Cobalt Catalyzed Reductive Dimethylcyclopropanation of 1,3-Dienes

Jacob Werth and Christopher Uyeda

Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States

Correspondence: cuyeda@purdue.edu

Supporting Information

1. General Information	S2
2. Reaction Optimization Studies	S3
3. Procedures for the Dimethylcyclopropanation of 1,3-Dienes	S7
4. Procedures for the Vinylcyclopropane Ring-Opening Reactions	S15
5. Synthesis and Characterization of Dienoic Esters	S17
6. Procedures for the Dimethylcyclopropanation of Dienoic Esters	S20
7. Procedure for the Dimethylcyclopropanation of Activated Alkenes	S23
8. NMR Spectra	S28
9. IR Spectra	S65
10. References	S101

1. General Information

General considerations. All manipulations were carried out using standard Schlenk or glovebox techniques under an atmosphere of N₂. THF was dried and degassed by passage through a column of activated alumina and sparging with Ar gas. CDCl₃ was purchased from Cambridge Isotope Laboratories, Inc., degassed, and stored over activated 3 Å molecular sieves prior to use. All other reagents and starting materials were purchased from commercial vendors and used without further purification unless otherwise noted. PDI ligands were synthesized according to reported methods.^{1,2} Zn powder (325 mesh, 99.9%) and CoBr₂ were purchased from Strem. ZnBr₂ was purchased from Sigma-Aldrich. CoBr₂ was dried in the oven and stored in the glovebox.

Physical methods. ¹H and ¹³C{¹H} NMR spectra were collected at room temperature on a Varian INOVA 300 MHz spectrometer, Bruker Avance 400 MHz spectrometer, or Bruker Avance 500 MHz spectrometer. ¹H and ¹³C{¹H} NMR spectra are reported in parts per million relative to tetramethylsilane, using the residual solvent resonances as an internal standard. High-resolution mass data were obtained using an Agilent 6320 Trap LC/MS, Agilent 5975C GC/MS, or Thermo Electron Corporation MAT 95XP-Trap instrument. ATR-IR data were collected on a Thermo Scientific Nicolet Nexus spectrometer.

2. Reaction Optimization Studies

General Procedure for Optimization Study. In an N₂-filled glovebox, a 2-dram vial was charged with the metal salt (0.014 mmol, 0.10 equiv), ligand (0.014 mmol, 0.10 equiv), THF (0.5 mL) and a magnetic stir bar. The metal complex was allowed to form by stirring at room temperature for 24 h. Then, Zn powder (18 mg, 0.28 mmol, 2.0 equiv), ZnBr₂ (18 mg, 0.28 mmol, 1.0 equiv), and a stock solution of the substrate (0.14 mmol, 1.0 equiv) and a mesitylene standard dissolved in THF (0.5 mL) were added. The reaction mixture was stirred at room temperature for approximately 15 min, during which time a deep violet color developed. Me₂CCl₂ (31.6 mg, 0.28 mmol, 2.0 equiv) was added, and stirring was continued at room temperature. After 24 h, the reaction mixture was diluted with CH₂Cl₂, and an aliquot was analyzed by GC (FID detector).

Me	Metal Sou Ligand Cl ₂ C(M Zn ZnBr	rce (10 mol%) (10 mol%) e) ₂ (2 eq.) (2 eq.) ₂ (1 eq.)	Me Me Me	
1	TH	[–] , 24 h	2	
Entry	Metal Source	Ligand	Yield 2 [%]	
1	_	-	< 1	
2	-	^{2-<i>t</i>-Bu} PDI (L1)	< 1	
3	CoBr ₂	-	< 1	
4	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	93	
5	CoBr ₂	^{2,4,6-Me} PDI (L2)	77	
6	CoBr ₂	^{3,5-t-Bu} PDI (L3)	8	
7	CoBr ₂	^{2,6-<i>i</i>-PrPDI (L4)}	2	
8	NiBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	5	
9	FeBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	4	
10	CoBr ₂	^{2,6-<i>i</i>-Pr} IP (L5)	2	
11	CoBr ₂	^{2,6-<i>i</i>-Pr} DAD (L6)	<1	
12	CoBr ₂	bpy (L7)	4	
13	CoBr ₂	terpy (L8)	1	
14	CoBr ₂	Chiral PDI (L9)	9	
15	CoBr ₂	Chiral PDI (L10)	17	
16 ^[b]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	87	
17 ^[c]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	78	
18 ^[d]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	79	
19 ^[e]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	26	
20 ^[f]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	>99	
21 ^[g]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	7	
22[h]	CoBr ₂	^{2-<i>t</i>-Bu} PDI (L1)	11	

Figure S1. Optimization studies probing metal and ligand sources. [b] Modifications from standard conditions: without ZnBr₂. [c] Modifications from standard conditions: 1.1 equiv of Me₂CCl₂. [d] Modifications from standard conditions: 2.0 equiv of Me₂CBr₂. [e] Modifications from standard conditions: 2.0 equiv of I₂CMe₂. [f] Modifications from standard conditions: 1.1 equiv of Zn. [g] Modifications from standard conditions: 1 equiv of MgBr₂ (No ZnBr₂). [h] Modifications from standard conditions: 1 equiv of LiCl (No ZnBr₂).

General Procedure for Zinc Carbenoid Dimethylcyclopropanation.³ In an N₂-filled glovebox, a 2dram vial was charged with **1** (0.14 mmol, 1.0 equiv), CH_2Cl_2 (1.0 mL), mesitylene, and a magnetic stir bar. Et_2Zn (69 mg, 0.56 mmol, 4.0 equiv) was added dropwise to the solution at -30 °C. $I_2CMe_2^4$ (166 mg, 0.56 mmol, 4.0 equiv) was added dropwise, and the reaction was allowed to warm to room temperature and stirred for 24 h. The crude reaction mixture was diluted with CH_2Cl_2 , and an aliquot was analyzed by GC (FID detector). Conversion of **1**: 70%. Yield of **2**: 45%.

Figure S2. GC/MS analysis of the crude reaction mixture $(1 + I_2CMe_2/Et_2Zn)$. Additional products correspond to isomers of **2**, products containing two Me₂C fragments, and products containing additional Et groups.

Figure S3. A ¹H NMR comparison of the crude reaction mixtures for the cobalt-catalyzed cyclopropanation of **1** (top) and the non-catalytic Furukawa-type Simmons–Smith reaction of **1** (bottom).

3. Procedures for the Dimethylcyclopropanation of 1,3-Dienes

Preparation of [^{2-*t*Bu}**PDI]CoBr₂ (3).** In an N₂-filled glovebox, a 5-dram vial was charged with ^{2-*t*Bu}PDI⁵ (100 mg, 0.23 mmol, 1.0 equiv), CoBr₂ (anhydrous) (50.1 mg, 0.23 mmol, 1.0 equiv), THF (7.0 mL) and a magnetic stir bar. The mixture was stirred at room temperature for 24 h. After 24 h, the mixture was concentrated to dryness under vacuum to produce a mustard-yellow solid.

Figure S4. UV-Vis spectrum of [2-tBuPDI]CoBr₂(3).

General procedure for the dimethylcyclopropanation of 1,3-dienes. In an N₂-filled glovebox, a 2dram vial was charged with the [^{2-tBu}PDI]CoBr₂ catalyst **3** (9.0 mg, 0.014 mmol, 0.10 equiv), the substrate (0.14 mmol, 1.0 equiv), Zn powder (18 mg, 0.28 mmol, 2.0 equiv), ZnBr₂ (31 mg, 0.14 mmol, 1.0 equiv), THF (1.0 mL), and a magnetic stir bar. The reaction mixture was stirred at room temperature for approximately 15 min during which time a deep violet color developed. Me₂CCl₂ (31.6 mg, 0.28 mmol, 2.0 equiv) was added, and stirring was continued at room temperature. After 24 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was directly loaded onto a SiO₂ column for purification.

