Supplementary

Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from *Capra hircus* ear cartilage

Supplementary Figure 1. Schematic representation of collagen II isolation from Capra ear.

Supplementary Figure 2. Identification of purified COLII by SDS-PAGE and western blot analysis. (a) SDS-PAGE showing the isolated COLII with two prominent bands where filled arrow indicating α chain and open arrow indicating β chain, (b) α chain was identified using anti-COLII antibody using western blot analysis and (c) showing prominent band of bovine elastin (Sigma, USA) as a control and absence of band in *Capra* ear derived COLII indicating isolated protein was devoid of elastin.

Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	MIRLGAPQTLVLLTLLVAAVLRCHGQDVQKAGSCVQDGQRYNDKDVWKPEPCRICVCDTG MIRLGAPQTLVLLTLLVAAVLRCHGQDVQKAGSCVQDGQRYNDKDVWKPEPCRICVCDTG MIRLGAPQTLVLLTLLVAAVLRCQGQDVQEAGSCVQDGQRYNDKDVWKPEPCRICVCDTG	60 60 60
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	TVLCDDIICEDMKDCLSPETPFGECCPICSADLPTASGQPGPKGQKGEPGDIKDIVGPKG TVLCDDIICEDMKDCLSPETPFGECCPICSADLPTASGQPGPKGQKGEPGDIKDIVGPKG TVLCDDIICEDVKDCLSPEIPFGECCPICPTDLATASGQPGPKGQKGEPGDIKDIVGPKG ***********************************	120 120 120
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PPGPQGPAGEQGPRGDRGDKGEKGAPGPRGRDGEPGTPGNPGPPGPPGPPGPPGLGGNFA PPGPQGPAGEQGPRGDRGDKGEKGAPGPRGRDGEPGTPGNPGPPGPPGPPGPGLGGNFA PPGPQGPAGEQGPRGDRGDKGEKGAPGPRGRDGEPGTPGNPGPPGPPGPPGPPGLGGNFA ************************************	180 180 180
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	AQMAGGFDEKAGGAQMGVMQGPMGPMGPRGPPGPAGAPGPQGFQGNPGEPGEPGVSGPMG AQMAGGFDEKAGGAQMGVMQGPMGPMGPRGPPGPAGAPGPQGFQGNPGEPGEPGVSGPMG AQMAGGFDEKAGGAQLGVMQGPMGPMGPRGPPGPAGAPGPQGFQGNPGEPGEPGVSGPMG *******	240 240 240
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PRGPPGPPGKPGDDGEAGKPGKSGERGPPGPQGARGFPGTPGLPGVKGHRGYPGLDGAKG PRGPPGPPGKPGDDGEAGKPGKSGERGPPGPQGARGFPGTPGLPGVKGHRGYPGLDGAKG PRGPPGPPGKPGDDGEAGKPGKAGERGPPGPQGARGFPGTPGLPGVKGHRGYPGLDGAKG ******	300 300 300
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	EAGAPGVKGESGSPGENGSPGPMGPRGLPGERGRTGPAGAAGARGNDGQPGPAGPPGPVG EAGAPGVKGESGSPGENGSPGPMGPRGLPGERGRTGPAGAAGARGNDGQPGPAGPPGPVG EAGAPGVKGESGSPGENGSPGPMGPRGLPGERGRTGPAGAAGARGNDGQPGPAGPGPVG *********************************	360 360 360
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PAGGPGFPGAPGAKGEAGPTGARGPEGAQGPRGEPGTPGSPGPAGAAGNPGTDGIPGAKG PAGGPGFPGAPGAKGEAGPTGARGPEGAQGPRGEPGTPGSPGPAGAAGNPGTDGIPGAKG PAGGPGFPGAPGAKGEAGPTGARGPEGAQGPRGEPGTPGSPGPAGASGNPGTDGIPGAKG ***********************************	420 420 420
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	APGPAGEEGKRGARGEPGGAGPAGPPGERGAPGNRGFPGQDGLAGPKGAPGERGPSGLAG APGPAGEEGKRGARGEPGGAGPAGPPGERGAPGNRGFPGQDGLAGPKGAPGERGPSGLAG APGPAGEEGKRGARGEPGGVGPIGPPGERGAPGNRGFPGQDGLAGPKGAPGERGPSGLAG ******	540 540 540
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PKGANGDPGRPGEPGLPGARGLTGRPGDAGPQGKVGPSGAPGEDGRPGPPGPQGARGQPG PKGANGDPGRPGEPGLPGARGLTGRPGDAGPQGKVGPSGAPGEDGRPGPPGPQGARGQPG PKGANGDPGRPGEPGLPGARGLTGRPGDAGPQGKVGPSGAPGEDGRPGPPGPQGARGQPG ***********************************	600 600 600
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	VMGFPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGETGAAGPPGPAGPAGERGEQGAPG VMGFPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGETGAAGPPGPAGPAGERGEQGAPG VMGFPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGETGAAGPPGPAGPAGERGEQGAPG	660 660 660
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PSGFQGLPGPPGPGEGGKPGDQGVPGEAGAPGLVGPRGERGFPGERGSPGSQGLQGARG PSGFQGLPGPPGPGEGGKPGDQGVPGEAGAPGLVGPRGERGFPGERGSPGSQGLQGARG PSGFQGLPGPPGPGEGGKPGDQGVPGEAGAPGLVGPRGERGFPGERGSPGAQGLQGPRG ***********************************	720 720 720
