the VPI approach: if an action has currently the highest estimate, it will
be more encouraged if its variance is wide than if it is narrow, and conversely for
punished action with a high variance.

Moreover, the evidence accumulation process can be enriched to incorporate the
expected gain of performing an action: as the agent samples the means of the two
action values given its current belief, she can add the difference in the gain bonuses
computed as in Eq E. The resulting process can still be modelled as a Wiener process
using the Stochastic Gradient Variational Bayes approach described in Sec 2.7.

A final point to consider is that VPI might be used to refine the expectation that a
change of contingency has occured. In order to do so, the gain would need to
incorporate the volatility measure. Limiting ourselves to a single forgetting layer, we
would have a variational approximation to the Gain and VPI that would read:

Gaina(µ,w) =

 Eq[µ2 | w]− µ(a) if a = a1 and Eq[µ2 | w] > µ(a)
µ(a)− Eq[µ1 | w] if a 6= a1 and Eq[µ1 | w] < µ(a)

0 otherwise.

V PI(a) =

∫∫
qj(µ(a), w)Gaina(µ(a), w) dµ(a)w

We can see that this formula involves the conditional expectancy of µ(a) given w, which
is equal to Eqj [µ(a)] when the mean-field assumption is used. In other words, modelling
the posterior covariance matrix of the HAFVF could lead to a exploration policy that
would be guided by the uncertainty about the volatility of the environment.
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