(2). The reaction was conducted using (*E*)-deca-1,3-diene⁶ without modification from the general procedure to provide **2** as a colorless oil.

Run 1: 24.7 mg (98% yield). Run 2: 22.2 mg (88% yield).

Purification: SiO₂ column; pentane.

¹H NMR (300 MHz, CDCl₃) δ 5.54-5.44 (m, 1H), 5.22-5.14 (m, 1H), 2.00 (q, *J* = 6.52 Hz, 2H), 1.36-1.26 (m, 8H), 1.23-1.16 (m, 1H), 1.06 (s, 3H), 1.04 (s, 3H), 0.89 (t, *J* = 6.97 Hz, 3H), 0.61-0.57 (m, 1H), 0.28 (t, *J* = 4.71 Hz, 1H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 130.3, 130.1, 32.8, 31.8, 29.8, 28.9, 27.5, 27.0, 22.7, 21.0, 20.5, 18.0, 14.1.

HRMS (ESI) calc. for C₁₃H₂₃: m/z=179.1794, found: m/z=179.1792 IR (film): 3052, 3001, 2952, 2915, 2851, 1452, 1365, 963 cm⁻¹

(4). The reaction was conducted using (*E*)-1-(buta-1,3-dien-1-yl)-4-chlorobenzene⁷ without modification from the general procedure to provide **4** as a colorless oil.

Run 1: 27.8 mg (96% yield). Run 2: 27.2 mg (94% yield).

Purification: SiO₂ column; pentane

¹H NMR (300 MHz, CDCl₃) δ 7.25 (s, 4H), 6.42 (d, *J* = 15.70 Hz, 1H), 6.01-5.92 (m, 1H), 1.47-1.39 (m, 1H), 1.15 (s, 6H), 0.83-0.79 (m, 1H), 0.52 (t, *J* = 4.87 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 136.5, 132.5, 131.9, 128.6, 128.0, 126.8, 28.6, 27.1, 22.5, 20.8, 19.9. HRMS (ESI) calc. for $C_{13}H_{14}Cl: m/z=205.0779$, found: m/z=205.0781

IR (film): 3001, 2944, 2858, 1645, 1487, 1444, 1085, 971 cm⁻¹

(5). The reaction was conducted using (*E*)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene⁸ without modification from the general procedure to provide **5** as a colorless oil.

Run 1: 26.6 mg (94% yield). Run 2: 26.9 mg (95% yield).

Purification: SiO₂ column; CH₂Cl₂

¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, *J* = 8.50 Hz, 2H), 6.84 (d, *J* = 8.44 Hz, 2H), 6.43 (d, *J* = 15.69 Hz, 1H), 5.86 (dd, *J* = 8.87, 6.54 Hz, 1H), 3.81 (s, 3H), 1.45-1.37 (m, 1H), 1.14 (s, 6H), 0.79-0.75 (m, 1H), 0.48 (t, *J* = 4.78 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.4, 130.9, 129.4, 128.6, 126.7, 113.9, 55.3, 28.5, 27.1, 22.1, 20.8, 19.4.

HRMS (ESI) calc. for C₁₄H₁₇O: m/z=201.1274, found: m/z=201.1277 IR (film): 2995, 2958, 1609, 1509, 1236, 1164, 1049, 934 cm⁻¹

(6). The reaction was conducted using (*E*)-2-(buta-1,3-dien-1-yl)furan⁹ without modification from the general procedure to provide **6** as a colorless oil.

Run 1: 16.8 mg (74% yield). Run 2: 15.9 mg (70% yield).

Purification: SiO₂ column; CH₂Cl₂

¹H NMR (300 MHz, CDCl₃) δ 7.29 (d, *J* = 1.62 Hz, 1H), 6.34 (dd, *J* = 1.84, 1.42 Hz, 1H), 6.29 (d, *J* = 15.73 Hz, 1H), 6.10 (d, *J* = 3.23 Hz, 1H), 5.94 (dd, *J* = 9.24, 6.48 Hz, 1H), 1.41-1.33 (m, 1H), 1.13-1.12 (m, 6H), 0.80-0.76 (m, 1H), 0.49 (t, *J* = 4.78 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.5, 140.9, 130.8, 117.8, 111.1, 105.2, 28.4, 27.0, 22.5, 20.8, 19.9. HRMS (ESI) calc. for C₁₁H₁₃O: m/z=161.0961, found: m/z=161.0960 IR (film): 2995, 2944, 2865, 1444, 1150, 1006, 949, 906 cm⁻¹

(7). The reaction was conducted using (*E*)-(2-methylbuta-1,3-dien-1-yl)benzene¹⁰ without modification from the general procedure to provide **7** as a colorless oil.

Run 1: 23.7 mg (91% yield). Run 2: 23.0 mg (88% yield).

Purification: SiO₂ column; pentane

¹H NMR (300 MHz, CDCl₃) δ 7.36-7.27 (m, 3H), 7.27-7.17 (m, 2H), 6.19 (s, 1H),

1.95 (s, 3H), 1.36 (t, *J* = 6.97 Hz, 1H), 1.21 (s, 3H), 1.02 (s, 3H), 0.70 (t, *J* = 5.0 Hz, 1H), 0.60-0.56 (m, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 138.6, 138.0, 128.8, 128.0, 125.8, 125.0, 34.4, 27.5, 20.1, 19.3, 18.4, 17.8.

HRMS (ESI) calc. for C₁₄H₁₇: m/z=185.1325, found: m/z=185.1323 IR (film): 3073, 2937, 2851, 1652, 1595, 1452, 1372, 1071, 913 cm⁻¹

(8). The reaction was conducted using (E)-N,4-dimethyl-N-(penta-2,4-dien-1-

yl)benzenesulfonamide¹¹ without modification from the general procedure to provide **8** as a yellow oil.

Run 1: 23.4 mg (57% yield). Run 2: 20.5 mg (50% yield). Purification: SiO_2 column; hexane/EtOAc (80:20)

¹H NMR (300 MHz, CDCl₃) δ7.67 (d, *J* = 8.29 Hz, 2H), 7.32 (d, *J* = 8.44 Hz, 2H), 5.42-5.26 (m, 2H), 3.63-3.51 (m, 2H), 2.64 (s, 3H), 2.43 (s, 3H), 1.26-1.17 (m, 1H), 1.05 (s, 3H), 0.99 (s, 3H), 0.67-0.62 (m, 1H), 0.30 (t, *J* = 4.89 Hz, 1H). $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 143.2, 136.5, 134.6, 129.6, 127.5, 123.2, 52.5, 33.9, 27.2, 26.9, 21.6, 21.5, 20.5, 18.9.

HRMS (ESI) calc. for C₁₆H₂₃NO₂SNa: m/z=316.1342, found: m/z=316.1346 IR (film): 2966, 2915, 2872, 1430, 1336, 1164, 1078, 956, 906 cm⁻¹

(9). The reaction was conducted using (*E*)-4,4,5,5-tetramethyl-2-(3-methylbuta-1,3-dien-1-yl)-1,3,2-dioxaborolane¹² without modification from the general procedure to provide **9** as a colorless oil.

Run 1: 29.8 mg (90% yield). Run 2: 30.1 mg (91% yield).

Purification: SiO₂ column; CH₂Cl₂

¹H NMR (300 MHz, CDCl₃) δ 6.54 (d, *J* = 18.07 Hz, 1H), 5.41 (d, *J* = 18.05 Hz, 1H), 1.25 (s, 12H), 1.19 (s, 3H), 1.13 (s, 6H), 0.79 (d, *J* = 4.38 Hz, 1H), 0.51 (d, *J* = 4.37 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 160.1, 82.8, 29.9, 28.2, 24.8, 24.4, 22.8, 22.7, 17.4.

¹¹B NMR (96 MHz, CDCl₃) δ 29.85.