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	LPGTPGTDGPKGAAGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGDRGDVGEKGPEGAPG LPGTPGTDGPKGAAGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGDRGDVGEKGPEGAPG LPGTPGTDGPKGASGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGDRGDVGEKGPEGAPG	780 780 780
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	KDGGRGL TGPIGPPGPAGANGEKGEVGPPGPAG TAGARGAPGERGE TGPPGPAGFAGPPG KDGRGL TGPIGPPGPAGANGEKGEVGPPGPAGTAGARGAPGERGE TGPPGPAGFAGPPG KDGRGL TGPIGPPGPAGANGEKGEVGPPGPAGSAGARGAPGERGE TGPPGPAGFAGPPG **********************************	840 840 840
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	ADGQPGAKGEQGEAGQKGDAGAPGPQGPSGAPGPQGP1GVTGPKGARGAQGPPGATGFPG ADGQPGAKGEQGEAGQKGDAGAPGPQGPSGAPGPQGPTGVTGPKGARGAQGPPGATGFPG ADGQPGAKGEQGEAGQKGDAGAPGPQGPSGAPGPQGPTGVTGPKGARGAQGPPGATGFPG ***********************************	900 900 900
Capra_COLIIAI Bos_COLIIA1 Homo_COLIIA1	AAGRVGPPGSNGNPGPPGPPGPSGKDGPKGARGDSGPPGRAGDPGLQGPAGPPGEKGEPG AAGRVGPPGSNGNPGPPGPPGPSGKDGPKGARGDSGPPGRAGDPGLQGPAGPPGEKGEPG AAGRVGPPGSNGNPGPPGPPGPSGKDGPKGARGDSGPPGRAGEPGLQGPAGPPGEKGEPG	960 960 960
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	DDGPSGPDGPPGPQGLAGQRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGASGDRGPPG DDGPSGPDGPPGPQGLAGQRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGASGDRGPPG DDGPSGAEGPPGPQGLAGQRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGASGDRGPPG ******	1020 1020 1020
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PVGPPGLTGPAGEPGREGSPGADGPPGRDGAAGVKGDRGETGAVGAPGAPGPPGSPGPAG PVGPPGLTGPAGEPGREGSPGADGPPGRDGAAGVKGDRGETGAVGAPGAPGPPGSPGPAG PVGPPGLTGPAGEPGREGSPGADGPPGRDGAAGVKGDRGETGAVGAPGAPGPPGSPGPAG	1080 1080 1080
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PVGKQGDRGEAGAQQPMGPAGPAGAAGARGMPGPQGPRGDKGETGEAGERGLKGHRGFTGLQG PIGKQGDRGEAGAQGPMGPAGPAGAARGMPGPQGPRGDKGETGEAGERGLKGHRGFTGLQG PTGKQGDRGEAGAQGPMGPSGPAGARGIQGPQGPRGDKGEAGEPGERGLKGHRGFTGLQG	1140 1140 1140
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	LPGPPGPSGDQGASGPAGPSGPRGPPGPVGPSGKDGANGIPGPIGPPGPRGRSGETGPAG LPGPPGPSGDQGASGPAGPSGPRGPPGPVGPSGKDGANGIPGPIGPPGPRGRSGETGPAG LPGPPGPSGDQGASGPAGPSGPRGPPGPVGPSGKDGANSIPGPIGPPGPRGRSGETGPAG	1200 1200 1200
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	PPGNPGPPGPPGPPGFGIDMSAFAGLGQREKGPDPLQYMRADEAAGNLRQHDAEVDATLK PPGNPGPPGPPGPGDGIDMSAFAGLGQREKGPDPLQYMRADEAAGNLRQHDAEVDATLK PPGNPGPPGPPGPPGPCGDMSAFAGLGPREKGPDPLQYMRADQAAGGLRQHDAEVDATLK	1260 1260 1260
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	SLNNQLESLRSPEGSRKNPARTCRDLKLCHPEWKSGDYWIDPNQGCTLDAMKVFCNMETG SLNNQIESLRSPEGSRKNPARTCRDLKLCHPEWKSGDYWIDPNQGCTLDAMKVFCNMETG SLNNQIESIRSPEGSRKNPARTCRDLKLCHPEWKSGDYWIDPNQGCTLDAMKVFCNMETG	1320 1320 1320
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	EICVYPNPASVPKKNWWSSKSKDKKHIWFGETINGGFHFSYGDDNLAPNTANVQMTFLRL ETCVYPNPASVPKKNWWSSKSKDKHIWFGETINGGFHFSYGDDNLAPNTANVQMTFLRL ETCVYPNPANVPKKNWWSSKSKEKKHIWFGETINGGFHFSYGDDNLAPNTANVQMTFLRL	1380 1380 1380
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	LSIEGSQNITYHCKNSIAYLDEAAGNLKKALLIQGSNDVEIRAEGNSRFTYTVLKDGCTK LSTEGSQNITYHCKNSIAYLDEAAGNLKKALLIQGSNDVEIRAEGNSRFTYTVLKDGCTK LSTEGSQNITYHCKNSIAYLDEAAGNLKKALLIQGSNDVEIRAEGNSRFTYTALKDGCTK	1440 1440 1440
Capra_COLIIA1 Bos_COLIIA1 Homo_COLIIA1	HIGKWGETVIEYRSQKISRLPIIDIAPMDIGGPEQEFGVDIGPVCFL 1487 HTGKWGKTMIEYRSQKTSRLPIIDIAPMDIGGPEQEFGVDIGPVCFL 1487 HTGKWGKTVIEYRSQKTSRLPIIDIAPMDIGGPEQEFGVDIGPVCFL 1487 ******:*::***************************	

