Supplementary Information

Organometallic Gold(III) Reagents for Cysteine Arylation

Marco S. Messina,^{‡,[a]} Julia M. Stauber,^{‡, [a]} Mary A. Waddington,^[a] Arnold L. Rheingold,^[c]

Heather D. Maynard,^{*[a],[b]} and Alexander M. Spokoyny^{*[a],[b]}

^[a]Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.

^[b]California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States.

^[c]Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

*Correspondence to: <u>maynard@chem.ucla.edu</u> and <u>spokoyny@chem.ucla.edu</u>

Table of Contents		
I.	General Information	S3
	Methods and Materials	S3
II.	Synthetic Procedures and Characterization of Small Molecules	S5
	Stability Studies of Au(III) Reagents	S98
III.	Peptide Synthesis and Protein Expression	S103
	Native Peptide Traces and Masses	S105
IV.	Procedures and Characterization for Cysteine Arylation	S108
	Procedure and Characterization for Reagent Equivalents Screen Using 1 Procedure and Characterization for Water Equivalents Screen Using 2a Procedure and Characterization for Reagent Equivalents Screen Using 2a Procedure and Characterization for Buffer and pH Screen Using 2a Procedure and Characterization for Buffer and pH Screen Using 2a Cysteine Arylation in Unconventional Solvents. Substrate Scope for Glutathione Au(III) and Pd(II) Competition Experiments Preparation of S -(p -Cl-C ₆ H ₄) GSH conjugate. Substrate Scope for Larger Peptide Sequences. Peptide Stapling Procedure Double Arylation of Dicysteine Peptide Trypsin Digest and MS/MS Experiments Procedure for Protein Modification and Expression.	S108 S109 S110 S111 S112 S114 S115 S122 S124 S125 S131 S132 S133 S139
V.	Crystallographic Characterization	S140
VI.	References	S176

I. General Information

Methods and Materials

Reagent Information:

All commercially available chemicals were used as received unless otherwise stated. The Au(THT)Cl and (RuPhos)Pd(tolyl)I complexes were prepared according to literature procedures.^{1,2} Dry solvents were obtained from Grubbs columns with activated alumina and copper catalysts and stored in a Vacuum Atmospheres glovebox over 4Å molecular sieves. Ocarborane was purchased from Boron Specialties (USA). Phosphorus trichloride (98%), N,N'diisopropylethylenediamine (97%), chlorobis(3,5-dimethylphenyl)phosphine (90%), and silver bis(trifluoromethanesulfonyl)imide (AgNTf₂) were purchased from Alfa Aesar. N,N'-Di-tertbutylethylenediamine (98%), chloro[di(1-adamantyl)-2-dimethylaminophenylphosphine]gold(I), 2-iodonaphthalene (99%), 4-iodotoluene (99%), and L-glutathione reduced (BioXtra grade) were purchased from Sigma-Aldrich. Silver hexafluoroantimonate (AgSbF₆) (98%), silver tetrafluoroborate (AgBF₄) (98%), 4-iodobenzotrifluoride (98%), 1-fluoro-4-iodo-benzene (99%), 1-bromo-4-iodobenzene (99%), 4-iodophenol (98%), 2-iodopyridine (98%), 4-iodoaniline (98%) and 4-(trifluoromethoxy)iodobenzene (97%) were purchased from Oakwood Chemical. Trametinib (GSK1120212, 99%), and 1-ethyl-4-iodobenzene (98%) were purchased from Fisher Scientific. Monodisperse PEG₁₂ was purchased form JenKem Technology USA. 1-Hydroxy-7azabenzotriazole solution (HOAt, 0.6 M in DMF), 1-[Bis(dimethylamino)methylene]-1H-1,2,3triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU), N,N,N',N'-Tetramethyl-O-(1Hbenzotriazol-1-yl)uronium hexafluorophosphate (HBTU), D-Biotin, Fmoc-Rink amide linker, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Ala-OH, Fmoc-L-Cys(Trt)-OH, Fmoc-L-Gly-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Ser(tBu)-OH, Fmoc-L-Lys(Boc)-OH were purchased from Chem-Impex International.

General Analytical Information:

NMR spectra were recorded on DRX 400, DRX 500, and AVIII 500 Bruker spectrometers at 400 or 500 MHz (¹H), 125 MHz (¹³C), 282 MHz (¹⁹F), 80 MHz (¹¹B), and 121 MHz (³¹P). Spectra are reported in δ (parts per million) relative to residual protio-solvent signals for ¹H and ¹³C, C₆H₅F -(δ -113.15 ppm) for ¹⁹F, BF₃·Et₂O (δ 0.00 ppm) for ¹¹B, and H₃PO₄ (δ 0.00 ppm) for ³¹P. Deuterated solvents (Cambridge Isotope Laboratories) used for NMR spectroscopic analyses were stored over 4Å molecular sieves. Electrospray ionization mass spectra of small molecules and Au-based complexes (ESI-MS(+)) were collected on a Waters LCT premier mass spectrometer. Samples were prepared in MeCN at concentrations <1 μ M, and the data were processed using the program mMass Version 5.4.1.0.

Peptide Purification and LC-MS Analysis:

Peptide purification was carried out on an Agilent Technologies 1260 Infinity II HPLC system equipped with an Agilent ZORBAX 300SB-C18 column (5 μ m, 9.4 × 250 mm) using 0.1% TFA in water and 0.1% TFA in acetonitrile as the eluent. Data were processed using Agilent Mass Hunter software. Deconvoluted mass spectra of proteins were gathered using maximum entropy setting. Peptide modification yield was calculated *s* integrations of the peptide and modified peptide peaks in the TIC spectra using the following formula: (I_[MP]/I_[MP+SP])×100 where I_[MP] is

the integration of the modified peptide peak and $I_{[MP+SP]}$ is the sum of integrations of the modified peptide peak and the starting peptide peak.

Peptide Purification Method Information: Column temperature: 23 °C. Flow rate: 3 mL/min. Gradient: 95-60% water (0.1% TFA) over 22 min.

LC-MS analysis was carried out using an Agilent 6530 ESI-Q-TOF. Peptide and DARPin analyses were carried out using an Agilent ZORBAX 300SB C18 column (5 μ m, 2.1 × 500 mm). Analysis of FGF2 was carried out using an Agilent ZORBAX 300SB C3 column (3.5 μ m, 3.0 × 150 mm) using 0.1% TFA in water and 0.1% TFA in acetonitrile as the eluent.

LC-MS Method Information:

Method used for peptides: Column temperature: 23 °C. Flow rate: 0.8 mL/min. Gradient: 99% water (0.1% formic acid (FA)) for 2 minutes; 99%-91% water (0.1% FA) 2-11 minutes; 5% water (0.1% FA) from 12-15 min.

Method used for proteins: Column temperature: 23 °C. Flow rate: 0.8 mL/min. Gradient: 99% water (0.1% formic acid (FA)) for 2 minutes; 99%-9% water (0.1% FA) 2-11 minutes; 5% water (0.1% FA) from 11-12 min.

MS/MS analysis was performed using a 30 eV collision energy and fragment analysis was carried out using ProSight Lite software.

ICP-AES Measurements

Gold ICP-AES analyses were conducted using a Shimadzu ICPE-9000 inductively coupled plasma atomic emission spectrometer (ICP-AES). Solutions of standard concentrations were used for calibration purposes and were prepared from a gold standard solution purchased from Sigma Aldrich, designated suitable for ICP analysis. Standard solutions were prepared with concentrations of 50, 100, 300, and 600 ppb in 2% OmniTrace HCl diluted with Milli-Q H₂O, and analyses were run at $\lambda = 242.795$ nm.

II. Synthetic Procedures

Purification of o-carborane purchased from Boron Specialties

A round bottom flask was charged with a solution of *o*-carborane (15 g, 10 mmol) in MeOH (150 mL). 12 M HCl (50 mL) was added slowly to the reaction vessel, and the resulting mixture was heated to 50 °C and stirred overnight. The solution was then cooled to room temperature, and H₂O (200 mL) was added, resulting in the precipitation of white solids that were isolated by vacuum filtration, washed with water, and air dried. The solid was then dissolved in CH₂Cl₂, dried over MgSO₄, and filtered through Celite. The filtrate was dried *in vacuo* to afford a white powder. The powder was then sublimed at 60 °C under dynamic vacuum. After sublimation away from the yellow residue, the white crystals were taken up in C₂H₄Cl₂, suspended with activated carbon/charcoal, and stirred for 2-3 hours at 75 °C. The suspension was then filtered through a pad of Celite, and the filtrate was evaporated under vacuum. The resulting white solid was again sublimed at 60 °C to produce white crystals.

Synthesis of 1,3-diisopropyl-2-chloro-1,3,2-diazaphospholidine

Phosphorus trichloride (483 μ L, 5.55 mmol, 1.00 equiv) was added to C₆H₆ (7 mL), and the solution was cooled to 0 °C. Once at 0 °C, a solution of *N*,*N*'-diisopropylethylenediamine (1.0 mL, 5.6 mmol, 1.0 equiv) and triethylamine (787 μ L, 5.55 mmol, 1.00 equiv) in C₆H₆ (8 mL) cooled to 0 °C, was added dropwise slowly to the solution containing phosphorus trichloride. White precipitate formed immediately upon addition. The suspension was then stirred at room temperature for 2 h. After 2 h, the precipitate was filtered off and the filtrate was concentrated under reduced pressure to afford the pure product as a yellow oil in quantitative yield.

The product is unstable in open atmosphere, and a degradation product was observed by ³¹P NMR spectroscopy ($\delta \sim 7$ ppm in CH₂Cl₂) within minutes of exposure to air. All manipulations with this product were conducted in a glovebox under an atmosphere of purified N₂ and with dried and degassed reagents and solvents.

¹**H NMR** (400 MHz, CD₂Cl₂, 298 K): δ 3.48-3.42 (m, 2H, C*H*), 3.32 (s, 2H, C*H*2), 3.31 (s, 2H, C*H*₂), 1.30 (d, 12H, C*H*₃, *J* = 6.6 Hz) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K): δ 48.90 (CH), 47.25 (CH₂), 22.20 (CH₃) ppm. ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 298 K): δ 168.0 ppm.

Synthesis of 1,2-bis(diaminophosphino)-1,2-dicarba-closo-dodecaborane

*Syntheses and full characterization for 1,2-Bis(diaminophosphino)-1,2-dicarba-closododecaborane compounds shown below can be found in the literature.*³ *Adapted syntheses are included here for convenience.*

A round bottom flask was charged with a solution of *o*-carborane (318 mg, 2.20 mmol, 1.00 equiv) in Et₂O (5 mL) under an atmosphere of N₂, and the temperature of the solution was lowered to 0 °C. Once at 0 °C, ^{*n*}BuLi (2.5 M in hexane, 1.85 mL, 4.63 mmol, 2.10 equiv) was added dropwise, resulting in the formation of white precipitate. After complete addition, the mixture was refluxed at 40 °C for 3 h. After 3 h, the reaction temperature was lowered to -41 °C, at which point a solution of 1,3-diisopropyl-2-chloro-1,3,2-diazaphospholidine (1.15 g, 2.20 mmol, 2.50 equiv) in Et₂O (12 mL) was added via cannula transfer. The formation of an off-white precipitate was observed upon complete addition, at which point the reaction was allowed to warm to room temperature, and then stirred for 12 h. After 12 h, complete consumption of the starting materials was confirmed by TLC, and the solvent was evaporated under reduced pressure to yield an off-white solid. This solid was subjected to flash chromatography in a hexane and acetone (95:5) mixture to yield the pure product as a white solid (Rf = 0.77). The product was further purified *via* crystallization in dichloromethane layered with *n*-pentane at -30 °C.

The product was isolated as a white and crystalline solid and is stable for months when stored in the solid state under an N_2 atmosphere at -30 °C.

³¹P{¹H} NMR (121 MHz, CDCl₃, 298 K): δ 112.6 ppm.

Synthesis of (DPCb)AuCl ((1,2-bis(1,3-diisopropyl-1,3,2-diazaphospholidin-2-yl)-1,2-dicarba-*closo*-dodecaborane)AuCl)

In the glovebox, a solution of 1,2-bis(1,3-diisopropyl-1,3,2-diazaphospholidin-2-yl)-1,2-dicarbacloso-dodecaborane (DPCb, 65 mg, 0.13 mmol, 1.0 equiv) in CH₂Cl₂ (4 mL) was cooled to -30 °C. This solution was then added dropwise to a cooled solution (-30 °C) of AuCl(tht) (43 mg, 0.13 mmol, 1.0 equiv) in CH₂Cl₂ (4 mL) over the course of 5 min. After stirring at room temperature for 30 min, the solution was concentrated *in vacuo* to afford the crude (DPCb)AuCl complex as a white solid. The crude material was purified *via* crystallization from a concentrated solution of CH₂Cl₂ layered with *n*-pentane at -30 °C. The pure product was isolated as a white crystalline solid that is yellow in solution, and the product is stable for months when stored in the solid state under an N₂ atmosphere at -30 °C.