HRMS (ESI) calc. for C₁₄H₂₅BO₂: m/z=236.2057, found: m/z=236.2054

IR (film): 2973, 2937, 1609, 1344, 1307, 1164, 956 cm⁻¹

(10). The reaction was conducted using (*Z*)-(((4-methylpenta-2,4-dien-1-yl)oxy)methyl)benzene without modification from the general procedure to provide **10** as a colorless oil.

Run 1: 31.0 mg (96% yield). Run 2: 31.0 mg (96% yield).

Purification: SiO₂ column; CH₂Cl₂

¹H NMR (300 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 5.75-5.71 (m, 1H), 5.67-5.60 (m, 1H), 4.55 (s, 2H), 4.27-4.21 (m, 1H), 4.15-4.09 (m, 1H), 1.12 (s, 3H), 1.09 (s, 3H), 1.01 (s, 3H), 0.38 (d, *J* = 4.04 Hz, 1H), 0.33 (d, *J* = 4.04 Hz, 1H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 138.4, 137.0, 128.8, 128.4, 127.9, 127.6, 72.6, 66.9, 28.1, 23.8, 23.3, 21.3, 21.2, 20.1.

HRMS (ESI) calc. for C₁₆H₂₃O: m/z=231.1743, found: m/z=231.1741 IR (film): 3030, 2980, 2944, 2851, 1452, 1350, 1064, 1021, 934 cm⁻¹

(11). The reaction was conducted using diethyl (*E*)-buta-1,3-dien-1-ylphosphonate¹⁴ without modification from the general procedure to provide **11** as a colorless oil.

Run 1: 30.2 mg (93% yield). Run 2: 29.6 mg (91% yield).

Purification: SiO₂ column; EtOAc

¹H NMR (300 MHz, CDCl₃) δ 6.71-6.55 (m, 1H), 5.65 (dd, *J* = 16.82, 5.6 Hz, 1H), 4.20-4.08 (m, 4H), 1.47-1.38 (m, 1H), 1.32 (t, *J* = 7.66 Hz, 6H), 1.17 (s, 3H), 1.11 (s, 3H), 0.94-0.90 (m, 1H), 0.75 (t, *J* = 4.85 Hz, 1H).

Supporting Information

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.3, 111.9 (d, *J* = 194.2 Hz), 62.9, 30.4, 30.2, 26.9, 24.4, 22.7, 20.9, 16.3.

³¹P NMR (121 MHz, CDCl₃) δ 20.8 HRMS (ESI) calc. for C₁₁H₂₂O₃P: m/z=233.1301, found: m/z=233.1303 IR (film): 2980, 2865, 1616, 1207, 1021, 956, 826 cm⁻¹

(12). The reaction was conducted using (*E*)-1-phenylpenta-2,4-dien-1-one¹³ without modification from the general procedure to provide **12** as a colorless oil.

Run 1: 14.0 mg (50% yield). Run 2: 15.1 mg (54% yield).

Purification: SiO₂ column; hexane/EtOAc (95:5)

¹H NMR (300 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.58-7.52 (m, 1H), 7.49-7.43 (m, 2H), 7.03 (d, *J* = 15.05 Hz, 1H), 6.90-6.82 (m, 1H), 1.61-1.54 (m, 1H), 1.21 (s, 3H), 1.18 (s, 3H), 1.06-1.01 (m, 1H), 0.79 (t, J = 4.75 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 189.7, 152.8, 138.3, 132.4, 128.4, 128.4, 124.4, 29.5, 27.0, 25.2, 23.3, 21.1.

HRMS (APCI) calc. for C₁₄H₁₇O: m/z=201.1274, found: m/z=201.1276

IR (film): 3059, 2958, 2872, 1667, 1602, 1279, 1178, 1006, 920 cm⁻¹

(13). The reaction was conducted using ethyl (*E*)-penta-2,4-dienoate¹⁴ without modification from the general procedure to provide 13 as a colorless oil.

Run 1: 21.0 mg (89% yield). Run 2: 21.4 mg (91% yield).

Purification: SiO₂ column; hexane:CH₂Cl₂(1:1)

¹H NMR (300 MHz, CDCl₃) δ 6.69 (dd, *J* = 14.80, 10.92 Hz, 1H), 5.88 (d, *J* = 15.35 Hz, 1H), 4.17 (q, *J* = 8.02 Hz, 2H), 1.46-1.38 (m, 1H), 1.28 (td, J = 7.13, 1.24 Hz, 3H), 1.15 (s, 3H), 1.13 (s, 3H), 0.94-0.90 (m, 1H), 0.66 (t, / = 4.92 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.7, 151.3, 119.6, 60.0, 28.3, 26.9, 24.3, 22.3, 20.9, 14.3. HRMS (ESI) calc. for C₁₀H₁₇O₂: m/z=169.1223, found: m/z=169.1221 IR (film): 2973, 2944, 2865, 1724, 1630, 1221, 1143, 1035 cm⁻¹

(14). The reaction was conducted using *trans*-3-(*tert*-Butyldimethylsilyloxy)-1-methoxy-1,3butadiene

without modification from the general procedure to provide **14** as a colorless oil. Run 1: 24.3 mg (68% yield). Run 2: 25.6 mg (72% yield). Purification: SiO₂ column; CH₂Cl₂

¹H NMR (300 MHz, CDCl₃) δ 6.42 (d, *J* = 12.7 Hz, 1H), 5.04 (d, *J* = 12.6 Hz, 1H), 3.55 (s, 3H), 1.19 (s, 3H), 0.94 (s, 3H), 0.86 (s, 9H), 0.60 (d, *J* = 5.3 Hz, 1H), 0.42 (d, *J* = 5.3 Hz, 1H), 0.09 (d, *J* = 3.6 Hz, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.6, 104.3, 61.5, 56.0, 25.9, 24.3, 22.3, 21.4, 20.2, 18.1. HRMS (ESI) calc. for C₁₄H₂₇O₂Si: m/z=255.1775, found: m/z=255.1774 IR (film): 2952, 2923, 2844, 1645, 1458, 1258, 1135, 941 cm⁻¹

(15). The reaction was conducted using (*E*)-benzyl(penta-2,4-dien-1-yl)sulfane¹⁵ without modification from the general procedure to provide **15** as a colorless oil.

Run 1: 25.7 mg (79% yield). Run 2: 27 mg (83% yield).

Purification: SiO₂ column; CH₂Cl₂

¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.20 (m, 5H), 5.50 (dt, *J* = 14.6, 7.2 Hz, 1H), 5.26 (dd, *J* = 15.0, 9.5 Hz, 1H), 3.68 (s, 2H), 3.03 (d, *J* = 7.2 Hz, 2H), 1.30 (dd, *J* = 8.4, 5.2 Hz, 1H), 1.10 (s, 3H), 1.08 (s, 3H), 0.69 (dd, *J* = 8.7, 4.3 Hz, 1H), 0.36 (t, *J* = 4.9 Hz, 1H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 138.5, 134.2, 128.9, 128.3, 126.7, 125.0, 34.8, 33.4, 27.3, 26.9, 21.5, 20.6, 18.6.

HRMS (ESI) calc. for C₁₅H₂₁S: m/z=233.1359, found: m/z=233.1358 IR (film): 3030, 2930, 2865, 1501, 1437, 963, 913 cm⁻¹

(18). The reaction was conducted using (*E*)-4-methylpenta-2,4-dien-1-ol **16**¹⁶ without modification from the general procedure to provide **18** as a yellow oil.

Run 1: 11.2 mg (57% yield). Run 2: 11.4 mg (58% yield).

Purification: SiO₂ column; hexane/EtOAc (90:10)

¹H NMR (300 MHz, CDCl₃) δ 5.64-5.62 (m, 2H), 4.14-4.11 (m, 2H), 1.24-1.22 (m, 1H), 1.20 (s, 3H), 1.14 (s, 3H), 1.08 (s, 3H), 0.60 (d, *J* = 4.55 Hz, 1H), 0.42 (d, *J* = 4.39 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 139.3, 126.5, 64.2, 28.4, 25.4, 22.9, 22.6, 22.3, 18.5.