Supplementary Figure 3. Amino acid sequence alignment of COLIIA1 from *Capra hircus, Bos taurus* and *Homo sapiens* showing 98% identity.

1	MIRLGAPQTL	VLLTLLVAAV	LRCHGQDVQK	AGSCVQDGQR	YNDKDVWKPE
51	PCRICVCDTG	TVLCDDIICE	DMKDCLSPET	PFGECCPICS	ADLPTASGQP
101	GPKGQKGEPG	DIKDIVGPKG	PPGPQGPAGE	QGPRGDRGDK	GEKGAPGPR G
151	RDGEPGTPGN	PGPPGPPGPP	GPPGLGGNFA	AQMAGGFDEK	AGGAQMGVMQ
201	GPMGPMGPRG	PPGPAGAPGP	QGFQGNPGEP	GEPGVSGPMG	PRGPPGPPGK
251	PGDDGEAGKP	GKSGER GPPG	PQGARGFPGT	PGLPGVK GHR	GYPGLDGAKG
301	EAGAPGVKGE	SGSPGENGSP	GPMGPRGLPG	ERGR TGPAGA	AGAR GNDGQP
351	GPAGPPGPVG	PAGGPGFPGA	PGAKGEAGPT	GARGPEGAQG	PRGEPGTPGS
401	PGPAGAAGNP	GTDGIPGAK G	SAGAPGIAGA	PGFPGPRGPP	GPQGATGPLG
451	PKGQTGEPGI	AGFKGEQGPK	GEPGPAGPQG	APGPAGEEGK	RGAR GEPGGA
501	GPAGPPGERG	$\mathbf{APGNR} GFPGQ$	DGLAGPK GAP	GERGPSGLAG	PKGANGDPGR
551	PGEPGLPGAR	GLTGRPGDAG	PQGKVGPSGA	PGEDGRPGPP	GPQGAR GQPG
601	VMGFPGPKGA	NGEPGKAGEK	GLPGAPGLRG	LPGKDGETGA	AGPPGPAGPA
<mark>6</mark> 51	GER GEQGAPG	PSGFQGLPGP	PGPPGEGGKP	GDQGVPGEAG	APGLVGPRGE
701	R gfpger gsp	GSQGLQGAR G	LPGTPGTDGP	KGAAGPAGPP	GAQGPPGLQG
751	MPGERGAAGI	AGPK GDRGDV	GEKGPEGAPG	KDGGRGLTGP	IGPPGPAGAN
801	GEKGEVGPPG	PAGTAGARGA	PGER GETGPP	GPAGFAGPPG	ADGQPGAK GE
851	QGEAGQKGDA	GAPGPQGPSG	APGPQGPTGV	TGPKGAR GAQ	GPPGATGFPG
901	AAGR VGPPGS	NGNPGPPGPP	GPSGKDGPKG	ARGDSGPPGR	AGDPGLQGPA
9 <mark>51</mark>	GPPGEKGEPG	DDGPSGPDGP	PGPQGLAGQR	GIVGLPGQRG	ERGFPGLPGP
1001	SGEPGKQGAP	GASGDRGPPG	PVGPPGLTGP	AGEPGR EGSP	GADGPPGRDG
1051	AAGVK GDRGE	TGAVGAPGAP	GPPGSPGPAG	PIGKQGDRGE	AGAQGPMGPA
1101	GPAGARGMPG	PQGPRGDKGE	TGEAGERGLK	GHR GFTGLQG	LPGPPGPSGD
1151	OCT COTTO				apaanmapaa
1201	QGASGPAGPS	GPR GPPGPVG	PSGKDGANGI	PGPIGPPGPR	GRSGETGPAG
