

Supplementary Figure 1. Alignment of KdpD of BMB171 (*Bacillus thuringiensis* BMB171) with N-terminal domain of *S. aureus* (*Staphylococcus aureus* NCTC 8325). White letters shaded in red denote the conserved nucleotides. The similarity is only 9.1%.

Supplementary Figure 2. A conserved c-di-AMP riboswitch encoding region within the 5'-UTR encoding region of *kdp* operon. a Sequence alignment of the aptamer domains in c-di-AMP riboswitch between BMB171 and *B. subtilis* 168, with white letters shaded in black denoting the conserved nucleotides. **b** The predicted secondary structure of c-di-AMP riboswitch. The distance from the 3' terminal of c-di-AMP riboswitch to the first nucleotide of the start codon is 143 bp.

Supplementary Figure 3 The β -galactosidase activities for $\Delta kdpD$ carrying plasmids with (pBC2) and without the c-di-AMP riboswitch encoding region (pBC0) at different K⁺ concentrations. Data are expressed as box-and-whisker plots, where the central lines denote medians, edges represent upper and lower quartiles and whiskers show minimum and maximum values. Data were subjected to one-way analysis of variance (ANOVA) using the Bonferroni test, n = 3, p-values are shown above each panel.

Supplementary Figure 4. *In vitro* transcription assay conducted in the presence of various c-di-AMP concentrations ranging from 0 to 5μ M.

Supplementary Figure 5. In vitro transcription assay conducted in the presence of

various K⁺ concentrations ranging from 150 to 300 mM.

Supplementary Figure 6. Quantification of intracellular c-di-AMP concentration

by LC-MS/MS. a LC-MS/MS chromatogram of the c-di-AMP standard detected using the m/z fragments at 135.9, 330.0 and 523.9. **b** Mass spectrum of daughter ions m/z 135.9, 330.0 and 523.9 from parent ions m/z 659.0 and 660.0. **c** and **d** Determination of c-di-AMP extracted from BMB171 strain grown in TSB and TSB-Na, respectively.

Supplementary Figure 7. Verification of $\Delta kdpD$ and ΔUTR by sequencing. **a** Sequence alignment of PCR products amplified from the $\Delta kdpD$ genomic DNA and the BMB171 genomic DNA using primer pair kdpC-F/ kdpD-DR (*Bam*H I). The PCR products (about upstream 100 bp and downstream 100 bp sequences of kdpD) were shown. **b** Sequence alignment of PCR products amplified from the ΔUTR genomic DNA and the BMB171 genomic DNA using primer pair UTR-UUF/UTR-DR (*Bam*H I). The PCR products (about upstream 100 bp and downstream 100 bp sequences of c-di-AMP riboswitch) were shown.

Primers	Consequence	Purposes	Origins
<i>kdpA</i> -F	CGTTAGATGGGGCGGTTACA		This work
<i>kdpA</i> -R	GTGACACGAAAAGGATGCGG		This work
<i>kdpB</i> -F	GGCGGTGATTTTTGTTCCGT		This work
<i>kdpB</i> -R	AAATCGGCAACGTCACAACG	RT-qPCR	This work
<i>kdpC</i> -F	AATCGGGCAAAACTTCACGG		This work
<i>kdpC</i> -R	ATATGCGATCCACCTGCACA		This work
gapdh-F	TTTTGCTAGCGCTTTCGCAG		This work
gapdh-R	TAGCGCCTGTTGTGAAGGTG		This work
16S-F	CCGCCCTTTAGTGCTGAAG	RI-qPCR, internal control	This work
16S-R	CTTGTGCGGGGCCCCCGTCAATTC		This work
Primer-8	TTTTTTTTTTTTTTT		7 7 1 · 1
UTR-R(5'-RACE)	AACTGAAAGATTCACCCCAAGTGACGA	J'-KACE	This work
Pkdp-F (Nco I)	CATG <u>CCATGG</u> AATAACAGTAATAATCTTCA	Plasmids pBC0 and pBC2	This work
	ATGTA	construction	
Pkdp-R1 (BamH I)	CG <u>GGATCC</u> GAGAGTAAATATACTCCTCTAT		7 7 1 · 1
	AT	Plasmid pBC0 construction	This work
0647-R (BamHI)	CG <u>GGATCC</u> TTTTTTGTTAAAATTTACCATTT		7 7 1 · 1
	AAATATTAAA	Plasmid pBC2 construction	This work
UTR-UF(Hind III)	CCCAAGCTT		Th:
	GAGGATGAGGTACATGGAACTA		This work
UTR-UR (Mlu I)	CG <u>ACGCGT</u>	Diamid aDD1028 LITD LID	This work
	CATTTCTGGAACTCAGCGATTTTAG	Plasmid pRP1028-UTR-UD	THIS WORK
UTR-DF (Mlu I)	CG <u>ACGCGT</u> GGTAAATTTTAACAAAAAAGAG	construction	This work
	GGGA		THIS WORK
UTR-DR(BamH I)	CG GGATCC ATCCACCGCCGTTATTTCCAAG		This work
UTR-UUF	CTTCGTAAGCGTCTTGAGAGAGGAC	For c-di-AMP riboswitch	This work
pRP1028-R	GTGCGAATAAGGGACAGTGAAGAAGG	encoding region deleted	This work
		candidate screening	THIS WOLK
kdpD-UF (Sma I)	TCC <u>CCCGGG</u>		This work
	AATTAACATCACCACTGTCAGCG		THIS WOLK
kdpD-UR (Mlu I)	CG <u>ACGCGT</u> TCTTTTTCATTTCCCTTGCATC	Plasmid pRP1028-kdpD-UD	This work
kdpD-DF (Mlu I)	CG <u>ACGCGT</u>		This work
	TACTTGGACAATCGGCTAGAACA	construction	THIS WORK
kdpD-DR(BamH I)	CG <u>GGATCC</u>		This work
	ATTATGCAGCTCGTATATGGACC		THIS WORK
<i>kdpC</i> -F	AATCGGGCAAAACTTCACGG	For chromosomal kdpD gene	This work
pRP1028-R	GTGCGAATAAGGGACAGTGAAGAAGG	deleted candidate screening	
Eco-P	CAATGTAAGCGTTTAAATGAATG	.	This work
ZL-2R	TCCTTCTTTCACAACTTTATCTGACCAACT	In vitro transcription	This work