HRMS (ESI) calc. for C₉H₁₅O: m/z=139.1117, found: m/z=139.1120

IR (film): 3324, 2980, 2923, 2858, 1659, 1452, 1379, 1085, 956, 906 cm⁻¹

Non-Catalytic Furukawa-Type Simmons–Smith Cyclopropanation of 16. In an N₂-filled glovebox, a 2-dram vial was charged with **16** (0.14 mmol, 1.0 equiv), CH₂Cl₂ (1.0 mL), and a magnetic stir bar. Et₂Zn (69 mg, 0.56 mmol, 4.0 equiv) was added dropwise to the solution at –30 °C. I₂CMe₂ (166 mg, 0.56 mmol, 4.0

Supporting Information

equiv) was added dropwise, and the reaction was allowed to warm to room temperature and stirred for 24 h. The reaction mixture was concentrated under reduced pressure, and the crude residue was directly loaded onto a SiO_2 column to obtain a mixture of **16**, **17**, and **18**. Combined Yield of **17** + **18**: 35%. Ratio **17**:**18** = 4:1.

Figure S5. ¹H NMR comparison of product **18** obtained from the catalytic dimethylcyclopropanation (middle) and the mixture of **17**, **18**, and recovered starting material (**16**) obtained under the Furukawa-type Simmons–Smith conditions (bottom).

(26). The reaction was conducted using (*E*)-(3-methylbuta-1,3-dien-1-yl)benzene¹⁰ without modification from the general procedure to provide **26** as a colorless oil.

Run 1: 25.8 mg (99% yield). Run 2: 25.3 mg (97% yield).

Purification: SiO₂ column; pentane

¹H NMR (300 MHz, CDCl₃) δ 7.37-7.28 (m, 4H), 7.22-7.17 (m, 1H), 6.39 (d, *J* = 15.97 Hz, 1H), 6.24 (d, *J* = 15.97 Hz, 1H), 1.33 (s, 3H), 1.22 (s, 3H), 1.17 (s, 3H), 0.79 (d, *J* = 4.34 Hz, 1H), 0.53 (d, *J* = 4.41 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 138.3, 137.0, 128.5, 127.4, 126.5, 125.7, 28.8, 26.4, 23.3, 23.1, 22.5,

18.7.

HRMS (ESI) calc. for C₁₄H₁₇: m/z=185.1325, found: m/z=185.1322 IR (film): 3016, 2987, 2944, 2865, 1630, 1444, 1114, 1064, 971 cm⁻¹

(28). The reaction was conducted using dimethyl (*E*)-2-allyl-2-(penta-2,4-dien-1-yl)malonate¹⁷ without modification from the general procedure to provide **28** as a yellow oil.

Run 1: 35.7mg (91% yield). Run 2: 34.5 mg (88% yield).

Purification: SiO₂ column; hexane/EtOAc (95:5)

¹H NMR (300 MHz, CDCl₃) δ 5.72-5.57 (m, 1H), 5.27 (t, *J* = 5.99 Hz, 2H), 5.11 (d, *J* = 5.81 Hz, 1H), 5.06 (s, 1H), 3.70 (s, 6H), 2.65-2.59 (m, 4H), 1.22-1.15 (m, 1H), 1.04 (s, 3H), 1.01 (s, 3H), 0.63-0.59 (m, 1H), 0.27 (t, *J* = 4.67 Hz, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 171.3, 135.7, 132.5, 122.6, 119.0, 58.0, 52.3, 36.8, 35.9, 27.5, 27.0, 21.4, 20.6, 18.5.

HRMS (ESI) calc. for C₁₆H₂₅O₄: m/z=281.1747, found: m/z=281.1746 IR (film): 2987, 2958, 2858, 1724, 1437, 1200, 963, 920 cm⁻¹

Additional Substrates Exhibiting Modest Yields:

¹H NMR Yield: 9%

¹H NMR Yield: 19%

,

Messy NMR

Messy NMR

Low Conversion

Low Conversion

4. Procedures for the Vinylcyclopropane Ring-Opening Reactions

(27). The reaction was conducted using the procedure reported by Louie using 26 to provide 27 as a colorless oil (65% yield, 10.2 mg).¹⁸

Purification: SiO₂ column; pentane

¹H NMR (300 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.23-7.15 (m, 3H), 5.29 (t, *J* = 1.46 Hz, 1H), 3.88-3.78 (m, 1H), 2.25 (dd, *J* = 12.58, 8.01 Hz, 1H), 1.71 (dd, *J* = 1.55, 0.81, Hz, 3H), 1.61 (dd, *J* = 8.30, 4.25, Hz, 1H), 1.08 (s, 3H), 1.08 (s, 3H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 149.3, 147.0, 128.3, 127.3, 126.2, 125.8, 51.2, 48.0, 46.2, 27.6, 26.0, 12.3.

HRMS (APCI) calc. for C₁₄H₁₇: m/z=185.1325, found: m/z=185.1326

IR (film): 3023, 2944, 2930, 2844, 1602, 1501, 1444, 1358, 1035, 834 cm-1

(29). The reaction was conducted using the procedure reported by Wender using 28 to provide 29 as a colorless oil (77% yield, 28.1 mg).¹⁹

Purification: SiO₂ column; hexane/EtOAc (95:5)

¹H NMR (300 MHz, CDCl₃) δ 5.18-5.14 (m, 2H), 3.71 (s, 6H), 2.86 (qd, *J* = 7.64, 2.48 Hz, 1H), 2.50-2.39 (m, 2H), 2.26-2.18 (m, 1H), 2.11 (dd, *J* = 7.95, 5.62 Hz, 1H), 1.95 (dd, *J* = 8.17, 5.12 Hz, 1H), 1.74 (d, *J* = 4.28 Hz, 1H), 1.66-1.60 (m, 1H), 1.51-1.48 (m, 2H), 0.99 (s, 3H), 0.96 (s, 3H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 173.2, 172.9, 139.6, 126.6, 59.0, 52.7, 52.7, 43.9, 41.4, 41.3, 40.8, 38.7, 37.5, 31.2, 29.8, 26.9.

HRMS (ESI) calc. for C₁₆H₂₅O₄: m/z=281.1747, found: m/z=281.1752. IR (film): 3009, 2958, 2858, 1724, 1437, 1250, 1207, 1150, 1064 cm⁻¹

Stereochemical Assignment for 29. The relative stereochemistry of the ring fusion was assigned as cis by analogy to the products obtained by Wender. Additionally, **29** was hydrogenated using a Pd/C catalyst to obtain a mixture of the hydrogenated product and an alkene migration product. The hydrogenated product was assigned as the cis diastereomer based on the non-equivalency ¹H NMR signals corresponding to the two methyl groups and the two methyl esters.

5. Synthesis and Characterization of Dienoic Esters

Procedure A^{20,21}:

Step 1: A 100-mL round bottom flask was charged with the dienoic ester²⁵ (4.1 mmol) and a THF/MeOH (1:2, 70 mL) solvent mixture. An aqueous solution of 2 M NaOH (19 mL) was added dropwise. The reaction mixture was heated at reflux for 4 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The crude product was dissolved in water (50 mL), and the aqueous phase was washed with Et₂O (3×20 mL). The aqueous phase was acidified with concentrated HCl (aq) and extracted with Et₂O (3×50 mL). The combined organic phases were washed with water (2×25 mL) then saturated aqueous NaCl (2×25 mL). The organic phase was dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under vacuum to give provide the dienoic acid²² (460 mg, 89% yield), which was carried forward without purification.