³¹P{¹H} NMR (121 MHz, CDCl₃, 298 K): δ 116.6 ppm.

Synthesis of (DPCb)AuNTf

In the glovebox, a CH_2Cl_2 (7 mL) solution of (DPCb)AuCl (91 mg, 0.12 mmol, 1.0 equiv) was cooled to -30 °C. This solution was then added dropwise to a cooled suspension (-30 °C) of AgNTf₂ (49 mg, 0.12 mmol, 1.0 equiv) in CH_2Cl_2 (8 mL) over 5 min under protection from light. The reaction mixture was allowed to warm to room temperature, and after 1 h of stirring, the suspension was filtered through a pad of Celite and the filtrate was concentrated *in vacuo* to afford the (DPCb)AuNTf₂ product as a yellow solid. The product was used without further purification and is stable for months when stored in the solid state under an N₂ atmosphere at -30 °C.

³¹P{¹H} NMR (121 MHz, CDCl₃, 298 K): δ 138.3 ppm.

Synthesis of 1

In the glovebox, a solution of (DPCb)AuNTf₂ (10 mg, 0.010 mmol, 1.0 equiv) in CH₂Cl₂ (350 μ L) was cooled to -30 °C. To this cold solution was added a cooled (-30 °C) solution of 4-iodotoluene (12 mg, 0.053 mmol, 5.0 equiv) in CH₂Cl₂ (350 μ L). The reaction was allowed to warm to room temperature for 5 min, during which time a color change to dark yellow was observed. The yellow solution was concentrated *in vacuo* to afford the product as a yellow solid. The isolated material was used for bioconjugation studies without further purification.

³¹**P**{¹**H**} **NMR** (121 MHz, CH₂Cl₂, 298 K): δ 132.09 (d, J = 22.7 Hz), 124.01 (d, J = 22.8 Hz) ppm.

Aryl iodide substituted biotin (SI-1) was synthesized following Steglich esterification conditions.⁴

A 2-neck round bottom flask was charged with a solution biotin (217 mg, 0.890 mmol, 1.00 equiv) in dry DMF (5 mL) under an atmosphere of Ar. To this solution was added DMAP (11 mg, 0.080 mmol, 10 mol%) and 4-iodoaniline (778 mg, 3.55 mmol, 4.00 equiv) under stirring. The temperature of the reaction mixture was lowered to 0 °C, at which point a solution of DCC (202 mg, 0.980 mmol, 1.10 equiv) in DMF (5 mL) was added dropwise under stirring. The reaction mixture was allowed to warm to room temperature and then stirred for an additional 16 h. After 16 h, the solution was concentrated under reduced pressure, and CH_2Cl_2 (25 mL) was added, resulting in the precipitation of colorless solids that were isolated by filtration, washed with CH_2Cl_2 (2 × 25 mL) and then methanol (2 × 25 mL) to afford the product as a white solid.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.96 (s, 1H, -N*H*), 7.61 (d, 2H, *J* = 8.8 Hz, H_{Ar}), 7.43 (d, 2H, *J* = 8.8, H_{Ar}), 6.42 (s, 1H, -N*H*), 6.35 (s, 1H, -N*H*), 4.30 (m, 1H), 4.22–4.08 (m, 1H), 3.17–3.08 (m, 1H, -CH₂SCHCH₂-), 2.82 (dd, 1H, *J* = 12.4 Hz, 5.1 Hz, -CH₂SCHCH₂-), 2.57 (d, 1H, *J* = 12.4 Hz, -CH₂SCHCH₂-), 2.57 (d, 1H, *J* = 12.4 Hz, -CH₂SCHCH₂-), 2.30 (t, 2H, *J* = 7.4 Hz, -CH₂CONH-), 1.70–1.53 (m, 2H, -CH₂), 1.55–1.48 (m, 2H, -CH₂), 1.36 (m, 2H, -CH₂) ppm.

¹³C NMR (125 MHz, DMSO-*d*₆): δ 174.48, 171.36, 162.71, 139.13, 137.29, 121.23, 61.04, 59.20, 55.39, 36.26, 33.36, 28.22, 28.09, 25.02 ppm.

Figure S1. ¹H NMR spectrum of SI-1 in DMSO- d_6 at 298 K.

A 2-neck round bottom flask was charged with a solution of poly(ethylene glycol) (577 mg, 1.05 mmol, 1.00 equiv) in dry CH_2Cl_2 (5 mL) under an atmosphere of Ar. To this solution was added 4-dimethylaminopyridine (26 mg, 0.21 mmol, 0.20 equiv) under stirring, and then the temperature of the reaction mixture was lowered to 0 °C. A solution of tosyl chloride (141 mg, 0.740 mmol, 0.700 equiv) in CH_2Cl_2 (15 mL) was added dropwise to this solution, followed by dropwise addition of triethylamine (177 μ L, 1.26 mmol, 1.20 equiv). The reaction mixture was allowed to warm to room temperature, and then stirred for an additional 16 h, at which point the reaction was diluted with water and the product was extracted three times with CH_2Cl_2 . The organic layers were collected, dried over MgSO₄, and the solvent was removed under reduced pressure to afford the product as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.80 (d, 1H, J = 8.3 Hz, H_{Ar}), 7.34 (d, 1H, J = 8.3 Hz, H_{Ar}), 4.19–4.10 (m, 2H), 3.70–3.62 (m, 44H), 3.00 (s, 2H), 2.45 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 144.78, 133.01, 129.82, 127.99, 72.52, 70.57, 69.24, 68.69, 61.76, 21.66 ppm.

$$HO \longrightarrow O (O)_{10} O (O)_{10}$$

A 2-neck round bottom flask was charged with a solution of **SI-2** (395 mg, 0.520 mmol, 1.00 equiv) and 4-iodophenol (164 mg, 0.750 mmol, 1.45 equiv) in dry MeCN (20 mL). To this solution was added potassium carbonate (427 mg, 3.09 mmol, 6.00 equiv) under stirring. The reaction mixture was stirred at 80 °C for 16 h, at which point the solvent was removed under reduced pressure to afford colorless solids, which were dissolved in ethyl acetate and washed with water. The organic layer was collected, dried over MgSO₄, and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography (90:10 CHCl₃:MeOH) to afford pure **SI-3** as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.54 (d, 2H, J = 9.0 Hz, H_{Ar}), 6.69 (d, 2H, J = 9.0 Hz, H_{Ar}), 4.10–4.05 (m, 2H), 3.88–3.79 (m, 2H), 3.74–3.60 (m, 44H), 2.60 (t, 1H, t, J = 6.2 Hz) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 158.79, 138.27, 117.18, 83.02, 72.81, 70.65, 69.70, 67.65, 61.78 ppm.

General synthetic procedure for the preparation of [(Me-DalPhos)AuArX][SbF₆] oxidative addition complexes (X = Cl/I)

The $AgSbF_6$ and (Me-DalPhos)AuCl reagents were stored in the glovebox under an atmosphere of N_2 and then removed for use.

In the fume hood, AgSbF₆ was dissolved in DCM (2 mL) under protection from light, and the colorless solution was cooled to -20 °C. A DCM solution (2 mL) containing the aryliodide and (Me-DalPhos)AuCl reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless aryliodide and (Me-DalPhos)AuCl solution was added in one portion to the solution of AgSbF₆, resulting in an immediate color change to bright yellow concomitant with precipitation of pale yellow solids. The reaction mixture was filtered through a pad of Celite to remove liberated AgX (X = Cl, I). Slow evaporation of solvent from the yellow filtrate over the course of 48 h at 25 °C resulted in saturation of the solution and the formation of yellow crystals. The supernatant was removed and the crystals were washed with C₆H₆ (2 × 3 mL), followed by *n*-pentane (2 × 3 mL), and then dried under reduced pressure to afford the [(Me-DalPhos)AuArCl][SbF₆] product as a yellow crystalline solid.

Following the general procedure, (Me-DalPhos)AuCl (43 mg, 0.066 mmol, 1.0 equiv), $AgSbF_6$ (23 mg, 0.066 mmol, 1.0 equiv) and 4-iodotoluene (43 mg, 0.20 mmol, 3.0 equiv) were used. The [**2a**][SbF₆] salt was isolated as a yellow crystalline solid in 72% yield (47 mg, 0.045 mmol). This complex has been previously reported.⁵

¹**H** NMR (400 MHz, CD₃CN): δ 8.03 (m, 1H, H_{Ar}), 8.01–7.88 (m, 2H, H_{Ar}), 7.68 (m, 1H, H_{Ar}), 7.43 (d, 2H, J = 8.4 Hz, H_{Ar}), 7.14 (d, 2H, J = 8.4 Hz, H_{Ar}), 3.45 (s, 6H, N(CH₃)₂), 2.34 (s, 3H, Tolyl-CH₃), 2.33–2.25 (m, 6H, H_{Ad}), 2.03–1.98 (m, 12H, H_{Ad}), 1.80–1.66 (m, 12H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 75.0 ppm.

Figure S7. ¹H NMR spectrum of [2a][SbF₆] in CD₃CN at 298 K.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), AgSbF₆ (16 mg, 0.046 mmol, 1.0 equiv) and 4-ethyliodobenzene (20 μ L, 0.14 mmol, 3.0 equiv) were used. The [**2b**][SbF₆] salt was isolated as a yellow crystalline solid in 59% yield (27 mg, 0.027 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this procedure. The X-ray crystallographic analysis indicates 100% Cl occupancy (see section V for crystallographic details).

¹**H** NMR (400 MHz, CD₃CN): δ 8.03 (m, 1H, H_{Ar} 8.00–7.89 (m, 2H, H_{Ar}), 7.69 (m, 1H, H_{Ar}), 7.46 (d, 2H, *J* = 8.4, H_{Ar}), 7.17 (d, 2H, *J* = 8.2, H_{Ar}), 3.45 (s, 6H, N(CH₃)₂), 2.65 (q, 2H, *J* = 7.6 Hz, -CH₂CH₃), 2.28 (m, 6H, H_{Ad}), 2.11–2.08 (s, 6H, H_{Ad}) 2.04–1.99 (s, 6H, H_{Ad}), 1.73 (m, 12H, H_{Ad}), 1.23 (t, 3H, *J* = 7.6, -CH₂CH₃) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 74.9 ppm.

ESI-MS(+): 768.33 (calc'd 768.33) *m/z*.

Note this sample was run in the presence of formic acid, and as a result, the [(Me-DalPhos)Au(p-ethylbenzene)OCHO]⁺ ion is observed (C₃₇H₅₀NO₂PAu).

- 74.87

In the fume hood, a solution of AgBF₄ (9 mg, 0.05 mmol, 1 equiv) in DCM (2 mL) was prepared under protection from light, and then cooled to -20 °C. A DCM solution (2 mL) containing 4ethyliodobenzene (20 μ L, 0.14 mmol, 3.0 equiv) and (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless 4-ethyliodobenzene and (Me-DalPhos)AuCl solution was added in one portion to the solution of AgBF₄, and the reaction mixture was sonicated for 2 min, during which time the solution became yellow concomitant with the precipitation of pale yellow precipitate. The resulting suspension was filtered through a pad of Celite, and the filtrate was dried *in vacuo* to give a pale-yellow powder. The solids were washed with C₆H₆ (2 × 3 mL), followed by *n*pentane (2 × 3 mL), and then dried under reduced pressure to afford [**2b**][BF₄] as a pale yellow powder in 86% yield (36 mg, 0.043 mmol).

¹**H** NMR (400 MHz, CD₃CN): δ 8.05–8.01 (m, 1H, H_{Ar}), 7.99–7.92 (m, 2H, H_{Ar}), 7.73–7.67 (m, 1H), 7.46 (d, 2H, d, *J* = 8.4 Hz), 7.17 (d, 2H, *J* = 8.2 Hz), 3.45 (s, 6H, N(CH₃)₂), 2.65 (q, 2H, *J* = 7.7 Hz, -CH₂CH₃), 2.29 (s, 6H, H_{Ad}), 2.10 (s, 6H, H_{Ad}), 2.01 (s, 6H, H_{Ad}), 1.75 (s, 12H, H_{Ad}), 1.23 (t, 3H, *J* = 7.6 Hz, -CH₂CH₃) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 75.7 ppm.