Supplementary Table 1. Primers used in this study

Strains	Relevant characteristics	Origins	
E. coli DH5α	F- $\Phi 80 lac Z\Delta M15 \Delta (lac ZYA-argF) U169 recA1 endA1 hsdR17(rk-,$	Beijing TransGen Biotech Co.,	
	mk ⁺) phoA supE44 thi-1 gyrA96 relA1 λ-	Ltd	
BMB171	B. thuringiensis strain BMB171; an acrystalliferous mutant strain;	3, 4	
	high transformation frequency		
$\Delta cdaA$	In frame deletion of <i>cdaA</i> in BMB171	5	
$\Delta disA$	In frame deletion of <i>disA</i> in BMB171	5	
ΔUTR	In frame deletion of c-di-AMP riboswitch in BMB171	This work	
$\Delta k dp D$	In frame deletion of <i>kdpD</i> in BMB171	This work	
BMB171-pBC0	Derivate strain of BMB171 carrying the pBC0 plasmid	This work	
BMB171-pBC2	Derivate strain of BMB171 carrying the pBC2 plasmid	This work	
∆cdaA-pBC0	Derivate strain of $\Delta c daA$ carrying the pBC0 plasmid	This work	
∆cdaA-pBC2	Derivate strain of $\Delta cdaA$ carrying the pBC2 plasmid	This work	
∆ <i>disA</i> -pBC0	Derivate strain of $\Delta disA$ carrying the pBC0 plasmid	This work	
∆disA-pBC2	Derivate strain of $\Delta disA$ carrying the pBC2 plasmid	This work	

Supplementary Table 2. Strains used in this study

Plasmids	Relevant characteristics	Purposes	Origins
pHT1K-lacZ	<i>B. thuringiensis-E. coli</i> shuttle plasmid; $Amp^{R} Erm^{R}$, pHT1K plasmid harboring the promoter-less <i>lacZ</i> gene, for β -galactosidase activity assay	β-Galactosidase assays	1
pBC0	<i>Kdp</i> promoter cloned between <i>Nco</i> I and <i>BamH</i> I sites of pHT1K- <i>lacZ</i> , for β -galactosidase activity assay	β-Galactosidase assays	This work
pBC2	Kdp promoter and c-di-AMP riboswitch coding region cloned between <i>Nco</i> I and <i>BamH</i> I sites of pHT1K- <i>lacZ</i> , for β -galactosidase activity assay	β-Galactosidase assays	This work
pRP1028	<i>B. thuringiensis-E. coli</i> shuttle plasmid; Amp ^R Erm ^R ; containing <i>turbo-rfp</i> gene and an I- <i>Sce</i> I recognition site	Gene deletion	2
pSS4332	<i>B. thuringiensis-E. coli</i> shuttle plasmid; Km ^R ; containing <i>gfp</i> and I- <i>Sce</i> I restriction enzyme encoding gene	Gene deletion	2
pSS1827	The helper plasmid for conjugative transfer; Amp ^R	Gene deletion	2
pRP1028-UTR- UD	pRP1028 with the upstream and downstream regions of c-di- AMP riboswitch, an intermediate plasmid in gene deletion experiments	c-di-AMP riboswitch encoding region deletion	This work
pRP1028- <i>kdpD</i> - UD	pRP1028 with the upstream and downstream regions of $kdpD$ gene, an intermediate plasmid in gene deletion experiments	<i>kdpD</i> deletion	This work

Supplementary Table 3. Plasmids used in this study

Supplementary References

- Wang, J. P., Ai, X. L., Mei, H., Fu, Y., Chen, B., Yu, Z.N. & He, J. Highthroughput identification of promoters and screening of highly active promoter-5 '-UTR DNA region with different characteristics from *Bacillus thuringiensis*. *PLoS ONE*, 8, e62960 (2013).
- 2. Janes, B. K. & Stibitz, S. Routine markerless gene replacement in *Bacillus anthracis*. *Infect Immun*, **74**, 1949-1953 (2006).
- 3. Li, L., Shao, Z., & Yu, Z. Transformation of *Bacillus thuringiensis* recipient BMB171 by electroporation. *Wei Sheng Wu Xue Tong Bao*, **27**, 331-334 (2000).
- 4. Li, L., Yang, C., Liu, Z., Li, F., & Yu, Z. Screening of acrystalliferous mutants from *Bacillus thuringiensis* and their transformation properties. *Wei Sheng Wu Xue Bao*, **40**, 85-90 (2000).
- 5. Zheng, C., Ma, Y., Wang, X., Xie, Y., Ali, M. K., & He, J. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in *Bacillus thuringiensis*. *Front Microbiol*, **6**, 908 (2015).