Step 2: To a solution of the dienoic acid (460 mg, 3.6 mmol) dissolved in anhydrous CH₂Cl₂ (20 mL) was added oxalyl chloride (0.65 mL, 7.2 mmol). The mixture was stirred at room temperature for 12 h. The solvent was evaporated under vacuum to provide the acid chloride (**S1**) (505 mg, 97%) as a yellow oil. The crude product was carried forward without further purification.

¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, *J* = 14.60, 11.72 Hz, 1H), 6.08 (d, *J* = 11.78 Hz, 1H), 5.98 (d, *J* = 14.55 Hz, 1H), 1.97 (s, 3H), 1.95 (s, 3H).

Step 3: To a solution of 3-phenoxy-benzenemethanol (505 mg, 3.5 mmol) in dry toluene (10 mL) was added pyridine (0.5 mL). Acid chloride **S1** was added dropwise, and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with water (10 mL) and extracted with Et_2O (3 × 20 mL). The organic phase was washed with 1 M HCl then saturated NaCl (aq). The organic phase was dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was purified by column chromatography (hexane/CH₂Cl₂) to afford **S2** in an isomerically pure form (452 mg, 43% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.62 (dd, *J* = 10.82, 3.56 Hz, 1H), 7.34 (q, *J* = 7.53 Hz, 3H), 7.15-7.09 (m, 2H), 7.05-7.01 (m, 3H), 6.97-6.93 (m, 1H), 6.00 (d, *J* = 11.61 Hz, 1H), 5.82 (d, *J* = 15.18 Hz, 1H), 5.17 (s, 2H), 1.89 (s, 6H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.4, 157.5, 157.0, 146.9, 141.7, 138.4, 129.8, 123.7, 123.4, 122.6, 119.0, 118.2, 118.0, 65.4, 26.6, 19.0.

HRMS (ESI) calc. for C₂₀H₂₀O₃: m/z=309.1485, found: m/z=309.1481. IR (film): 3052, 2901, 1695, 1566, 1466, 1258, 1207, 1121, 985 cm⁻¹

Supporting Information

Procedure B:23

The following dienoic esters were synthesized using the Horner—Wadsworth—Emmons reaction following the literature procedure:

(S3). The reaction was conducted using 2-cyclobutylideneacetaldehyde²⁴ without modification from procedure B to provide **S3** as a colorless oil (56% yield)

¹H NMR (300 MHz, CDCl₃) δ 7.25 (dd, *J* = 15.32, 11.47, Hz, 1H), 5.97-5.86 (m, 1H), 5.70 (dt, *J* = 15.30, 0.81 Hz, 1H), 4.19 (q, *J* = 7.13 Hz, 2H), 2.89 (t, *J* = 7.99 Hz, 2H), 2.80 (t, *J* = 7.92 Hz, 2H), 2.05 (tt, *J* = 8.20, 7.39 Hz, 2H), 1.28 (t, *J* = 7.14 Hz, 3H).

 ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 167.6, 157.3, 140.8, 119.5, 117.5, 60.1, 32.1, 30.7, 16.9, 14.3.

HRMS (ESI) calc. for $C_{10}H_{15}O_2$: m/z=167.1067, found: m/z=167.1068

IR (film): 2973, 2937, 2908, 1716, 1652, 1616, 1258, 1186, 1129, 971 cm⁻¹

(S4). The reaction was conducted using 2-cyclopentylideneacetaldehyde²⁵ without modification from procedure B to provide **S4** as a colorless oil (41% yield)

¹H NMR (300 MHz, CDCl₃) δ 7.44 (dd, *J* = 15.17, 11.66, Hz, 1H), 6.09 (d, *J* = 11.60 Hz, 1H), 5.71 (d, *J* = 15.24 Hz, 1H), 4.20 (q, *J* = 7.13 Hz, 2H), 2.49 (t, *J* = 6.85 Hz, 2H), 2.39 (t, *J* = 6.97 Hz, 2H), 1.74 (quintet, *J* = 6.78 Hz, 2H), 1.68 (quintet, *J* = 6.59 Hz, 2H), 1.29 (t, *J* = 7.12 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.7, 159.1, 142.5, 119.1, 117.7, 60.1, 34.8, 30.2, 26.2, 26.0, 14.4. HRMS (ESI) calc. for C₁₁H₁₇O₂: m/z=181.1223, found: m/z=181.1222.

IR (film): 2966, 2880, 1702, 1630, 1372, 1258, 1200, 1129, 963 cm⁻¹

(S5). The reaction was conducted using 2-cyclohexylideneacetaldehyde²⁵ without modification from procedure B to provide **S5** as a colorless oil (38% yield)

¹H NMR (300 MHz, CDCl₃) δ 7.63 (dd, *J* = 15.20, 11.70, Hz, 1H), 5.93 (d, *J* = 11.56 Hz, 1H), 5.79 (d, *J* = 15.17 Hz, 1H), 4.20 (q, *J* = 7.12 Hz, 2H), 2.42-2.36 (m, 2H), 2.24-2.18 (m, 2H), 1.63-1.57 (m, 6H), 1.29 (t, *J* = 7.11 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.8, 154.3, 140.4, 120.5, 118.8, 60.1, 37.8, 29.8, 28.5, 27.9, 26.5, 14.4.

HRMS (ESI) calc. for C₁₂H₁₉O₂: m/z=195.1380, found: m/z=195.1377

IR (film): 2930, 2844, 1702, 1624, 1301, 1272, 1164, 1129, 977, 870 cm⁻¹

(S6). The reaction was conducted using 3-ethylpent-2-enal²⁶ without modification from procedure B to provide **S6** as a colorless oil (54% yield)

¹H NMR (300 MHz, CDCl₃) δ 7.63 (dd, *J* =15.12, 11.64, Hz, 1H), 5.94 (d, *J* = 11.78 Hz, 1H), 5.80 (d, *J* = 15.14 Hz, 1H), 4.21 (q, *J* = 7.13 Hz, 2H), 2.32 (q, *J* = 7.58 Hz, 2H), 2.19 (q, *J* = 7.49 Hz, 2H), 1.30 (dt, *J* = 7.13, 1.51 Hz, 3H), 1.06 (dq, *J* = 3.98, 1.49 Hz, 6H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 167.7, 157.4, 140.7, 121.3, 119.0, 60.1, 30.0, 24.4, 14.4, 13.8, 12.4. HRMS (ESI) calc. for C₁₁H₁₉O₂: m/z=183.1380, found: m/z=183.1379.

IR (film): 2980, 2937, 2837, 1702, 1630, 1358, 1272, 1135, 985, 877 cm⁻¹

6. Procedures for the Dimethylcyclopropanation of Dienoic Esters

General procedure for the dimethylcyclopropanation of dienoic esters. In an N₂-filled glovebox, a 2-dram vial was charged with the [^{2-tBu}PDI]CoBr₂ catalyst **3** (9.0 mg, 0.014 mmol, 0.10 equiv), the substrate (0.14 mmol, 1.0 equiv), Zn powder (18 mg, 0.28 mmol, 2.0 equiv), ZnBr₂ (31 mg, 0.14 mmol, 1.0 equiv), 1,2-dichloroethane (1.0 mL), and a magnetic stir bar. The reaction mixture was stirred at room temperature for approximately 15 min during which time a deep violet color developed. Me₂CBr₂ (56.5 mg, 0.28 mmol, 2.0 equiv) was added, and stirring was continued at room temperature. After 24 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was directly loaded onto a SiO₂ column for purification.

(19). The reaction was conducted using ethyl (*E*)-5-methylhexa-2,4-dienoate²⁷ without modification from the general procedure to provide **19** as a colorless oil.

Run 1: 17.9 mg (65% yield, >19:1 trans/cis). Run 2: 16.2 mg (59% yield, 13:1 trans/cis).