Figure S12. ¹H NMR spectrum of [**2b**][BF₄] in CD₃CN at 298 K.

- 75.69

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), AgSbF₆ (16 mg, 0.046 mmol, 1.0 equiv) and 2-iodonaphthalene (35 μ L, 0.14 mmol, 3.0 equiv) were used. The [**2c**][SbF₆] salt was isolated as a yellow crystalline solid in 64% yield (30 mg, 0.029 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this procedure (see section V for crystallographic details).

¹**H NMR (400 MHz, CD₃CN):** δ 8.10 (m, 1H, H_{Ar}), 8.06 (m, 1H, H_{Ar}), 8.01–7.89 (m, 3H, H_{Ar}), 7.84 (m, 2H, H_{Ar}), 7.75–7.66 (m, 2H, H_{Ar}), 7.57 (m, 2H, H_{Ar}), 3.51 (s, 6H, N(*CH*₃)₂), 2.35 (m, 3H, H_{Ad}), 2.29–2.25 (m, 3H, H_{Ad}), 2.15 (m, 3H, H_{Ad}), 2.02 (m, 10H, H_{Ad}), 1.84–1.61 (m, 14H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 76.1 ppm.

ESI-MS(+): 780.21 (calc'd 780.28) *m/z* (C₃₈H₄₇ClNPAu).

S30

S31

Figure S16. ESI-MS(+) of 2c.

Following the general procedure, (Me-DalPhos)AuCl (22 mg, 0.034 mmol, 1.0 equiv), AgSbF₆ (12 mg, 0.034 mmol, 1.0 equiv) and 4-iodobenzotrifluoride (25 μ L, 0.17 mmol, 5.0 equiv) were used. The [**2d**][SbF₆] salt was isolated as a yellow crystalline solid in 60% yield (21 mg, 0.020 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this procedure (see section V for crystallographic details).

¹**H** NMR (400 MHz, CD₃CN): δ 8.08–8.01 (m, 1H, H_{Ar}), 8.00–7.90 (m, 2H, H_{Ar}), 7.82 (d, J = 8.3 Hz, 2H, H_{Ar}), 7.74–7.66 (m, 1H, H_{Ar}), 7.64 (d, J = 8.3 Hz, 2H, H_{Ar}), 3.50 (s, 6H, N(CH₃)₂), 2.36–2.25 (m, 6H, H_{Ad}), 2.02 (m, 11H, H_{Ad}), 1.74 (m, 13H, H_{Ad}) ppm.

¹⁹F NMR (376 MHz, CD₃CN): δ -63.0 ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 77.6 ppm.

ESI-MS(+): 798.17 (calc'd 798.25) *m/z* (C₃₅H₄₄ClF₃NPAu).

Figure S17. ¹H NMR spectrum of [**2d**][SbF₆] in CD₃CN at 298 K.

Figure S19. ³¹P{¹H} NMR spectrum of [2d][SbF₆] in CD₃CN at 298 K. The signal at 58.3 ppm corresponds to the starting (Me-DalPhos)AuCl compound.

Figure S20. ESI-MS(+) of 2d.

In the fume hood, a solution of AgSbF₆ (12 mg, 0.034 mmol, 1.0 equiv) in DCM (2 mL) was prepared under protection from light, and then cooled to -20 °C. A DCM solution (2 mL) containing 4-iodophenetole (34 mg, 0.14 mmol, 3.0 equiv) and (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless 4-iodophenetole and (Me-DalPhos)AuCl solution was added in one portion to the solution of AgSbF₆, at which point an immediate color change to yellow occurred concomitant with the precipitation of pale yellow precipitate. The resulting suspension was filtered through a pad of Celite, and the filtrate was dried *in vacuo* to give a pale-yellow powder. The solids were washed with C₆H₆ (2 x 3 mL), followed by *n*-pentane (2 x 3 mL), and then dried under reduced pressure to afford [**2e**][SbF₆] as a pale yellow powder in 85% yield (29 mg, 0.029 mmol).

¹**H** NMR (400 MHz, CD₃CN): δ 8.02 (m, 1H, H_{Ar}), 7.95 (m, 2H, H_{Ar}), 7.72–7.64 (m, 1H, H_{Ar}), 7.43 (d, 2H, *J* = 9.0 Hz), 6.92 (d, 2H, *J* = 8.9 Hz), 4.04 (q, 2H, *J* = 7.0 Hz, -CH₂CH₃), 3.46 (s, 6H, N(CH₃)₂), 2.29 (m, 6H, H_{Ad}), 2.12–1.98 (m, 12H, H_{Ad}), 1.73 (m, 12H, H_{Ad}), 1.37 (t, 3H, *J* = 7.0 Hz) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 75.1 ppm.

ESI-MS(+): 774.23 (calc'd 774.29) *m/z* (C₃₆H₄₉ClNOPAu).

Figure S21. ¹H NMR spectrum of [**2e**][SbF₆] in CD₃CN at 298 K.

Figure S23. ESI-MS(+) of **2e**.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), AgSbF₆ (16 mg, 0.046 mmol, 1.0 equiv) and 4-iodophenol (31 mg, 0.14 mmol, 3.0 equiv) were used. The [**2f**][SbF₆] salt was isolated as an orange crystalline solid in 65% yield (29 mg, 0.030 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this workup (See section V for crystallographic details). Elem. Anal. (Calc'd) for [**2f**][SbF₆]·H₂O, $C_{34}H_{47}AuClF_6NO_2PSb$: C, 40.64 (40.78); H, 4.51 (4.73); N, 1.39 (1.40). Crystallographic analysis displays one co-crystallized water molecule for each [**2f**][SbF₆] salt complex (see section V).

¹**H NMR (400 MHz, CD₃CN):** δ 8.02 (m, 1H, H_{Ar}), 8.01–7.88 (m, 2H, H_{Ar}), 7.67 (m, 1H, H_{Ar}), 7.35 (d, 2H, *J* = 8.9 Hz, H_{Ar}), 6.83 (d, 1H, *J* = 8.7 Hz, H_{Ar}), 3.45 (s, 6H, N(CH₃)₂), 2.28 (m, 6H, H_{Ad}), 2.11–2.01 (m, 12H, H_{Ad}), 1.75 (m, 12H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 75.6 ppm.

ESI-MS(+): 746.15 (746.26) *m/z* (C₃₄H₄₄Cl₂NPAu).

Following the general procedure, (Me-DalPhos)AuCl (22 mg, 0.034 mmol, 1.0 equiv), AgSbF₆ (12 mg, 0.034 mmol, 1.0 equiv) and 4-(trifluoromethoxy)iodobenzene (27 μ L, 0.17 mmol, 5.0 equiv) were used. The [**2g**][SbF₆] salt was isolated as a yellow crystalline solid in 51% yield (18 mg, 0.017 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this procedure (See section V for crystallographic details).

¹H NMR (400 MHz, CD₃CN): δ 8.04 (dd, J = 8.3, 3.9 Hz, 1H, H_{Ar}), 7.95 (m, 2H, H_{Ar}), 7.79–7.56 (m, 3H, H_{Ar}), 7.30 (d, J = 8.4 Hz, 2H, H_{Ar}), 3.49 (s, 6H, N(CH₃)₂), 2.36–2.24 (m, 6H, H_{Ad}), 2.02 (m, 11H, H_{Ad}), 1.73 (m, 13H, H_{Ad}) ppm.

¹⁹F NMR (376 MHz, CD₃CN): δ -58.7 ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 76.8 ppm.

ESI-MS(+): 814.17 (calc'd 814.25) *m/z* (C₃₅H₄₄ClOF₃NPAu).

S47

S48

Figure S30. ESI-MS(+) of **2**g.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), $AgSbF_6$ (16 mg, 0.046 mmol, 1.0 equiv) and 1-iodo-4-nitrobenzene (34 mg, 0.14 mmol, 3.0 equiv) were used. The [**2h**][SbF₆] salt was isolated as an orange crystalline solid in 75% yield (35 mg, 0.035 mmol). This complex has been previously reported.³

¹**H NMR (400 MHz, CD₃CN):** δ 8.16 (d, J = 9.0 Hz, 2H, H_{Ar}), 8.05 (m, 1H, H_{Ar}), 7.96 (m, 1H, H_{Ar}), 7.90 (d, J = 9.1 Hz, 2H, H_{Ar}), 7.70 (m, 1H, H_{Ar}), 3.52 (s, 6H, N(CH₃)₂), 2.41–2.22 (m, 6H, H_{Ad}), 2.07–1.99 (m, 12H, H_{Ad}), 1.74 (m, 12H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 79.9 ppm.

ESI-MS(+): 775.19 (calc'd 775.25) *m/z* (C₃₄H₄₄ClN₂O₂PAu).

S52

Figure S33. ESI-MS(+)of 2h.

Following the general procedure, (Me-DalPhos)AuCl (66 mg, 0.10 mmol, 1.0 equiv), $AgSbF_6$ (34 mg, 0.10 mmol, 1.0 equiv) and 1-chloro-4-iodobenzene (120 mg, 0.50 mmol, 5.0 equiv) were used. The [**2i**][SbF₆] salt was isolated as a yellow crystalline solid in 87% yield (87 mg, 0.087 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this procedure (see section V for crystallographic details).

¹**H** NMR (400 MHz, CD₃CN): δ 8.04 (dd, J = 8.2, 4.0 Hz, 1H, H_{Ar}), 8.00–7.91 (m, 2H, H_{Ar}), 7.73–7.65 (m, 1H, H_{Ar}), 7.58 (d, J = 8.7 Hz, 1H, H_{Ar}), 7.37 (d, J = 8.6 Hz, 1H, H_{Ar}), 3.48 (s, 6H, N(CH₃)₂), 2.29 (m, 6H, H_{Ad}), 2.02 (s, 11H, H_{Ad}), 1.74 (m, 13H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 77.6 ppm.

ESI-MS(+): 764.15 (calc'd 764.23) *m/z* (C₃₄H₄₄Cl₂NPAu).

Elem. Anal. (Calc'd) for C₃₄H₄₄AuCl₂F₆NPSb: C, 40.50 (40.76); H, 4.24 (4.43); N, 1.37 (1.40).

Figure S35. ${}^{31}P{}^{1}H$ NMR spectrum of [**2i**][SbF₆] in CD₃CN at 298 K. The signal at 59.0 ppm corresponds to the starting (Me-DalPhos)AuCl compound.

In the fume hood, a solution of AgBF₄ (9 mg, 0.05 mmol, 1 equiv) in DCM (2 mL) was prepared under protection from light, and then cooled to -20 °C. A DCM solution (2 mL) containing 4chloroiodobenzene (55 mg, 0.23 mmol, 5.0 equiv) and (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless 4-chloroliodobenzene and (Me-DalPhos)AuCl solution was added in one portion to the solution of AgBF₄, and the reaction mixture was sonicated for 2 min, during which time the solution became yellow concomitant with the precipitation of pale yellow precipitate. The resulting suspension was filtered through a pad of Celite. Slow evaporation of solvent from the yellow filtrate over the course of 48 h at 25 °C resulted in saturation of the solution and the formation of yellow crystals. The supernatant was removed and the crystals were washed with C_6H_6 (2 x 3 mL), followed by *n*-pentane (2 × 3 mL), and then dried under reduced pressure to afford [**2i**][BF₄] as a yellow crystalline solid in 61% yield (26 mg, 0.031 mmol).

¹H NMR (400 MHz, CD₃CN): δ 8.03 (m, 1H, H_{Ar}), 7.95 (m, 2H, H_{Ar}), 7.73–7.68 (m, 1H, H_{Ar}), 7.58 (d, 2H, *J* = 8.7 Hz, H_{Ar}), 7.37 (d, 2H, *J* = 8.7 Hz, H_{Ar}), 3.48 (s, 6H, N(CH₃)₂), 2.29 (s, 6H, H_{Ad}), 2.10 (s, 6H, H_{Ad}), 2.03 (s, 6H, H_{Ad}), 1.75 (s, 12H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 77.4 ppm.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), AgSbF₆ (16 mg, 0.046 mmol, 1.0 equiv) and 1-bromo-4-iodobenzene (65 mg, 0.23 mmol, 5.0 equiv) were used. The [**2j**][SbF₆] salt was isolated as a yellow crystalline solid in 82% yield (39 mg, 0.038 mmol). A single crystal of suitable quality for an X-ray diffraction study was obtained using this workup (See section V for crystallographic details). Elem. Anal. (Calc'd) for $C_{34}H_{44}AuBrClF_6NPSb$: C, 38.56 (39.03); H, 4.03 (4.24); N, 1.29 (1.34). The low value observed for carbon is likely due to crystallization of **2j** as a mixture of [(Me-DalPhos)Au(*p*-Br-C₆H₄)Cl]⁺ and [(Me-DalPhos)Au(*p*-Br-C₆H₄)I]⁺ species as confirmed by X-ray structural analysis of a single-crystal obtained from the described procedure. The X-ray structural analysis indicates 77% Cl and 23% I occupancy.