	PPGNPGPPGP	GPRGPPGPVG PGPPGPGIDM	PSGK DGANGI SAFAGLGQRE	PGPIGPPGPR KGPDPLQYMR	ADEAAGNLRQ
1251	QGASGPAGPS PPGNPGPPGP HDAEVDATLK	GPRGPPGPVG PGPPGPGIDM SLNNQIESLR	PSGK DGANGI SAFAGLGQRE SPEGSRKNPA	PGPIGPPGPR KGPDPLQYMR RTCRDLKLCH	ADEAAGNLRQ PEWKSGDYWI
1251 1301	QGASGPAGPS PPGNPGPPGP HDAEVDATLK DPNQGCTLDA	GPRGPPGPVG PGPPGPGIDM SLNNQIESLR MKVFCNMETG	PSGK DGANGI SAFAGLGQRE SPEGSRKNPA ETCVYPNPAS	PGPIGPPGPR KGPDPLQYMR RTCRDLKLCH VPKKNWWSSK	GRSGETGPAG ADEAAGNLRQ PEWKSGDYWI SKDKKHIWFG
1251 1301 1351	QGASGPAGPS PPGNPGPPGP HDAEVDATLK DPNQGCTLDA ETINGGFHFS	GPRGPPGPVG PGPPGPGIDM SLNNQIESLR MKVFCNMETG YGDDNLAPNT	PSGK DGANGI SAFAGLGQRE SPEGSRKNPA ETCVYPNPAS ANVQMTFLRL	PGPIGPPGPR KGPDPLQYMR RTCRDLKLCH VPKKNWWSSK LSTEGSQNIT	ADEAAGNLRQ PEWKSGDYWI SKDKKHIWFG YHCKNSIAYL
1251 1301 1351 1401	QGASGPAGPS PPGNPGPPGP HDAEVDATLK DPNQGCTLDA ETINGGFHFS DEAAGNLKKA	GPRGPPGPVG PGPPGPGIDM SLNNQIESLR MKVFCNMETG YGDDNLAPNT LLIQGSNDVE	PSGK DGANGI SAFAGLGQRE SPEGSRKNPA ETCVYPNPAS ANVQMTFLRL IRAEGNSRFT	PGPIGPPGPR KGPDPLQYMR RTCRDLKLCH VPKKNWWSSK LSTEGSQNIT YTVLKDGCTK	GRSGETGPAG ADEAAGNLRQ PEWKSGDYWI SKDKKHIWFG YHCKNSIAYL HTGKWGKTMI

Supplementary Figure 4. Highlighted amino acid sequences identified from Capra COLIIA1 by peptide mass finger printing using *Bos taurus* COLIIA1 as template sequence.

Supplementary Figure 5. Identification of isolated capra ADMSCs. Protein expression analysis showed (A) positive expression of CD 44 marker and (B) negative expression of CD 31 marker (pseudo colors, Scale bars: 100 μ m); (C) RT-PCR study revealed expression of GAPDH (lane 2), CD 73 (lane 4), CD 90 (lane 5) and CD 105 (lane 6) and negative expression of CD 45 marker associated genes (lane 3) in reference to 100 bp ladder (lane 1).