Purification: SiO₂ column; (1:1) CH₂Cl₂:Hexane

¹H NMR (300 MHz, CDCl₃) δ 4.88 (d, *J* = 9.44 Hz, 1H), 4.17-4.07 (m, 2H), 2.06-2.02 (m, 1H), 1.73-1.67 (m, 6H), 1.37 (d, *J* = 5.34 Hz, 1H), 1.25 (t, *J* = 7.25 Hz, 6H), 1.13 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.5, 135.4, 121.2, 60.2, 34.8, 32.6, 28.5, 25.6, 22.2, 20.4, 18.5, 14.4. HRMS (ESI) calc. for C₁₂H₂₁O₂: m/z=197.1536, found: m/z=197.1538.

IR (film): 2958, 2915, 2880, 1731, 1150 cm⁻¹

(20). The reaction was conducted using S2 without modification from the general procedure to provide 20 as a colorless oil.

Run 1: 27.5 mg (56% yield, >19:1 trans/cis). Run 2: 26.5 mg (54% yield, 11:1 trans/cis).

Purification: SiO₂ column; (1:1) CH₂Cl₂:Hexane

¹H NMR (300 MHz, CDCl₃) δ 7.36-7.30 (m, 3H), 7.11 (q, *J* = 8.56 Hz, 2H), 7.03-7.01 (m, 3H), 6.95 (d, *J* = 7.96 Hz, 1H), 5.09 (s, 2H), 4.89 (d, *J* = 7.86 Hz, 1H), 2.09-2.07 (m, 1H), 1.72 (s, 3H), 1.70 (s, 3H), 1.45 (d, *J* = 5.33 Hz, 1H), 1.26 (s, 3H), 1.13 (s, 3H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 172.3, 157.5, 157.0, 138.4, 135.6, 129.8, 129.8, 123.4, 122.7, 121.0, 119.0, 118.3, 118.2, 65.6, 34.7, 33.0, 28.9, 25.6, 22.2, 20.5, 18.5.

HRMS (ESI) calc. for C₂₃H₂₇O₃: m/z=351.1955, found: m/z=351.1958.

IR (film): 3030, 2944, 2923, 2865, 1724, 1573, 1487, 1473, 1243, 1121 cm⁻¹

(21). The reaction was conducted using **S3** without modification from the general procedure to provide **21** as a colorless oil.

Run 1: 23.3 mg (80% yield, 8:1 trans/cis). Run 2: 21.9 mg (75% yield, 9:1 trans/cis).

Purification: SiO₂ column; (1:1) CH₂Cl₂:Hexane

¹H NMR (500 MHz, CDCl₃) δ 4.85-4.81 (m, 1H), 4.14-4.08 (m, 2H), 2.75-2.69 (m, 2H), 2.66 (t, J = 8.76 Hz, 2H), 1.96 (quintet, J = 7.84 Hz, 2H), 1.88 (dd, J = 8.86, 5.27, Hz, 1H), 1.41 (d, J = 5.31 Hz, 1H), 1.26 (d, J = 8.13 Hz, 3H), 1.24 (s, 3H), 1.14 (s, 3H).

 ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 172.4, 143.2, 117.1, 60.2, 34.4, 32.7, 31.2, 29.7, 28.2, 22.2, 20.3, 17.1, 14.4.

HRMS (ESI) calc. for C₁₃H₂₁O₂: m/z=209.1536, found: m/z=209.1532 IR (film): 2973, 2937, 2865, 1716, 1272, 1221, 1172, 841 cm⁻¹

(22). The reaction was conducted using **S4** without modification from the general procedure to provide **22** as a colorless oil.

Run 1: 22.1 mg (71% yield, 13:1 trans/cis). Run 2: 23.7 mg (76% yield, 12:1 trans/cis). Purification: SiO₂ column; (1:1) CH₂Cl₂:Hexane

¹H NMR (300 MHz, CDCl₃) δ 5.02 (dt, *J* = 2.20, 8.53 Hz, 1H), 4.12 (dq, *J* = 7.10, 2.87, Hz, 2H), 2.31-2.22 (m, 4H), 1.99 (dd, *J* = 8.55, 5.34, Hz, 1H), 1.70-1.57 (m, 4H), 1.39 (d, *J* = 5.32 Hz, 1H), 1.26 (t, *J* = 7.13 Hz, 6H), 1.14 (s, 3H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) δ 172.5, 146.8, 116.6, 60.1, 34.8, 34.0, 33.8, 29.3, 28.4, 26.5, 26.4, 22.3, 20.5, 14.4.

HRMS (ESI) calc. for C₁₄H₂₃O₂: m/z=223.1693, found: m/z=223.1691

IR (film): 2952, 2858, 1710, 1365, 1236, 1172, 1135, 1028 cm⁻¹

(23). The reaction was conducted using **S5** without modification from the general procedure to provide **23** as a colorless oil.

Run 1: 23.2 mg (70% yield, 13:1 trans/cis). Run 2: 22.5 mg (68% yield, 13:1 trans/cis). Purification: SiO₂ column; (1:1) CH_2Cl_2 :Hexane

¹H NMR (300 MHz, CDCl₃) δ 4.82 (d, *J* = 7.83 Hz, 1H), 4.17-4.05 (m, 2H), 2.21-2.16 (m, 2H), 2.08-2.04 (m, 3H), 1.57-1.48 (m, 6H), 1.36 (d, *J* = 5.23 Hz, 1H), 1.25 (t, *J* = 3.34 Hz, 6H), 1.12 (s, 3H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 172.6, 143.5, 117.8, 60.1, 36.8, 34.9, 31.7, 29.4, 28.6, 28.5, 27.7, 26.8, 22.2, 20.4, 14.4.

HRMS (ESI) calc. for C₁₅H₂₅O₂: m/z=237.1849, found: m/z=237.1847 IR (film): 2930, 2851, 1731, 1423, 1372, 1207, 1150, 1121, 834 cm⁻¹

(24). The reaction was conducted using ethyl (*E*)-5,5-diphenylpenta-2,4-dienoate²⁸ without modification from the general procedure to provide **24** as a colorless oil.

Run 1: 9.9 mg (22% yield, >19:1 trans/cis). Run 2: 8.5 mg (19% yield, 16:1 trans/cis). Purification: SiO₂ column; (1:1) CH₂Cl₂:Hexane

¹H NMR (300 MHz, CDCl₃) δ 7.41-7.29 (m, 4H), 7.24-7.21 (m, 6H), 6.50 (d, *J* = 9.45 Hz, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 1.86 (t, *J* = 8.87 Hz, 1H), 1.68 (d, *J* = 8.56 Hz, 1H), 1.38 (s, 3H), 1.28 (t, *J* = 7.11 Hz, 3H), 1.14 (s, 3H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 171.2, 143.4, 142.6, 140.2, 130.4, 128.1, 128.1, 127.4, 127.0, 126.9, 123.8, 60.0, 34.0, 32.7, 28.3, 28.0, 15.1, 14.4.

HRMS (ESI) calc. for $C_{22}H_{25}O_2$: m/z=321.1849, found: m/z=321.1854

IR (film): 3052, 3030, 2952, 1724, 1200, 1143, 1100 cm⁻¹

(25). The reaction was conducted using **S6** without modification from the general procedure to provide **25** as a colorless oil.

Run 1: 17.6 mg (56% yield, >19:1 trans/cis). Run 2: 15.1 mg (48% yield, >19:1 trans/cis). Purification: SiO₂ column; (1:1) CH₂Cl₂:Hexane

¹H NMR (300 MHz, CDCl₃) δ 4.82 (d, *J* = 8.07 Hz, 1H), 4.16 – 4.09 (m, 2H), 2.16-2.09 (m, 5H), 1.39 (d, *J* = 5.34 Hz, 1H), 1.26 (t, *J* = 7.25 Hz, 6H), 1.13 (s, 3H), 0.98 (td, *J* = 7.50, 1.92 Hz, 6H)

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 172.5, 146.9, 119.2, 60.1, 35.1, 32.2, 29.2, 28.5, 23.9, 22.2, 20.4, 14.4, 13.2, 12.8.