¹**H NMR (400 MHz, CD₃CN):** δ 8.02 (m, 1H, H_{Ar}), 7.99–7.88 (m, 2H, H_{Ar}), 7.72–7.62 (m, 1H, H_{Ar}), 7.49 (m, 4H, H_{Ar}), 3.46 (s, 6H, N(CH₃)₂), 2.27 (m, 6H, H_{Ad}), 2.04 (m, 12H, H_{Ad}), 1.72 (m, 12H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 77.6 ppm.

ESI-MS(+): 808.18 (calc'd 808.17) *m/z* (C₃₄H₄₄ClBrNPAu).

Figure S40. ³¹P{¹H} NMR spectrum of [**2j**][SbF₆] in CD₃CN at 298 K. The signal at 59.2 ppm corresponds to the starting (Me-DalPhos)AuCl compound.

Figure S41. ESI-MS(+) of 2j.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), $AgSbF_6$ (16 mg, 0.046 mmol, 1.0 equiv) and 1,4-diiodobenzene (76 mg, 0.23 mmol, 5.0 equiv) were used. The [**2k**][SbF₆] salt was isolated as a yellow crystalline solid in 73% yield (37 mg, 0.034 mmol).

¹**H NMR (400 MHz, CD₃CN):** δ 8.03 (dd, J = 8.4, 4.0 Hz, 1H, H_{Ar}), 7.99–7.90 (m, 2H, H_{Ar}), 7.72–7.67 (m, 1H, H_{Ar}), 7.66 (d, J = 8.4 Hz, 2H, H_{Ar}), 7.38 (d, J = 8.5 Hz, 2H, H_{Ar}), 3.47 (s, 6H, N(*CH*₃)₂), 2.36–2.22 (m, 6H, H_{Ad}), 2.04 (d, J = 16.7 Hz, 13H, H_{Ad}), 1.73 (d, J = 10.4 Hz, 11H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 77.6 ppm.

ESI-MS(+): 856.08 (calc'd 856.16) *m/z* (C₃₄H₄₄ClINPAu).

Figure S44. ESI-MS(+) of 2k.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), AgSbF₆ (16 mg, 0.046 mmol, 1.0 equiv) and 4-fluoroiodobenzene (16 μ L, 0.14 mmol, 3.0 equiv) were used. The [**2**I][SbF₆] salt was isolated as a yellow crystalline solid in 74% yield (34 mg, 0.034 mmol). The spectroscopic features of the isolated material matched those reported in the literature for this salt.⁵

³¹P{¹H} NMR (162 MHz, CH₂Cl₂): δ 76.2 ppm.

ESI-MS(+): 748.25 (calc'd 748.20) *m/z* (C₃₄H₄₄ClN₂PFAu).

In the fume hood, $AgSbF_6$ (9 mg, 0.03 mmol, 1 equiv) was dissolved in DCM (2 mL) under protection from light, and the colorless solution was cooled to -20 °C. A DCM solution (2 mL) containing 2-iodopyridine (20 µL, 0.17 mmol, 6.0 equiv) and (Me-DalPhos)AuCl (18 mg, 0.028 mmol, 1.0 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the pale yellow 2-iodopyridine and (Me-DalPhos)AuCl solution was added in one portion to the solution of $AgSbF_6$. The solution was allowed to stand at 25 °C for 24 h, during which time pale yellow solids precipitated out of solution. The reaction mixture was filtered through a pad of Celite, and the resulting pale-yellow filtrate was dried under reduced pressure. The paleyellow residue was washed with C₆H₆ (2 x 3 mL), followed by *n*-pentane (2 x 3 mL), and then dried under reduced pressure to afford [**2m**][SbF₆] as a pale yellow powder in 77% yield (22 mg, 0.023 mmol).

¹**H** NMR (400 MHz, CD₃CN): δ 8.50–8.46 (m, 1H, H_{Ar}), 8.02 (m, 1H, H_{Ar}), 8.00–7.88 (m, 3H, H_{Ar}), 7.74–7.55 (m, 3H, H_{Ar}), 7.22 (m, 1H, H_{Ar}), 3.42 (s, 6H, N(CH₃)₂), 2.36 (m, 6H, H_{Ad}), 2.00 (m, 12H, H_{Ad}), 1.84–1.64 (m, 12H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 70.4 ppm.

ESI-MS(+): 731.25 (calc'd 731.26) *m/z* (C₃₃H₄₄ClN₂PAu).

S74

S75

Figure S49. ESI-MS(+) of 2m.

Following the general procedure, (Me-DalPhos)AuCl (4.23 mg, 0.006 mmol, 1.0 equiv), $AgSbF_6$ (2.22 mg, 0.006 mmol, 1.0 equiv) and Trametinib (19.9 mg, 0.032 mmol, 5.0 equiv) were used. Dichloromethane was removed under reduced pressure after filtration through a pad of Celite to afford a yellow solid. This material was used without further purification.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 79.7 ppm.

ESI-MS(+): 1141.41 (calc'd 1141.40) *m/z* (C₅₄H₆₃ClFN₆O₄PAu).

Figure S50. ${}^{31}P{}^{1}H$ NMR spectrum of [2n][SbF₆] in CD₃CN at 298 K.

Figure S51. ESI-MS(+) of **2n**.

In the fume hood, $AgSbF_6$ (11 mg, 0.031 mmol, 1.0 equiv) was dissolved in DCM (2 mL) under protection from light, and the colorless solution was cooled to -20 °C. A DCM solution (2 mL) containing **SI-3** (52 mg, 0.078 mmol, 2.5 equiv) and (Me-DalPhos)AuCl (20 mg, 0.031 mmol, 1.0 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless **SI-3** and (Me-DalPhos)AuCl solution was added in one portion to the solution of AgSbF₆. The colorless solution was allowed to stand at 25 °C for 15 min, during which time pale yellow solids precipitated out of solution and a color change to pale yellow was observed. The reaction mixture was filtered through a pad of Celite, and the resulting pale-yellow filtrate was dried under reduced pressure. This material was used without further purification.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 74.3 ppm.

ESI-MS(+): 1262.42 (calc'd 1262.60) *m/z* (C₅₈H₉₃ClNO₁₃PAu+Na)⁺.

Figure S53. ESI-MS(+) of **20**.

Following the general procedure, (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 1.0 equiv), $AgSbF_6$ (16 mg, 0.046 mmol, 1.0 equiv) and 5-iodoindole (56 mg, 0.23 mmol, 5.0 equiv) were used. The [**2p**][SbF₆] salt was isolated as a red crystalline solid in 76% yield (35 mg, 0.035 mmol).

¹**H** NMR (400 MHz, CD₃CN): δ 9.61 (s, 1H, -N*H*), 8.07 (m, 1H, H_{Ar}), 8.03–7.92 (m, 2H, H_{Ar}), 7.69 (m, 1H, H_{Ar}), 7.48 (d, 1H, *J* = 7.6 Hz, H_{Ar}), 7.39 (d, 1H, *J* = 7.7 Hz, H_{Ar}), 7.02 (t, 1H, *J* = 7.7 Hz, -CHCHNH-), 6.52 (dd, 1H, *J* = 3.2 Hz, 2.0 Hz, -CHCHNH-), 3.58 (s, 3H, N(CH₃)₂), 3.52 (s, 3H, N(CH₃)₂), 2.36 (s, 4H, H_{Ad}), 2.24 (s, 4H, H_{Ad}), 2.00 (s, 3H, H_{Ad}), 1.84 (s, 4H, H_{Ad}), 1.70 (s, 10H, H_{Ad}), 1.54 (s, 5H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 80.7 ppm.

ESI-MS(+): 769.20 (calc'd 769.28) *m/z* (C₃₆H₄₆ClN₂PAu).

Figure S54. ¹H NMR spectrum of [**2p**][SbF₆] in CD₃CN at 298 K.

Figure S56. ESI-MS(+) of 2p.

In the fume hood, $AgSbF_6$ (3 mg, 0.009 mmol, 1 equiv) was dissolved in DCM (2 mL) under protection from light, and the colorless solution was cooled to -20 °C. A DCM suspension (2 mL) containing **SI-1** (6 mg, 0.01 mmol, 1 equiv) and (Me-DalPhos)AuCl (6 mg, 0.009 mmol, 1 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless **SI-1** and (Me-DalPhos)AuCl suspension was added in one portion to the solution of AgSbF₆. The colorless suspension was sonicated for 1 min, and then the reaction mixture was filtered through a pad of Celite. The resulting pale-yellow filtrate was dried under reduced pressure. This material was used without further purification.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 74.7 ppm.

ESI-MS(+): 971.27 (calc'd 971.35) *m/z* (C₄₄H₆₀ClN₄O₂PSAu).

Figure S57. ³¹P{¹H} NMR spectrum of [**2q**][SbF₆] in CD₃CN at 298 K. The signal at 57.4 ppm corresponds to the starting (Me-DalPhos)AuCl compound.

Figure S58. ESI-MS(+) of **2q**.

Following the general procedure, (Me-DalPhos)AuCl (16 mg, 0.024 mmol, 1.0 equiv), $AgSbF_6$ (8 mg, 0.02 mmol, 1 equiv) and 3-iodobenzanthrone (13 mg, 0.36 mmol, 1.5 equiv) were used. The [**2g**][SbF₆] salt was isolated as an orange crystalline solid in 31% yield (8 mg, 0.007). A single crystal of suitable quality for an X-ray diffraction study was obtained using this procedure (See section V for crystallographic details).

¹**H** NMR (400 MHz, CD₃CN): δ 8.79 (d, 1H, J = 7.2, H_{Ar}), 8.62 (t, 2H, J = 7.6 Hz, H_{Ar}), 8.55 (d, 1H, J = 8.0 Hz, H_{Ar}), 8.45 (dd, 1H, J = 7.9 Hz, 1.4 Hz, H_{Ar}), 8.22 (d, 1H, J = 8.2 Hz, H_{Ar}), 8.14 (m, 1H, H_{Ar}), 8.08 (m, 2H, H_{Ar}), 7.95 – 7.85 (m, 1H, H_{Ar}), 7.70 (t, 2H, J = 7.5 Hz, H_{Ar}), 3.67 (s, 3H, N(CH₃)₂), 3.64 (s, 3H, N(CH₃)₂), 2.49 (s, 4H, H_{Ad}), 2.34 (s, 4H, H_{Ad}), 2.20 (s, 3H, H_{Ad}), 1.86 (s, 4H, H_{Ad}), 1.77 (s, 4H, H_{Ad}), 1.70 (4H, s, H_{Ad}), 1.45 (s, 7H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 89.9 ppm.

ESI-MS(+): 892.31 (calc'd 892.33) m/z.

Note this sample was run in the presence of formic acid, and as a result, the $[(Me-DalPhos)Au(benzanthrone)OCHO]^+$ ion is observed ($C_{46}H_{50}NPO_3Au$).

S91

In the fume hood, AgSbF₆ (16 mg, 0.046 mmol, 2.2 equiv) was dissolved in DCM (2 mL) under protection from light, and the colorless solution was cooled to -20 °C. A DCM solution (2 mL) containing 1,4-diiodobenzene (7 mg, 0.02 mmol, 1 equiv) and (Me-DalPhos)AuCl (30 mg, 0.046 mmol, 2.2 equiv) reagents was prepared and also cooled to -20 °C. While both solutions were cold, the colorless 1,4-diiodobenzene and (Me-DalPhos)AuCl solution was added in one portion to the solution of AgSbF₆, resulting in an immediate color change to bright yellow concomitant with precipitation of pale yellow solids. The reaction mixture was filtered through a pad of Celite, and the resulting yellow filtrate was allowed to stand undisturbed at 25 °C for 48 h, during which time the [**2s**][SbF₆]₂ product crystallized from solution. The pale-yellow supernatant was decanted, and the yellow crystals were washed with C₆H₆ (3 × 2 mL). The crystals were then washed with *n*-pentane (3 mL) and dried under reduced pressure to afford [**2s**][SbF₆]₂ as a yellow crystalline solid in 67% yield (24 mg, 0.013 mmol). A crystal of suitable quality for an X-ray diffraction study was obtained using this procedure. The X-ray crystallographic analysis indicated **2s** crystallized with 100% Cl occupancy (see section V).