Supplementary Figure 6. Assessment of trilineage differentiation potential of ADMSCs to adipogenic, chondrogenic and osteogenic lineage. (A-B) showing significant accumulation of lipid droplets by Oil Red O staining in cytoplasm after cells cultured under adipogenic differentiation media compared to control (Scale bars: 50 μ m); (C-D) depicting cartilage micro-tissue formation as stained by Alcian Blue after cells cultured under chondrogenic differentiation media compared to control (Scale bars: 100 μ m); (E-F) identified significant calcium deposition by Alizarin Red S staining after cells cultured under osteogenic differentiation media as compared to control (Scale bars: 500 μ m).

Temp. (°C)	α-helix	β-strand	% of denature	% of intactness
25	53.23	8.04	0	100
30	53.26	7.68	0	100
35	52.49	7.93	1.4	98.60
40	50.26	8.25	5.58	94.42
41	44.02	8.74	17.31	82.69
42	37.61	9.71	29.35	70.65
43	25.98	11.68	51.2	48.80
44	19.02	12.20	64.27	35.73
45	17.38	12.07	67.35	32.65
46	17.73	11.99	66.7	33.30
47	16.16	12.07	69.55	30.35
48	16.12	12.35	69.72	30.28
49	15.69	12.11	70.53	29.47
50	15.33	12.47	77.21	28.79

Supplementary Table 1: Predictive values of percentage denaturation of COL II secondary structure

Supplementary Table 2: Comparative analysis of amino acid residues in Capra ear cartilage derived COLII with Chicken samples as reported by Cao *et al.*, 2008¹⁶

Amino Acid	COL II (Cao et al.,	Capra ear cartilage derived COL II		
	2008)(residues/1000 residues)	in present study (residues/1000		
		residues)		
Glycine	313	302		
Alanine	102	105		
Glutamic acid	94	77		
Proline	94	99		
Hydroxyproline	118	118		
Arginine	53	55		
Leucine	31	29		
Histidine	4	5		
Lysine	15	19		
Phenylalanine	15	21		
Isoleucine	13	14		
Methionine	2	10		
Valine	22	25		
Serine	25	27		
Threanine	30	28		
Aspartic Acid	47	41		
Tyrosine	5	5		
Cysteine	17	20		

Supplementary Table 3: Comparisons of COLIIA1 MASCOT score with other proteins

Protein	Mass	Score
COLIIA1_Bos taurus	134858	82
COLIIA1_Bos mutus	134842	82
COLIIA1_Bos indicus	142919	73
COLIIA1_Pantholops hodgsonii	134852	76
COLIIA1_Bubalus bubalis	134844	76
COLIIA1_Homo sapiens	142782	56

A-Buffer (0.01M Na ₂ HPO ₄); B- Acetonitrile, Excitation:230, Emission: 460						
Time	A%	В%	C%	D%	Flow rate ml/min	Max. Pressure limit (Bar)
0.00	91.0	9.0	0.0	0.0	1.000	400.00
2.00	80.0	20.0	0.0	0.0	1.000	400.00
35.00	68.0	32.0	0.0	0.0	1.000	400.00
55.00	20.0	80.0	0.0	0.0	1.000	400.00
57.00	91.0	9.0	0.0	0.0	1.000	400.00

Supplementary Table 4: HPLC solvent system for amino acid analysis

Supplementary Table 5: Designed Primers for RT-PCR

Genes	Sequence	Annealing Temp.(°C)	Product Size (bp)	References
GAPDH-FP	GGCGCTGCCAAGGCCGTGGGCAAG	73.0	273	KEGG_10086074
GAPDH-RP	GGCAATGCCAGCCCCAGCATCGAAGG			3
CD90 -FP	GCACCATGAACCCTACCATC	55	241	
CD90 -RP	TTGGTTCGGGAGCTGTATTC		211	
CD73-FP	CTGAGACACCCGGATGAGAT	52	160	
CD73-RP	ACTGGACCAGGTCAAAGGTG		100	Mohamad- Fauzi et al
CD105-FP	AGATGCCAACATCACACAGC	49	129	2015 ²²
CD105-RP	TCCAGACGAAGGAAGATGCT			
CD45-FP	GGGAGGAGGGAAAGCAAACC	55	146	
CD45-RP	GCAGCTCTTCCCCATTCCAG		110	
COLIIA1-FP	GGCGCTGCCAAGGCCGTGGGCAAG	64	269	KEGG_10086074
OLIIA1-RP	GGCAATGCCAGCCCCAGCATCGAAGG		207	3