HRMS (ESI) calc. for C₁₆H₂₅O₂: m/z=225.1849, found: m/z=225.1851

IR (film): 2958, 2930, 2887, 1716, 1458, 1365, 1200, 1150, 1100, 1035, 841 cm⁻¹

7. Procedure for the Dimethylcyclopropanation of Activated Alkenes

General procedure for the dimethylcyclopropanation of activated alkenes. In an N₂-filled glovebox, a 2-dram vial was charged with the [^{2-tBu}PDI]CoBr₂ catalyst **3** (9.0 mg, 0.014 mmol, 0.10 equiv), the substrate (0.14 mmol, 1.0 equiv), Zn powder (18 mg, 0.28 mmol, 2.0 equiv), ZnBr₂ (31 mg, 0.14 mmol, 1.0 equiv), THF (1.0 mL), and a magnetic stir bar. The reaction mixture was stirred at room temperature for approximately 15 min during which time a deep violet color developed. Me₂CCl₂ (31.6 mg, 0.28 mmol, 2.0 equiv) was added, and stirring was continued at room temperature. After 24 h, the reaction mixture was concentrated under reduced pressure, and the crude residue was directly loaded onto a SiO₂ column for purification.

(30). The reaction was conducted using cyclopentene without modification from the general procedure to provide **30** as a colorless oil.

Purification: SiO₂ column; pentane

¹H NMR Yield. Run 1: 88%; Run 2: 85%

¹H NMR (300 MHz, CDCl₃) δ 1.85-1.75 (m, 2H), 1.52-1.27 (m, 4H), 1.05 (d, *J* = 4.3 Hz, 2H), 0.95 (s, 3H), 0.90 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 31.5, 28.0, 27.8, 25.3, 14.5, 14.1.

(31). The reaction was conducted using cyclooctene without modification from the general procedure to provide **31** as a colorless oil.

Purification: SiO₂ column; pentane

Yield 1: 83%, 17.7 mg; Yield 2: 78%, 16.6 mg

 ^1H NMR (300 MHz, CDCl₃) δ 1.76-1.55 (m, 6H), 1.40-1.29 (m, 4H), 1.08-1.02 (m, 1H), 1.01 (s, 3H), 0.99-0.97 (m, 1H), 0.92 (s, 3H), 0.34-0.25 (m, 2H).

 ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 29.7, 29.2, 26.6, 26.5, 22.4, 16.4, 15.1.

HRMS (APCI) calc. for $C_{11}H_{20}$: m/z=152.1560, found: m/z=152.1557

IR (film): 2923, 2844, 1452, 1372 cm⁻¹

(32). The reaction was conducted using indene without modification from the general procedure to provide 32 as a colorless oil.

Purification: SiO₂ column; pentane

Yield 1: 75%, 16.7 mg; Yield 2: 82%, 18.3 mg

¹H NMR (300 MHz, CDCl₃) δ 7.24-7.22 (m, 1H), 7.12-7.07 (m, 3H), 3.10 (dd, *J* = 17.43, 7.26 Hz, 1H), 2.77 (d, *J* = 17.40 Hz, 1H), 2.24 (dd, *J* = 6.36, 1.23 Hz, 1H), 1.60 (t, *J* = 6.86 Hz, 1H),1.16 (s, 3H) 0.63 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.0, 143.8, 125.8, 125.2, 124.3, 124.0, 37.2, 32.0, 29.1, 26.8, 21.4,

13.8.

HRMS (ESI) calc. for C₁₂H₁₅: m/z=159.1168, found: m/z=159.1166 IR (film): 3023, 2944, 2908, 2858, 1480, 1372, 1114, 884 cm⁻¹

(33). The reaction was conducted using norbornene without modification from the general procedure to provide 33 as a colorless oil.

Purification: SiO₂ column; pentane

Yield 1:66%, 12.7 mg; Yield 2: 67%, 12.8 mg

 1 H NMR (300 MHz, CDCl₃) δ 2.32 (s, 2H), 1.46-1.35 (m, 3H), 1.25-1.19 (m, 2H), 1.17 (s, 3H), 0.88 (s, 2H), 1.46-1.35 (m, 2H), 1.25-1.19 (m, 2H), 1.17 (s, 3H), 0.88 (s, 2H)

3H), 0.64 (d, J = 10.64 Hz, 1H), 0.43 (s, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 36.0, 31.1, 31.0, 30.8, 30.5, 18.6, 16.1.

HRMS (APCI) calc. for C₁₀H₁₇: m/z=137.1325, found: m/z=137.1320

IR (film): 2958, 2908, 2844, 1444 cm⁻¹

(35). The reaction was conducted using *N*-Boc-2,5-dihydro-1*H*-pyrrole without modification from the general procedure to provide **35** as a yellow oil.

Run 1: 26.2 mg (89% yield). Run 2: 26.6 mg (91% yield).

Purification: SiO₂ column; Hexane/EtOAc (80:20)

¹H NMR (300 MHz, CDCl₃) δ 3.48-3.38 (m, 2H), 3.35-3.24 (m, 2H), 1.42 (s, 9H), 1.29-1.27 (m, 2H), 1.00 (s, 3H), 0.90 (s, 3H).

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (126 MHz, CDCl_3) δ 153.9, 79.0, 46.1, 45.9, 28.5, 27.9, 27.1, 26.3, 18.9, 12.4.

HRMS (ESI) calc. for C₁₂H₂₁NO₂Na: m/z=234.1465, found: m/z=234.1467

IR (film): 2966, 2930, 2880, 1702, 1409, 1379, 1178, 1107, 870 cm⁻¹

(37). The reaction was conducted using iminostilbene without modification from the general procedure to provide 37 as a white solid.

Run 1: 30.6 mg (93% yield). Run 2: 32.5 mg (99% yield).

Purification: SiO₂ column; hexane/EtOAc (95:5)

¹H NMR (300 MHz, CDCl₃) δ 7.27 (dd, *J* = 7.44, 1.18, Hz, 2H), 7.07 (td, *J* = 7.66, 1.67 Hz, 2H), 6.92 (td, *J* = 7.44, 1.28 Hz, 2H), 6.81 (dd, *J* = 7.93, 1.26 Hz, 2H), 5.55 (br s, 1H), 2.30 (s, 2H), 1.50 (s, 3H), 0.59 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.0, 133.3, 126.4, 125.7, 121.0, 119.5, 30.9, 28.7, 27.8, 18.5. HRMS (ESI) calc. for C₁₇H₁₈N: m/z=236.1434, found: m/z=236.1436 IR (film): 3367, 2966, 2937, 2865, 1587, 1480, 1329, 1250, 1107, 1028, 913 cm⁻¹ m.p.: 133-136°C

(38). The reaction was conducted using **37** under previously reported conditions²⁹ to provide **38** as a white solid.

Run 1: 23.3 mg (64% yield)

Purification: SiO₂ column; 100% EtOAc

¹H NMR (300 MHz, DMSO-d₆) δ 7.28-7.25 (m, 2H), 7.24-7.21 (m, 4H), 7.19-7.14 (m, 2H), 5.65 (br s, 2H), 2.20 (s, 2H), 1.40 (s, 3H), 0.42 (s, 3H).

 ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, DMSO-d_6) δ 157.5, 143.5, 135.4, 132.7, 129.3, 127.8, 127.4, 28.6, 28.1, 19.6, 19.0.