¹**H NMR (400 MHz, CD₃CN):** δ 8.08–8.04 (m, 2H, H_{Ar}), 8.02–7.91 (m, 4H, H_{Ar}), 7.70 (m, 2H, H_{Ar}), 7.53 (s, 4H, H_{Ar}), 3.50 (s, 12H, N(CH₃)₂), 2.28 (d, J = 8.8 Hz, 12H, H_{Ad}), 2.09 (s, 12H, H_{Ad}), 2.04–1.99 (m, 11H, H_{Ad}), 1.74 (m, 25H, H_{Ad}) ppm.

³¹P{¹H} NMR (162 MHz, CD₃CN): δ 78.6 ppm.

ESI-MS: 691.17 (calc'd 691.24) *m/z* for C₆₂H₈₄Cl₂N₂P₂Au₂.

S95

Figure S64. ESI-MS(+)of 2s.

Stability studies of complexes [2a][SbF₆] and [2c][SbF₆].

Figure S65. ¹H NMR spectrum of a newly prepared sample of [2a][SbF₆] (top) and spectrum of the same sample after storage as a solid for two months at 25 °C (bottom). Spectra collected in CD₃CN, 298 K.

Figure S66. ³¹P{¹H} NMR spectrum of a newly prepared sample of [**2a**][SbF₆] (top) and spectrum of the same sample after storage as a solid for two months at 25 °C (bottom). Spectra collected in CD₃CN, 298 K.

Figure S67. ¹H NMR spectrum of a newly prepared sample of [2c][SbF₆] (top) and spectrum of the same sample after storage as a solid for two months at 25 °C (bottom). Spectra collected in CD₃CN at 298 K.

Figure S68. ³¹P{¹H} NMR spectrum of a newly prepared sample of [2c][SbF₆] (top) and spectrum of the same sample after storage as a solid for two months at 25 °C (bottom). Spectra collected in CD₃CN at 298 K.

III. Peptide Synthesis and Protein Expression

The following general protocol was followed for all solid phase peptide syntheses:

Preparation of Resin:

Rink amide resin (1 g, 0.44 mmol/g) was weighed out and added to a 25 mL peptide synthesis vessel. Dimethylformamide (DMF; 10 mL) was added and the resin was shaken for a minimum of 1 h to swell. The resin was subsequently washed with DMF (3×10 mL), dichloromethane (3×10 mL), and DMF (3×10 mL).

First Deprotection:

A 20% solution of 4-methylpiperdine in DMF (10-15 mL/g of resin) was added and the vessel was shaken for 20 min. After shaking, the resin was washed once with DMF (10 mL). The 20% solution of 4-methylpiperdine in DMF (10-15 mL/g of resin) was added and the vessel was shaken for an additional 5 minutes. The resin was then washed three times with DMF (10 mL, 1 min washes) to ensure complete removal of 4-methylpiperdine.

Coupling of Amino Acids:

Amino acid (3 equiv to resin) and HBTU (2.9 equiv to resin) were weighed out and dissolved in DMF (10 mL). Once dissolved, DIPEA (6 equiv to resin) was added and the mixture stirred for 1 min. This mixture was then added to the resin and the resin was subjected to shaking for 45 min. After shaking, the resin was washed with DMF (3×10 mL, 1 min intervals) to ensure the complete removal of residual amino acid.

Coupling of Cysteine:

Coupling of Cysteine was performed using a procedure from: Han, Y. Albericio, F.; Barany, G. J. Org. Chem., **1997**, *62*, 4307-4312.

Cysteine (3 equiv to resin), HATU (4 equiv to resin), and HOAt (0.6 M in DMF, 4 equiv to resin) were combined in DMF (6 mL) and CH_2Cl_2 (6 mL). Once dissolved, 2,4,6-trimethylpyridine (4 equiv to resin) was added and the mixture stirred quickly (1-2 seconds) and added to the resin. The mixture was shaken for 1 h. After shaking, the resin was washed with DMF (5 × 10 mL, 1 min intervals) to ensure the removal of residual amino acid. After the coupling of cysteine, the normal protocol was followed.

Deprotection of Amino Acids After Coupling:

A 20% solution of 4-methylpiperdine in DMF (10-15 mL/g of resin) was added and the vessel was shaken for 10 min. After shaking, the resin was washed once with DMF (10 mL). The 20% solution of 4-methylpiperdine in DMF (10-15 mL/g of resin) was added and the vessel was shaken for an additional 5 min. The resin was then washed three times with DMF (10 mL, 1 minute washes) to ensure the compete removal of 4-methylpiperdine.

Cleavage from Resin:

After the final deprotection, the resin was washed with DCM (3×10 mL). The dried resin was transferred to a 20 mL scintillation vial equipped with a magnetic stir bar and a septum. Argon gas was flowed over the resin for 5 minutes. A cleavage cocktail consisting of a 95:2.5:2.5 mixture of TFA:H₂O:TIPS (TIPS = triisopropylsilane) was prepared and added to the resin. The slurry was stirred for 3-4 hours under argon. Cleavage time depends on the amino acid composition of the peptide. Aliquots of the slurry were analyzed via LC-MS after filtration through a small pipette filter and dilution with water to determine full removal of peptide protecting groups. After 3-4 h, the cleavage cocktail was filtered and the filtrate was concentrated under a stream of argon until 1 mL remained. To this solution was added cold (-20 °C) diethyl ether, resulting in the precipitation of the crude peptide. The suspension was centrifuged, the supernatant was decanted. This washing process was repeated twice more, and then the resulting solids were dried under reduced pressure.

*It is important to use fresh TIPS solutions. TIPS stored longer than two months is less effective.

All peptides were stored in sealed containers under argon at -20 °C.

The isolated crude peptides were purified by reversed-phase HPLC (retention time 5.5-6.6 min using procedure described in SI section I). The obtained pure fractions were combined, and lyophilized.

Protein Expression

DARPin-Cys protein expression and purification was performed following literature procedures.⁴

DARPin-Cys Sequence (Calculated Mass: 13747.3 Da):

GGCGGSDLGKKLLEAARAGQDDEVRILMANGADVNAYDDNGVTPLHLAAFLGHLEI VEVLLKYGADVNAADSWGTTPLHLAATWGHLEIVEVLLKHGADVNAQDKFGKTAF DISIDNGNEDLAEILQKLN

FGF2 was expressed and purified from plasmid pET29c (+)hFGF-2, provided by Professor Thomas Scheper from the Helmholtz Centre for Infection Research (Braunschweig, Germany) according to Chen *et al.*⁶

FGF2 Sequence (Calculated Mass: 17122.6 Da):

AAGSITTLPALPEDGGSGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVREKSDPHIK LQLQAEERGVVSIKGVCANRYLAMKEDGRLLASKCVTDECFFFERLESNNYNTYRSRK YTSWYVALKRTGQYKLGSKTGPGQKAILFLPMSAKS

Peptide Traces and Masses:

Figure S70. LC-MS trace for native GSH (BioXtra grade purchased from Sigma Aldrich). 308.0965 (calc'd 308.0911) m/z for C₁₀H₁₇N₃O₆S.

Figure S71. LC-MS traces for native peptides used in this study. (*) denotes Tris buffer (122 m/z). Top panel: 460.2605 (calc'd 460.2627) m/z for C₁₇H₃₃N₉O₆. Middle panel: 860.4908 (calc'd 860.4883) m/z for C₃₄H₆₅N₁₅O₉S. Bottom panel: 476.2416 (calc'd 476.2398) m/z for C₁₇H₃₃N₉O₅S.

Figure S72. LC-MS trace for native dicysteine peptide. 596.1845 (calc'd 596.1803) m/z for C₂₀H₃₃N₇O₁₀S₂.

IV. Procedures and Characterization for Cysteine Arylation

Procedure and Characterization Data for Peptide Arylation Studies Using Complex [1][NTf₂].

After the oxidative addition reaction of 4-iodotoluene with (DPCb)AuNTf₂ proceeded to quantitative conversion (>99%) as determined by ³¹P NMR analysis, the reaction mixture was filtered through Celite and dichloromethane was removed from the filtrate under reduced pressure to produce a yellow solid. A 15 mM stock solution was prepared by dissolution of the obtained yellow solids in MeCN.

Figure S73. LC-MS traces for arylation of GSH using 1 at different reagent loadings. (*) denotes buffer. 398.1450 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S.
Procedure and Characterization Data for Water Equivalents Screen of Peptide Arylation Using [1][NTf₂].

After the oxidative addition reaction of 4-iodotoluene with (DPCb)AuNTf₂ proceeded to quantitative conversion (>99%), the solvent was removed under reduced pressure to produce a yellow solid. The yellow solid was dissolved in acetonitrile to prepare a 30 mM stock solution. Stock solutions of 15 mM and 10 mM were prepared from the initial 30 mM stock solution of the gold reagent in acetonitrile. A 2 mM solution of glutathione was prepared in 200 mM pH 8.0 Tris buffer. Reaction solutions were prepared in the following manner:

H ₂ O:MeCN	Gold Complex Stock Solution	Peptide Stock Solution	Water Added
90:10	10 µL of 30 mM	50 μL	40 µL
80:20	20 µL of 15 mM	50 μL	30 µL
70:30	30 µL of 10 mM	50 μL	20 µL

To a 2 mL Eppendorf tube was added 50 μ L of the peptide stock solution and the appropriate amount of water (MilliQ). To this solution was added the appropriate amount of gold reagent stock solution, and the Eppendorf tube was vortexed (<5 seconds). After 1 min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed via LCMS.

Figure S74. LC-MS traces for arylation of GSH using [1][NTf₂] in different water concentrations. 398.1433 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S.

Procedure and Characterization Data for Reagent Equivalents Screen of Peptide Arylation Using [2a][SbF₆].

Acetonitrile solutions of [2a][SbF₆] were prepared in 6, 4, and 2 mM concentrations. A 2 mM solution of glutathione was prepared in 200 mM pH 8.0 Tris buffer. In a 2 mL Eppendorf tube was added 20 μ L of the peptide solution and 20 μ L of the reagent solution, and the sample was then vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed from the reaction mixture and diluted in 100 μ L of a solution of 1:1 H₂O:MeCN with 0.1% TFA. An aliquot from this solution was analyzed via LCMS.

Reagent:Peptide	Gold Complex Stock	Peptide Stock
3:1	20 µL of 6 mM	20 µL
2:1	20 µL of 4 mM	20 µL
1:1	20 µL of 2 mM	20 µL

Figure S75. LC-MS traces for arylation of GSH using [**2a**][SbF₆] at different reagent loadings. 398.1417 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S.

Procedure and Characterization Data for Water Equivalents Screen of Peptide Arylation Using [2a][SbF₆]

Acetonitrile solutions of [2a][SbF₆] at 30, 15, and 10 mM concentrations were prepared. A 2 mM solution of glutathione was prepared in 200 mM pH 8.0 Tris buffer. Reaction solutions were prepared in the following manner:

H ₂ O:MeCN	Gold Complex Stock	Peptide Stock	Water Added
90:10	10 µL of 30 mM	50 μL	40 µL
80:20	20 µL of 15 mM	50 μL	30 µL
70:30	30 µL of 10 mM	50 μL	20 µL

To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution and appropriate amount of water (MilliQ). To this solution was added the appropriate amount of gold reagent stock solution, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S76. LC-MS traces for arylation of GSH using [2a][SbF₆] in different water concentrations. 398.1417 (calc'd 398.1380) *m/z* for C₁₇H₂₃N₃O₆S.

Procedure and Characterization Data for Buffer and pH Screen of Peptide Arylation Using [2a][SbF₆]

A 15 mM solution of [2a][SbF₆] in MeCN was prepared, and a 2 mM solution of glutathione was prepared in 1 M buffer.

Figure S77. LC-MS traces for arylation of GSH using [**2a**][SbF₆] in different pH ranges. (*) denotes buffer. 398.1417 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S

Figure S78. LC-MS traces for anylation of GSH using [2a][SbF₆] in the presence of 4 M guanidine HCl (top) and TCEP HCl. 398.1399 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S.

Cysteine Arylation in Unconventional Solvents

To a 2 mL Eppendorf tube was added 10 μ L of peptide stock (20 mM) solution in 200 mM Tris pH 8.0 and 70 μ L of solvent. To this solution was added 20 μ L of the gold reagent stock solution (15 mM) in acetonitrile, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S79. Arylation in unconventional solvents using [**2a**][SbF₆] and [**2b**][SbF₆]. ETolyl modified GSH: 398.1413 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S. *p*-CF₃ modified GSH: 452.1142 (calc'd 452.1098) m/z for C₁₇H₂₀F₃N₃O₆S.

