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NUMERICAL INTEGRATION OF THE STOCHASTIC FISHER EQUATION

In this section we describe in details the methods for the integration of the wave equations of the two-phenotype
model used for simulations in the Main Text.

Fisher wave

We consider the Fisher equation

ḟ(x, t) = D∇2f(x, t) + σ(x, t)f(x, t)(1− f(x, t)), (1)

where f(x, t) is the population density at space x and time t, and σ(x, t) is the local growth rate.

We employ a finite-difference fourth-order Runge-Kutta method. The systems is initialized by fixing f(xi, 0) = 1
for i ∈ (0, 50) and f(x, t) = 0 for i > 50. The spatial mesh dx is fixed by means of an adaptive routine. We intialize
the routine with an initial guess dx = 0.14. Then

1. We let the system evolve until the front reaches a stationary state.

2. We compute the smallest values of x for which f(x, t) > θ for θ = 3/4 and θ = 1/4. We denote these two values
as x3/4 and x1/4 respectively.

3. We measure the precisions ∆f3/4 = f(x3/4 − dx)− f(x3/4), ∆f1/4 = f(x1/4 − dx)− f(x1/4).

4. If ∆f3/4 > 0.01 and ∆f1/4 > 0.01, then dx is accepted as a valid increment.

5. Otherwise, the system is reset to the initial condition and the routine is again run for dx = dx̃− 0.01; being dx̃
the previous spatial mesh.

Once dx is determined, dt is fixed following the Courant-Friedrichs-Lewy condition for an explicit integration method
[1]:

vmaxdt

dx
≤ 1 (2)
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being vmax the estimated maximum velocity of the wave. We fix vmax = 100, which is sufficiently large compared
to velocities in our simulations.

Temporal environmental switch is numerically implemented with a simple first-order algorithm. At the beginning
of each time step, the state of environment is switched with probability k dt. We verified that this quantity is always
sufficiently small, so that the first-order algorithm yields reliable results. A similar algorithm is implemented for
spatial environmental variations to sequentially assign an environmental state to each lattice site.

Stochastic Fisher wave

We consider the stochastic Fisher equation [2]

ḟ(x, t) = D∇2f + σ(t)f(1− f) +

√
2

N
f(1− f)ξ(x, t) (3)

where ξ(x, t) a Gaussian white noise satisfying 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′). For later

convenience, we define the noise amplitude γ(t) ≡
√

2
N f(t)(1− f(t)).

Numerical integration in the presence of noise is subtle. In particular, one has to figure out how to deal with the
unphysical values f(x, t) < 0 and f(x, t) > 1 that can result due to finite numerical precision. Depending on parameter
range, the naive replacement f(x, t) = 0 or f(x, t) = 1 when f(x, t) < 0 and f(x, t) > 1, respectively, may introduce
a substantial bias. In particular, an incorrect integration of f(x, t) at the front, where f(x, t) is small, might lead to

an large error in the estimated velocity. However, when f(x, t) is small so that γ(t) '
√

2
N f(t), this problem can be

circumvented by integrating the noise term exactly [3], while integrating the rest of the equation deterministically [4].
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FIG. 1. Size scaling and maximum error estimation for our integration method. Panel A) shows the curve
4.5 (logN)−2 and the difference vF − v for k = 0, α = 0, ss = 1, and different system sizes. Panel B) shows (vF − v)/vF for
N = 109 and different growth rates employed in this work. These results suggest that our integration method is precise and
have a maximum error of 0.0018%.

We follow this strategy and integrate the equation mixing two different algorithms, depending on the local value of
f(x, t):

• If f(x, t) > θ: we employ the Milstein method (order 1). Defining β(t) ≡ D∇2f(t)+σ(t)f(t)(1−f(t)), the local
field is updated according to the rule

f(x, t+ dt) = f(x, t) + β(t)dt+ γ(t)∆ +
1

2
γ(t)

∂γ

∂f(t)
(∆2 − dt) (4)
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being ∆ =
√
dtg(t), where g(t) is a Gaussian random variable with zero mean and unit variance, drawn

independently at each time step.

• If f(x, t) < θ we employ a split-step numerical integration:

1. Non-linear and diffusion terms. The term ḟ(x, t) = D∇2f − σ(t)f2 is integrated by means of the Runge-
Kutta method obtaining a first solution f∗.

2. Linear and stochastic terms. The term σ(t)f +
√

2
N fξ(x, t) is integrated in an exact way, see [3]:

f(x, t) = rGamma{rPoisson{λf∗(x, t)eσ(t)t}}/λ. (5)

being λ = 2σ(t)/[γ2eσ(t)t], and rGamma, rPoisson random variables from Gamma and Poisson probability
distributions respectively, i.e. Prob[rGamma(a) = z] = za−1e−z/Γ[a] and Prob[rPoisson(a) = z] = aze−a/z!.

To check the precision of our method we integrated the stochastic equation (3) for k = 0, α = 0, and different
growth rates ss and compared the results to the analytical Fisher velocity vF = 2

√
Dss. For large population size

N , the velocity v of the wave asymptotically goes as vF − v ' C ln−2(N) [5]. Our numerical integration is consistent
with this asymptotic relation from N ' 104 (figure 1A) with a root-mean-square deviation of 0.002. We have also
obtained the values (vF − v)/vF for the different growth rates employed in this work to obtain an estimation of the
maximum error (see figure 1B). Note that vF is not the actual velocity of the finite system, so the relative error
(vF − v)/vF is, in fact, smaller. The maximum error is around 0.9%, that, considering the results of figure 1A) leads
to an overestimated error of about 0.0018%.
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[5] Éric Brunet and Bernard Derrida, “Effect of microscopic noise on front propagation,” Journal of Statistical Physics 103,
269–282 (2001).