HRMS (ESI) calc. for C₁₈H₁₉N₂O: m/z=279.1492, found: m/z=279.1491 IR (film): 3475, 3318, 3203, 2930, 1673, 1581, 1480, 1393, 920 cm⁻¹ m.p.: 176-177 °C

8. NMR Spectra

Figure S7. ¹³C{¹H} NMR spectrum for 2 (CDCI₃, 295 K)

Figure S19: ¹³C{¹H} NMR spectrum for 9 (CDCI₃, 295 K)

Figure S27: $^{13}C\{^{1}H\}$ NMR spectrum for 12 (CDCl₃, 295 K)

Figure S31: ¹³C{¹H} NMR spectrum for 14 (CDCl₃, 295 K)

Figure S39: ¹³C{¹H} NMR spectrum for 27 (CDCl₃, 295 K)

Figure S41: ¹³C{¹H} NMR spectrum for 28 (CDCl₃, 295 K)

Figure S43: ¹³C{¹H} NMR spectrum for 29 (CDCl₃, 295 K)

Figure S45: NOESY spectrum for 29 (CDCl₃, 295 K)

Figure S53: ¹³C{¹H} NMR spectrum for S5 (CDCl₃, 295 K)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) **Figure S57**: ¹³C{¹H} NMR spectrum for **19** (CDCl₃, 295 K)

Figure S61: ¹³C{¹H} NMR spectrum for 21 (CDCl₃, 295 K)

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) Figure S67: ¹³C{¹H} NMR spectrum for **24** (CDCl₃, 295 K)

Figure S73: ¹³C{¹H} NMR spectrum for 32 (CDCl₃, 295 K)

Figure S77: ¹³C{¹H} NMR spectrum for 35 (CDCl₃, 295 K)

9. IR Spectra

Figure S82: ATR-IR spectrum for 2

Figure S83: ATR-IR spectrum for 4

v (cm⁻¹)

Figure S84: ATR-IR spectrum for 5

Figure S85: ATR-IR spectrum for 6

Figure S86: ATR-IR spectrum for 7

Figure S87: ATR-IR spectrum for 8

Figure S88: ATR-IR spectrum for 9

Figure S89: ATR-IR spectrum for 10

Figure S90: ATR-IR spectrum for 11

90

Figure S91: ATR-IR spectrum for 12

Figure S92: ATR-IR spectrum for 13

Figure S93: ATR-IR spectrum for 14

Figure S94: ATR-IR spectrum for 15

Figure S95: ATR-IR spectrum for 18

Figure S96: ATR-IR spectrum for 26

Figure S97: ATR-IR spectrum for 27

Figure S98: ATR-IR spectrum for 28

Figure S99: ATR-IR spectrum for 29

Figure S100: ATR-IR spectrum for S2

Figure S101: ATR-IR spectrum for S3

Figure S102: ATR-IR spectrum for S4

Figure S103: ATR-IR spectrum for S5

Figure S104: ATR-IR spectrum for S6

Figure S105: ATR-IR spectrum for 19

Figure S106: ATR-IR spectrum for 20

Figure S107: ATR-IR spectrum for 21

Figure S108: ATR-IR spectrum for 22

Figure S109: ATR-IR spectrum for 23

Figure S110: ATR-IR spectrum for 24

Figure S111: ATR-IR spectrum for 25

Figure S112: ATR-IR spectrum for 31

Figure S113: ATR-IR spectrum for 32

v (cm⁻¹)

Figure S114: ATR-IR spectrum for 33

Figure S115: ATR-IR spectrum for 35

Figure S116: ATR-IR spectrum for 37

Figure S117: ATR-IR spectrum for 38

10. References

- ¹ Wei, L.; Yang, Y.; Fan, R.; Wang, P.; Li, L.; Yu, J.; Yang, B.; Cao, W. *RSC Adv.* **2013**. 3, 25908-25916.
- ² A. M. A. Bennett (DuPont), WO Pat., 98/27124, 1998.
- ³ Charette, A. B.; Wilb, N.; *Synlett*, **2002**, 1, 0176-0178.
- ⁴ Redies, K. M.; Fallon, T.; Oestreich, M. *Organometallics*, **2014**, 33, 3235-3238.
- ⁵ Britovsek, G.J.P.; Bruce, M.; Gibson, V.C.; Kimberley, B.S.; Maddox, P.J.; MastroIannni, S.; McTavish, S.J.;
- Redshaw, C.; Solan, G.A.; Stromberg, S.; White, A.J.P.; Williams, D.J. J. Am. Chem. Soc. 1999, 121, 8728-8740.
- ⁶ Ardolino, M.J.; Morken, J.P. *J. Am. Chem. Soc.* **2012**, 134, 8770-8773.
- ⁷ Marcum, J.S.; Roberts, C.; Manan, R.S.; Cervarich, T.N.; Meek, S.M. *J. Am. Chem. Soc.* **2017**, 139, 15580-15583.
- ⁸ Sun, X.; Li, X.; Song, S.; Zhu, Y.; Lilang, Y.; Jiao, N. *J. Am. Chem. Soc.* **2015**, 137, 6059-6066.
- ⁹ Sargent, B.T.; Alexanian, E.J.; *J. Am. Chem. Soc.* **2017**, 139, 12438-12440.
- ¹⁰ Sarrdini, S.R.; Brown, K. J. Am. Chem. Soc. **2017**, 139, 9823-9826.
- ¹¹ Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, T. J. Am. Chem. Soc. **2005**, 127, 201-209.
- ¹² Cannillo, A.; Norsikian, S.; Retailleau, P.; Dau, M. E.; Iorga, B. I.; Beau, J.M. *Chem. Eur. J.* **2013**, 19, 9127-9131.
- ¹³ Yu, Y.; Lin, R.; Zhang, Y. *Tetrahedron, Lett.* **1993**, 34, 4547-4550.
- ¹⁴ Zhao, D.; Lied, F.; Glorius, F. *Chem. Sci.* **2014**, 5, 2869-2873.
- ¹⁵ Turos, E.; Parvez, M.; Garigipati, R.S.; Weinreb, S. M. J. Org. Chem. **1988**, 53, 1116-1118.
- ¹⁶ Stevenson, S. M.; Higgins, R. F.; Shores, M. P.; Ferreira, E. M. Chem. Sci. **2017**, 8, 654-660.
- ¹⁷ Wender, P. A.; Christy, J.P. *J. Am. Chem. Soc.* **2006**, 128, 5354-5355.
- ¹⁸ Zuo, G.; Louie, J. Angew. Chem. Int. Ed. **2004**, 43, 2277-2279.
- ¹⁹ Wender, P. A.; Husfeld, C. O.; Langkopf, E.; Love, J.A. J. Am. Chem. Soc. **1998**, 120, 1940-1941.
- ²⁰ Pohjala, L.; Alakurtti, S.; Ahola, T.; Yli-Kauhaluoma, J.; Tamella, P. J. Nat. Prod. **2009**. 72, 1917-1926.
- ²¹ Hatch, C.E.; Baum, J.S.; Takashima, T.; Kondo, K. J. Org. Chem. **1980**, 45, 3281-3285.
- ²² Abarbri, M.; Parrain, J.; Cintrat, J.; Duchene, ,A. *Synthesis*. **1996**, 1, 82-86.
- ²³ Jiang, Y.; Thomson, R.J.; Schaus, S.E. Angew. Chem. Int. Ed. **2017**, 56, 16631-16635.
- ²⁴ Wickham, G.; Wells, G.J.; Waykole, L.; Paquette, L.A. J. Org. Chem. **1985**, 50, 3485-3489.
- ²⁵ Pettigrew, J.D.; Cadieux, J.A.; So, S.S.S.; Wilson, P.D. Org. Lett. **2005**, 7, 467-470.
- ²⁶ Chuit, C.; Foulon, J.P.; Normant, J.F. *Tetrahedron*. **1980**, 36, 2305-2310.
- ²⁷ Garayalde, D.; Gomez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. *J. Am. Chem. Soc.* **2010**, 132, 4720-4730.
- ²⁸ Wint, L. T.; McCarthyl, P.A. *J. Label. Compd. Radiopharm.* **1988**, 25, 1289-1297.
- ²⁹ Ravinder, B.; Reddy, S.R.; Sridhar, M.; Mohan, M.M.; Srinivas, K.; Reddy, A.P.; Bandichhor, R. *Tetrahedron Lett.* **2013**, *54*, 2841-2844.