Substrate Scope for Glutathione

To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution in 1 M Tris pH 8.0 and 30 μ L of water (MilliQ). To this solution was added 20 μ L of a 15 mM gold reagent stock solution, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S80. LC-MS traces for arylation of GSH using [**2b**][SbF₆], [**2g**][SbF₆], and [**2d**][SbF₆] with optimized conditions. Top panel: 412.1587 (calc'd 412.1537) m/z for C₁₈H₂₅N₃O₆S. Middle panel: 468.1099 (calc'd 468.1047) m/z for C₁₇H₂₀F₃N₃O₇S. Bottom panel: 452.1152 (calc'd 452.1098) m/z for C₁₇H₂₀F₃N₃O₆S.

Figure S81. LC-MS traces for arylation of GSH using [2f][SbF₆], [2h][SbF₆], and [2c][SbF₆] with optimized conditions. (*) denotes Tris buffer (122 m/z). Top panel: 400.1200 (calc'd 400.1173) m/z for C₁₆H₂₁N₃O₇S. Middle panel: 429.1124 (calc'd 429.1075) m/z for C₁₆H₂₀N₄O₈S. Bottom panel: 434.1428 (calc'd 434.1380) m/z for C₂₀H₂₃N₃O₆S.

Figure S82. LC-MS traces for arylation of GSH using [2e][SbF₆], [2k][SbF₆], and [2l][SbF₆] with optimized conditions. Top panel: 428.1533 (calc'd 428.1486) m/z for C₁₈H₂₅N₃O₇S. Middle panel: 510.0217 (calc'd 510.0190) m/z for C₁₆H₂₀N₃O₆IS. Bottom panel: 402.1166 (calc'd 402.1130) m/z for C₁₆H₂₀N₃O₆FS.

Figure S83. LC-MS traces for arylation of GSH using [**2p**][SbF₆] and [**2m**][SbF₆] with optimized conditions. Top panel: 423.1362 (calc'd 423.1333) m/z for C₁₈H₂₂N₄O₆S. Bottom panel: 385.1205 (calc'd 385.1176) m/z for C₁₅H₂₀N₄O₆S.

Figure S84. LC-MS traces for arylation of GSH using [**2j**][SbF₆] and [**2i**][SbF₆] with optimized conditions. Top panel: 462.0359 (calc'd 462.0329) m/z for C₁₆H₂₀N₃O₆BrS. Bottom panel: 418.0869 (calc'd 418.0834) m/z for C₁₆H₂₀N₃O₆ClS.

Figure S85. LC-MS traces for arylation of GSH using [2q][SbF₆] and [2r][SbF₆] with optimized conditions. Top panel: 625.2135 (calc'd 652.2109) m/z for C₂₆H₃₆N₆O₈S₂. Bottom panel: 536.1512 (calc'd 536.1486) m/z for C₂₇H₂₅N₃O₇S.

Figure S86. Modification of glutathione using [**2i**][BF₄] with optimized conditions. 418.0866 (calc'd 418.0834) m/z for C₁₆H₂₀N₃O₆ClS.

Au(III) and Pd(II) Competition Experiments with GSH

To 50 μ L of a 2 mM GSH solution in 100 mM Tris buffer (pH 8.0) was added 20 μ L of water followed by 45 μ L of a mixture of [**2b**][SbF₆] (15 μ L of a 10 mM MeCN solution) and (RuPhos)Pd(tolyl)I (30 μ L of a 20 mM MeCN solution) in MeCN. The reaction mixture was vortexed for ca. 10 sec, and then allowed to stand at room temperature for 5 min. A 20 μ L aliquot from the mixture was then diluted with a solution of thiopropionic acid (10 μ L of a 0.3 M solution in H₂O) in a 1:1 H₂O:MeCN mixture with 0.1% TFA. An aliquot from this solution was analyzed by LCMS.

Figure S87. Representative LCMS trace for Au(III) and Pd(II) competition experiments. Ethylbenzene modified GSH: 412.1577 (calc'd 412.1537) m/z for C₁₈H₂₅N₃O₆S. Tolyl modified GSH: 398.1401 (calc'd 398.1380) m/z for C₁₇H₂₃N₃O₆S.

Figure S88. Modification of GSH using (RuPhos)Pd(tolyl)I in conditions replicating those used in Scheme 2 of the main text (100 mM Tris pH 8.0, 6:4 [H₂O]:[MeCN]).

Preparation of S-(p-Cl-C₆H₄) GSH conjugate

To a solution of GSH (16 mg, 0.052 mmol, 1.0 equiv) in H₂O (8 mL, 0.2 M Tris, pH 8) was added a suspension of [**2i**][SbF₆] (116 mg, 0.116 mmol, 2.23 equiv) in MeCN (2 mL). The resulting suspension was sonicated for 30 sec, and then allowed to stand at 25 °C for an additional 4.5 min. The reaction mixture was then diluted with a 50/50 mixture of MeCN/H₂O containing 0.1%TFA, and the resulting suspension was centrifuged for 2 min, at which point the supernatant was decanted and passed through a 0.45 µm filter. The filtrate was lyophilized and the obtained solid was dissolved in H₂O containing 0.1% TFA and purified by semi-preparative reversed-phase HPLC.

Solvent compositions for reversed-phase HPLC purification were: H₂O with 0.1% TFA (solvent A), MeCN with 0.1% TFA (solvent B). 0-5 min, 100% A; 5-60 min, linear gradient 100-60% A; 65-75 min, linear gradient 40-100% B. Flow rate: 3 mL/min. HPLC fractions containing the pure product were further confirmed by LC-MS, combined, and lyophilized.

ICP-AES was used to measure the remaining gold content in the purified *S*-(*p*-Cl-C₆H₄) GSH conjugate. Of the isolated material, 3.85 mg was dissolved in 10 mL of a 2% HCl (aq) solution (385 ppm concentration), and the material was filtered through a 0.45 μ m filter. The resulting solution was analyzed by ICP-AES, and the concentration of gold in this sample was determined to be 55 ppb. This analysis indicates >99.9% efficiency for the removal of gold-containing

species by the described purification procedure.

Substrate Scope for Larger Peptide Sequences

To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution in 200 mM Tris pH 8.0 and 30 μ L of water (MilliQ). To this solution was added 20 μ L of a 15 mM gold reagent stock solution, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S89. LC-MS traces for arylation of unprotected peptide using [2m][SbF₆], [2f][SbF₆], and [2d][SbF₆] with optimized conditions. Top panel: 553.2710 (calc'd 553.2664) *m/z* for C₂₂H₃₆N₁₀O₅S. Middle panel: 568.2700 (calc'd 568.2660) *m/z* for C₂₃H₃₇N₉O₆S. Bottom panel: 620.2639 (calc'd 620.2585) *m/z* for C₂₄H₃₆F₃N₉O₅S.

Figure S90. LC-MS traces for arylation of unprotected peptide using [**2i**][SbF₆] and [**2j**][SbF₆] with optimized conditions. (*) denotes Tris buffer (122 m/z). Top panel: 586.2371 (calc'd 586.2321) m/z for C₂₃H₃₆ClN₉O₅S. Bottom panel: 630.1864 (calc'd 630.1816) m/z for C₂₃H₃₆BrN₉O₅S.

To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution in 1 M Tris pH 8.0. To this solution was added 50 μ L of a 6 mM gold reagent stock solution, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S91. LC-MS trace of control reaction using serine substituted peptide. 460.2596 (calc'd 460.2627) m/z for C₁₇H₃₃N₉O₆.

To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution in 200 mM Tris pH 8.0 and 30 μ L of water (MilliQ). To this solution was added 20 μ L of a 15 mM gold reagent stock solution in acetonitrile, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S92. LC-MS traces for arylation of unprotected peptide using [**2i**][SbF₆], [**2j**][SbF₆], and [**2p**][SbF₆] with optimized conditions. Top panel: 970.4885 (calc'd 970.4806) m/z for C₄₀H₆₈ClN₁₅O₉S. Middle panel: 1014.4373 (calc'd 1014.4301) m/z for C₄₀H₆₈BrN₁₅O₉S. Bottom panel: 975.5369 (calc'd 975.5305) m/z for C₄₂H₇₀N₁₆O₉S.

Cysteine arylation using compound **20**: To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution in 200 mM Tris pH 8.0. To this solution was added 50 μ L of a 6 mM gold reagent stock solution in water (MilliQ), and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS. Cysteine arylation using compound **2q** To a 2 mL Eppendorf tube was added 50 μ L of peptide stock solution in 200 mM Tris pH 8.0 and 20 μ L of water (MilliQ). To this solution was added 30 μ L of a 10 mM gold reagent stock solution in acetonitrile, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was added 50 μ L of a 10 mM gold reagent stock solution in acetonitrile, and the Eppendorf tube was vortexed (<5 seconds). At one min, a 20 μ L aliquot was removed and diluted in a 100 μ L solution of 1:1 H₂O:MeCN with 0.1% mol TFA. An aliquot from this solution was analyzed *via* LCMS.

Figure S93. LC-MS traces for arylation of unprotected peptide using [**20**][SbF₆] and [**2q**][SbF₆] with optimized conditions. (*) denotes Tris buffer (122 m/z). Top panel: 1480.8350 (calc'd 1480.8291) m/z for C₆₄H₁₁₇N₁₅O₂₂S. Bottom panel: 1177.6129 (calc'd 1177.6081) m/z for C₅₀H₈₄N₁₈O₁₁S₂.

Figure S94. LC-MS trace of unprotected peptide modified with [2n][SbF₆] (top) as well as a control in which no peptide was added (bottom). (*) indicate Tris buffer (122 *m/z*). 1347.6594 (calc'd 1347.6539) *m/z* for C₆₀H₈₇FN₂₀O₁₃S.

Peptide Stapling Procedure

To a solution of the peptide (H₂N-CDAACD-CONH₂) in H₂O (2.8 mM, 5 mL, 0.2 M Tris, pH 8) was added a solution of [**2s**][SbF₆]₂ in MeCN (5.6 mM, 5 mL). The suspension was sonicated for 1 min, and then allowed to stand at 25 °C for a total of 30 min, at which point the reaction mixture was diluted with a 50/50 mixture of MeCN/H₂O containing 0.1%TFA, and the resulting suspension was centrifuged for 2 min. The supernatant was decanted and passed through a 0.45 μ m filter. The filtrate was lyophilized and the obtained solid was dissolved in H₂O containing 0.1% TFA and purified by semi-preparative reversed-phase HPLC.

Solvent compositions for reversed-phase HPLC purification were: H_2O with 0.1% TFA (solvent A), MeCN with 0.1% TFA (solvent B). 0-5 min, 100% A; 5-60 min, linear gradient 100-60% A; 65-75 min, linear gradient 40-100% B. Flow rate: 3 mL/min. HPLC fractions containing the pure product were further confirmed by LC-MS, combined, and lyophilized.

Double Arylation of Dicysteine Peptide

To an Eppendorf tube containing 20 μ L H₂O was added 50 μ L (1.0 equiv) of a 2 mM solution of the peptide (H₂N-CDAACD-CONH₂) in H₂O (0.2 M Tris, pH 8). To this tube was added 40 μ L (6.0 equiv) of a 15 mM solution of [**2m**][SbF₆] in MeCN. The reaction mixture was vortexed for 5 sec, and then allowed to stand for 5 min. A 20 μ L aliquot of this solution was diluted with 100 μ L of a 50/50 mixture of MeCN/H₂O containing 0.1%TFA, and the resulting solution was analyzed by LC-MS.

Figure S95. LC-MS trace of di-arylated peptide. 750.2395 (calc'd 750.2334) m/z for $C_{30}H_{39}N_9O_{10}S_2$.

Trypsin Digest and MS/MS experiments:

Trypsin digest experiment was performed by combining 50 μ L of a 2 mM solution of peptide, 30 μ L of water, and 20 μ L of a 15 mM solution of [**2a**][SbF₆] or [**2i**][SbF₆], vortexing for <5 seconds and sitting at room temperature for 1 minute. After 1 minute, 20 μ L of a 1 mg/mL solution of trypsin in water was added, vortexed for <5 seconds, and heated to 37 °C for 10 minutes. A 20 μ L aliquot was taken from the mixture and added to 100 μ L of a 50:50 (H₂O:MeCN 0.1% TFA) solution and analyzed via LC-MS.

Figure S96. LC-MS traces of trypsin digest experiment of modified peptide (top) and native peptide (bottom).

Figure S97. LC-MS trace of trypsin digested peptide modified with [2i][SbF₆].

Figure S98. MS/MS analysis of dicysteine peptide, H₂N-CDAACD-CONH₂.

Figure S99. MS/MS analysis of stapled peptide.

Name	Ion Type	Ion Number	Theoretical Mass	Observed Mass
B4	В	4	314.1830	314.1292
B5	В	5	417.1922	417.1956
B7	В	7	644.3304	644.3294
Y2	Y	2	217.1666	217.1648
Y 7	Y	7	661.3569	661.3562

Figure S100. MS/MS analysis of native peptide sequence used for conjugation.

Name	lon Type	Ion Number	Theoretical Mass	Observed Mass
B2	В	2	200.1401	200.1396
B5	В	5	527.1822	527.1848
B6	В	6	598.2193	598.2230
B7	В	7	754.3204	754.3204
B 8	В	8	882.4154	882.4147
Y2	Y	2	217.1666	217.1663
Y3	Y	3	373.2677	373.2673
Y4	Y	4	444.3048	444.3040
Y6	Y	6	714.3255	714.3057
Y7	Y	7	771.3469	771.3470

Figure S101. MS/MS analysis of arylated peptide.

Procedure for protein modifications

DARPin Modification: 50 μ L of a 72.9 μ M solution of DARPin in 20 mM Tris, 150 mM NaCl (pH: 7.5) was added to an Eppendorf tube. To this was added 45 μ L of water and 5 μ L of a 7.3 mM solution of **2a** in DMF. The solution was pipetted 20 times to ensure proper mixing and allowed to stand at room temperature for 30 min. After 30 min, a 20 μ L aliquot of the reaction mixture was added to 100 μ L of a 50:50 water/acetonitrile 0.1% TFA solution.

FGF2 Modification: 50 μ L of a 0.66 μ M solution of FGF2 in 200 mM Tris (pH 8.7) was added to an Eppendorf tube. To this solution was added 50 μ L of a 9.93 μ M solution of **2g** in water. The reaction m mixture was pipetted 20 times to ensure proper mixing and allowed to stand at room temperature for 30 min. After 30 min, a 20 μ L aliquot of the reaction mixture was added to 100 μ L of a 50:50 water/acetonitrile 0.1% TFA solution.

Figure S102. Modification of FGF2 using **20** and corresponding masses. Di-PEGylation is consistent with the presence of two accessible cysteine residues.

V. X-Ray Crystallographic Data

Solid-state structure of DPCb with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms omitted for clarity.

Crystallographic Data for 1,2-bis(1,3-diisop	propyl-1,3-2-diaminophosp	hino)-1,2-dicarba-closo-
dodecaborane (DPCb).		
Identification code	MSM-A-2-221	
CCDC Code	1836204	
Empirical formula	C18 H46 B10 N4 P2	
Formula weight	488.63	
Temperature	100.15 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 11.492(2) Å	$\alpha = 90^{\circ}$
	b = 19.277(3) Å	$\beta = 99.819(5)^{\circ}$
	c = 13.003(2) Å	$\gamma = 90^{\circ}$
Volume	2838.3(8) Å ³	
Ζ	4	
Density (calculated)	1.143 Mg/m ³	
Absorption coefficient	0.169 mm ⁻¹	
<i>F</i> (000)	1048	
Crystal size	0.27 x 0.23 x 0.12 mm ³	
Theta range for data collection	2.086 to 27.120°.	
Index ranges	$-14 \le h \le 14, -24 \le k \le 22,$	$-16 \le l \le 16$
Reflections collected	20897	
Independent reflections	6265 [R(int) = 0.0409]	
Completeness to theta = 25.242°	99.9%	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.2612 and 0.2263	
Refinement method	Full-matrix least-squares of	on F^2

Data / restraints / parameters	6265 / 0 / 315
Goodness-of-fit on F^2	1.023
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0418$, w $R_2 = 0.0958$
<i>R</i> indices (all data)	R1 = 0.0619, w $R2 = 0.1062$
Extinction coefficient	n/a
Largest diff. peak and hole	0.326 and -0.259 e.Å ⁻³

	X	у	Z	U(eq)	
P(1)	2021(1)	3922(1)	3137(1)	13(1)	
P(2)	4592(1)	3186(1)	3011(1)	12(1)	
N(1)	591(1)	4152(1)	2885(1)	19(1)	
N(2)	2102(1)	4047(1)	4434(1)	16(1)	
N(3)	4414(1)	3522(1)	1802(1)	14(1)	
N(4)	5655(1)	2614(1)	2821(1)	16(1)	
C(1)	3292(2)	2555(1)	2925(1)	13(1)	
C(2)	2014(2)	2913(1)	3113(1)	13(1)	
C(3)	4933(2)	3052(1)	1107(1)	16(1)	
C(4)	5964(2)	2668(1)	1771(1)	20(1)	
C(5)	4585(2)	4280(1)	1701(1)	17(1)	
C(6)	3880(2)	4538(1)	677(2)	23(1)	
C(7)	5884(2)	4485(1)	1817(2)	22(1)	
C(8)	6593(2)	2450(1)	3714(1)	20(1)	
C(9)	7507(2)	3026(1)	3935(2)	33(1)	
C(10)	7169(2)	1761(1)	3555(2)	35(1)	
C(11)	34(2)	4070(1)	3812(2)	27(1)	
C(12)	976(2)	4251(1)	4728(2)	24(1)	
C(13)	-165(2)	4261(1)	1868(2)	29(1)	
C(14)	-851(2)	4931(1)	1856(2)	45(1)	
C(15)	531(2)	4250(1)	986(2)	36(1)	
C(16)	3200(2)	4336(1)	5035(1)	19(1)	
C(17)	3295(2)	5119(1)	4910(2)	32(1)	
C(18)	3322(2)	4124(1)	6172(2)	30(1)	
B(9)	2865(2)	2481(1)	4131(2)	17(1)	
B(4)	850(2)	2436(1)	2491(2)	16(1)	
B(2)	3048(2)	1818(1)	2176(2)	16(1)	
B(8)	3505(2)	1772(1)	3550(2)	18(1)	
B(1)	2134(2)	2564(1)	1910(2)	15(1)	
B(7)	2333(2)	1232(1)	2924(2)	21(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for 1,2-bis(1,3-diisopropyl-1,3-2-diaminophosphino)-1,2-dicarba-*closo*-dodecaborane (DPCb). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

B(3)	1486(2)	1729(1)	1898(2)	19(1)	
B(6)	981(2)	1614(1)	3122(2)	21(1)	

Solid-state structure of [2c][SbF₆] with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms, and [SbF₆]⁻ counterion omitted for clarity.

Crystallographic Data for [2c][SbF ₆].		
Identification code	JS-06	
CCDC Code	1835370	
Empirical formula	C38 H47 Au Cl F6 N P St)
Formula weight	1016.90	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.0473(12) Å	$\alpha = 100.731(4)^{\circ}$
	b = 11.3493(14) Å	$\beta = 103.700(4)^{\circ}$
	c = 17.4404(18) Å	$\gamma = 99.465(4)^{\circ}$
Volume	$1852.5(4) \text{ Å}^3$	
Ζ	2	
Density (calculated)	1.823 Mg/m ³	
Absorption coefficient	4.859 mm ⁻¹	
<i>F</i> (000)	996	
Crystal size	$0.3 \ge 0.22 \ge 0.08 \text{ mm}^3$	
Theta range for data collection	1.871 to 28.288°.	
Index ranges	$-13 \le h \le 13, -15 \le k \le 15,$	$-21 \le l \le 23$
Reflections collected	24139	
Independent reflections	9144 [$R(int) = 0.0292$]	
Completeness to theta = 25.242°	99.9%	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.5633 and 0.3777	2
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	9144 / 0 / 444	
Goodness-of-fit on F^2	1.033	
Final *R* indices $[I > 2\sigma(I)]$ *R* indices (all data) Largest diff. peak and hole SQUEEZE R1 = 0.0359, wR2 = 0.0734R1 = 0.0443, wR2 = 0.07622.306 and -2.007 e.Å⁻³ Found 47e/uc; calc'd for CH₂Cl₂, 42e/uc

	Х	У	Z	U(eq)	
Au(1)	1025(1)	7043(1)	2269(1)	18(1)	
Sb(1)	1335(1)	12273(1)	4024(1)	15(1)	
Cl(1)	-1344(1)	7042(1)	1699(1)	28(1)	
P(1)	3291(1)	6854(1)	2832(1)	13(1)	
F(5)	2351(3)	13520(2)	3687(2)	29(1)	
F(2)	327(3)	11051(2)	4384(2)	30(1)	
N(1)	610(4)	6710(3)	3391(2)	18(1)	
F(3)	1681(3)	13345(3)	5051(2)	31(1)	
C(9)	1293(5)	7600(6)	1270(4)	34(1)	
C(14)	1318(6)	8915(6)	1334(4)	38(1)	
F(6)	999(3)	11198(3)	3014(2)	37(1)	
C(13)	1360(6)	9415(5)	684(4)	40(1)	
C(4)	1683(5)	6323(4)	4721(3)	19(1)	
C(31)	3519(5)	2765(4)	1920(3)	23(1)	
F(1)	-310(3)	12824(3)	3654(2)	39(1)	
C(32)	4924(5)	3708(4)	2234(3)	19(1)	
C(1)	-588(5)	5635(5)	3218(4)	31(1)	
F(4)	2991(3)	11761(3)	4414(2)	31(1)	
C(30)	5423(5)	3996(5)	1514(3)	25(1)	
C(8)	3112(4)	6545(4)	3795(3)	14(1)	
C(27)	2433(5)	3303(4)	1400(3)	23(1)	
C(12)	1392(5)	8638(5)	-12(4)	33(1)	
C(34)	4180(5)	5729(4)	1517(3)	21(1)	
C(3)	1829(4)	6521(4)	3979(3)	16(1)	
C(2)	197(5)	7859(5)	3750(3)	28(1)	
C(33)	4730(4)	4879(4)	2764(3)	15(1)	
C(20)	6165(4)	8111(4)	3446(3)	15(1)	
C(19)	7225(4)	9364(4)	3678(3)	16(1)	
C(25)	3651(4)	5447(4)	2237(3)	14(1)	
C(26)	2240(4)	4476(4)	1923(3)	20(1)	
C(10)	1290(5)	6883(6)	594(4)	41(2)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for [2c][SbF₆]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(23)	5744(5)	10046(5)	2553(3)	30(1)
C(5)	2808(5)	6159(4)	5287(3)	18(1)
C(6)	4096(5)	6202(4)	5124(3)	17(1)
C(24)	4668(5)	8808(4)	2315(3)	24(1)
C(29)	4334(5)	4533(5)	999(3)	25(1)
C(16)	4282(4)	9234(4)	3707(3)	21(1)
C(7)	4242(4)	6385(4)	4389(3)	14(1)
C(21)	5355(5)	10958(4)	3182(4)	30(1)
C(28)	2922(5)	3600(5)	682(3)	29(1)
C(18)	6826(5)	10271(4)	4299(3)	21(1)
C(15)	4674(4)	8299(4)	3081(3)	17(1)
C(22)	7215(5)	9851(4)	2916(3)	25(1)
C(11)	1356(5)	7417(5)	-146(4)	43(2)
C(17)	5364(5)	10473(4)	3939(3)	24(1)
C(36)	1439(6)	8480(8)	-1435(4)	54(2)
C(37)	1434(6)	7235(9)	-1454(4)	60(2)
C(38)	1402(6)	6649(7)	-811(5)	61(2)
C(35)	1415(6)	9219(9)	-744(4)	60(2)

Solid-state structure of [2d][SbF₆] with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms, disorder and [SbF₆]⁻ counterion omitted for clarity.

Crystal Data for $[2d]$ [SbF ₆].		
Identification code	JS-07	
CCDC Code	1835367	
Empirical formula	C35 H44 Au Cl0.86 F9 I0	.14 N P Sb
Formula weight	1047.65	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.2214(4) Å	$\alpha = 108.9020(10)^{\circ}$
	b = 11.5151(4) Å	$\beta = 99.9440(10)^{\circ}$
	c = 16.2248(6) Å	$\gamma = 100.4260(10)^{\circ}$
Volume	1721.07(11) Å ³	
Ζ	2	
Density (calculated)	2.022 Mg/m ³	
Absorption coefficient	5.358 mm ⁻¹	
F(000)	1018	
Crystal size	0.3 x 0.27 x 0.21 mm ³	
Theta range for data collection	1.916 to 28.267°.	
Index ranges	$-12 \le h \le 13, -15 \le k \le 15,$	$-21 \le l \le 21$
Reflections collected	23765	
Independent reflections	8525 [R(int) = 0.0402]	
Completeness to theta = 25.242°	99.9%	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.5633 and 0.4649	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	8525 / 0 / 436	
Goodness-of-fit on F^2	1.035	

Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0326, w $R2 = 0.0604$
<i>R</i> indices (all data)	R1 = 0.0459, WR2 = 0.0644
Extinction coefficient	n/a
Largest diff. peak and hole	2.688 and -1.864 e.Å ⁻³

	Х	у	Z	U(eq)	
Au(1)	6102(1)	6560(1)	7210(1)	11(1)	
Sb(1)	6396(1)	11976(1)	8925(1)	15(1)	
Cl(1)	3712(2)	6382(2)	6713(1)	11(1)	
P(1)	8366(1)	6482(1)	7673(1)	10(1)	
F(6)	7311(3)	13222(3)	8563(2)	28(1)	
F(5)	7111(3)	13094(3)	10129(2)	27(1)	
F(4)	5495(3)	10762(3)	9309(2)	34(1)	
F(8)	4860(3)	12657(3)	8878(2)	26(1)	
F(3)	6033(3)	9529(3)	4118(2)	33(1)	
F(9)	7936(3)	11320(3)	9000(2)	36(1)	
F(7)	5712(3)	10895(3)	7725(2)	41(1)	
F(1)	8059(3)	9275(3)	4309(2)	43(1)	
N(1)	5807(4)	6279(3)	8437(2)	13(1)	
F(2)	6408(5)	7801(3)	3307(2)	60(1)	
C(1)	6259(4)	7107(4)	6154(3)	13(1)	
C(15)	9728(4)	7935(4)	7853(3)	11(1)	
C(12)	9416(5)	6292(4)	10188(3)	15(1)	
C(4)	6490(4)	8096(4)	4822(3)	16(1)	
C(27)	9059(5)	5024(4)	6115(3)	14(1)	
C(26)	8623(4)	4934(4)	6963(3)	10(1)	
C(6)	6355(4)	6330(4)	5321(3)	13(1)	
C(34)	9730(4)	4501(4)	7489(3)	14(1)	
C(13)	9489(4)	6389(4)	9365(3)	13(1)	
C(11)	8181(5)	6157(4)	10417(3)	18(1)	
C(5)	6471(4)	6825(4)	4659(3)	14(1)	
C(16)	9471(5)	9046(4)	8606(3)	14(1)	
C(22)	11203(4)	7807(4)	8136(3)	15(1)	
C(24)	10528(5)	10281(4)	8777(3)	16(1)	
C(9)	7075(4)	6265(4)	9019(3)	12(1)	
C(18)	10387(5)	10581(4)	7918(3)	17(1)	
C(2)	6210(4)	8358(4)	6299(3)	17(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for [2d][SbF₆]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(30)	9863(4)	3201(4)	6877(3)	16(1)
C(3)	6333(4)	8852(4)	5642(3)	16(1)
C(19)	10658(5)	9500(4)	7174(3)	16(1)
C(10)	7012(5)	6148(4)	9841(3)	17(1)
C(28)	9159(5)	3722(4)	5520(3)	20(1)
C(21)	12245(5)	9068(4)	8319(3)	17(1)
C(35)	7775(5)	2744(4)	5253(3)	21(1)
C(14)	8305(4)	6373(4)	8769(3)	11(1)
C(25)	9607(4)	8257(4)	6988(3)	14(1)
C(31)	8505(4)	2215(4)	6609(3)	15(1)
C(29)	10284(5)	3328(4)	6044(3)	22(1)
C(017)	6733(5)	8661(4)	4129(3)	22(1)
C(7)	4705(5)	5111(4)	8243(3)	23(1)
C(20)	12113(5)	9372(4)	7461(3)	18(1)
C(32)	7384(5)	2620(4)	6089(3)	17(1)
C(33)	7249(4)	3924(4)	6682(3)	14(1)
C(23)	11979(5)	10133(4)	9064(3)	18(1)
C(8)	5364(5)	7447(4)	8925(3)	21(1)
I(1)	3551(3)	6512(3)	6725(2)	11(1)

Solid-state structure of $[(Me-DalPhos)Au(p-Cl-C_6H_4)OH_2][SbF_6]_2$ with thermal ellipsoids rendered at the 50% probability level and with selected hydrogen atoms, disorder, two $[SbF_6]^-$ counterions and one DCM molecule omitted for clarity.

Crystallographic Data for [(Me-DalPhos)Au	$\mu(p-Cl-C_6H_4)OH_2][SbF_6]_2.$	
Identification code	JS-08	
CCDC Code	1835368	
Empirical formula	C70 H95 Au2 Cl6 F18 N2	2 O2 P2 Sb3
Formula weight	2372.30	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.3978(4) Å	$\alpha=90.4650(10)^\circ$
	b = 10.8778(4) Å	$\beta=90.5830(10)^\circ$
	c = 17.7061(7) Å	$\gamma = 94.1330(10)^{\circ}$
Volume	1997.26(13) Å ³	
Ζ	1	
Density (calculated)	1.972 Mg/m ³	
Absorption coefficient	4.989 mm ⁻¹	
<i>F</i> (000)	1150	
Crystal size	0.25 x 0.2 x 0.15 mm ³	
Theta range for data collection	1.877 to 28.297°.	
Index ranges	$-13 \le h \le 13, -14 \le k \le 14,$	$-20 \le l \le 23$
Reflections collected	35922	
Independent reflections	9931 [$R(int) = 0.0460$]	
Completeness to theta = 25.242°	100.0%	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.7457 and 0.6326	
Refinement method	Full-matrix least-squares of	on F^2

Data / restraints / parameters	9931 / 3 / 483
Goodness-of-fit on F^2	1.010
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0294, w $R2 = 0.0529$
R indices (all data)	R1 = 0.0411, w $R2 = 0.0560$
Extinction coefficient	n/a
Largest diff. peak and hole	1.184 and -1.134 e.Å ⁻³

	Х	у	Z	U(eq)	
Au(1)	4358(1)	3696(1)	3656(1)	9(1)	
Sb(1)	8445(1)	2689(1)	4772(1)	19(1)	
Sb(2)	0	0	0	25(1)	
P(1)	3440(1)	3112(1)	2514(1)	9(1)	
Cl(1)	7351(1)	9156(1)	3384(1)	26(1)	
Cl(2)	5598(1)	7420(1)	1479(1)	32(1)	
Cl(3)	7534(1)	6345(1)	558(1)	41(1)	
F(6)	9644(2)	2832(2)	5568(1)	32(1)	
F(2)	7790(2)	4204(2)	5056(2)	31(1)	
O(1)	5134(2)	4002(2)	4720(1)	14(1)	
F(4)	7193(2)	2579(2)	3987(1)	34(1)	
F(1)	9016(2)	1159(2)	4506(2)	37(1)	
F(3)	7214(2)	1901(2)	5407(1)	31(1)	
F(5)	9606(2)	3510(3)	4123(2)	44(1)	
N(1)	3293(3)	2092(3)	4115(2)	12(1)	
C(35)	5792(3)	3617(3)	1786(2)	15(1)	
C(22)	3046(3)	5347(3)	1805(2)	13(1)	
F(8)	-578(3)	-488(3)	941(2)	74(1)	
C(9)	5296(3)	5362(3)	3403(2)	13(1)	
C(2)	4230(3)	1262(3)	4454(2)	17(1)	
C(16)	1291(3)	3663(3)	1583(2)	13(1)	
F(9)	-1691(3)	-237(4)	-334(2)	87(1)	
C(23)	1558(3)	4624(3)	2867(2)	14(1)	
C(33)	4129(3)	2294(3)	1061(2)	14(1)	
C(7)	1699(3)	1020(3)	2281(2)	16(1)	
C(26)	4687(3)	2611(3)	1852(2)	12(1)	
C(30)	6846(3)	3171(3)	1270(2)	18(1)	
C(31)	6281(4)	2858(3)	481(2)	19(1)	
C(11)	7253(3)	6669(3)	3299(2)	17(1)	
C(15)	2297(3)	4229(3)	2161(2)	11(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for [(Me-DalPhos)Au(*p*-Cl-C₆H₄)OH₂][SbF₆]₂. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(14)	4612(3)	6407(3)	3495(2)	11(1)	
C(13)	5229(3)	7577(3)	3476(2)	15(1)	
C(1)	2484(3)	2601(3)	4722(2)	17(1)	
C(21)	2095(3)	6323(3)	1596(2)	17(1)	
C(5)	912(4)	-289(3)	3284(2)	21(1)	
C(17)	366(3)	4650(3)	1362(2)	16(1)	
C(6)	921(4)	20(3)	2524(2)	20(1)	
C(10)	6623(3)	5498(3)	3320(2)	13(1)	
C(32)	5194(4)	1842(3)	555(2)	17(1)	
C(29)	7385(4)	2023(4)	1617(2)	23(1)	
C(20)	1388(4)	6715(3)	2305(2)	24(1)	
C(24)	627(3)	5597(3)	2643(2)	19(1)	
C(18)	-346(3)	5047(4)	2064(2)	21(1)	
C(25)	1119(3)	5770(3)	1013(2)	18(1)	
C(4)	1677(3)	388(3)	3796(2)	18(1)	
C(3)	2460(3)	1390(3)	3556(2)	13(1)	
C(8)	2463(3)	1742(3)	2802(2)	14(1)	
C(27)	5235(4)	1445(3)	2199(2)	18(1)	
F(7)	-224(4)	1600(3)	284(3)	113(2)	
C(12)	6558(3)	7697(3)	3379(2)	15(1)	
C(36)	7161(4)	7618(4)	1118(3)	34(1)	
C(34)	5725(4)	697(3)	899(2)	24(1)	
C(28)	6306(4)	1013(4)	1678(2)	23(1)	

Solid-state structure of $[2f][SbF_6] \cdot H_2O$ with thermal ellipsoids rendered at the 50% probability level and with selected hydrogen atoms, one water molecule, and $[SbF_6]^-$ counterion omitted for clarity.

Crystallographic Data for $[2f]$ [SbF ₆]·H ₂ O.		
Identification code	JS-13	
CCDC Code	1835373	
Empirical formula	C34 H47 Au Cl F6 N O2	P Sb
Formula weight	1000.86	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 9.5384(10) Å	$\alpha = 112.015(2)^{\circ}$
	b = 13.2116(13) Å	$\beta = 105.708(2)^{\circ}$
	c = 15.7777(11) Å	$\gamma = 91.052(3)^{\circ}$
Volume	1758.4(3) Å ³	
Ζ	2	
Density (calculated)	1.890 Mg/m ³	
Absorption coefficient	5.121 mm ⁻¹	
F(000)	980	
Crystal size	0.3 x 0.28 x 0.18 mm ³	
Theta range for data collection	1.459 to 28.284°.	
Index ranges	$-11 \le h \le 12, -17 \le k \le 17,$	$-18 \le l \le 21$
Reflections collected	31512	
Independent reflections	8736 [R(int) = 0.0381]	
Completeness to theta = 25.242°	99.9%	

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final *R* indices $[I > 2\sigma(I)]$ *R* indices (all data) Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 0.5633 and 0.4270Full-matrix least-squares on F^2 8736 / 0 / 438 1.024 R1 = 0.0256, wR2 = 0.0516 R1 = 0.0337, wR2 = 0.0543n/a 1.022 and -0.862 e.Å⁻³

	X	у	Z	U(eq)	
 Au(1)	8596(1)	4062(1)	2777(1)	11(1)	
Sb(1)	10000	5000	0	15(1)	
Sb(2)	10000	0	5000	22(1)	
Cl(1)	11133(1)	4665(1)	3506(1)	15(1)	
P(1)	6074(1)	3560(1)	2242(1)	12(1)	
F(1)	10141(4)	4357(3)	867(2)	81(1)	
F(2)	12018(3)	5138(2)	260(2)	64(1)	
F(3)	10179(3)	6378(2)	998(2)	51(1)	
F(4)	11012(3)	-884(2)	4190(2)	49(1)	
F(5)	8253(3)	-605(2)	3998(2)	50(1)	
F(6)	10222(3)	1120(2)	4585(2)	48(1)	
O(1)	10888(3)	-417(2)	1248(2)	26(1)	
O(2)	11532(3)	-1563(2)	2394(2)	33(1)	
N(1)	8118(3)	5775(2)	3277(2)	15(1)	
C(1)	9215(3)	2529(2)	2280(2)	14(1)	
C(2)	9654(3)	2231(3)	1454(2)	16(1)	
C(3)	10211(4)	1244(3)	1121(2)	18(1)	
C(4)	10337(4)	548(3)	1614(2)	19(1)	
C(5)	9921(3)	859(3)	2445(2)	18(1)	
C(6)	9388(3)	1861(3)	2786(2)	15(1)	
C(7)	8916(4)	6355(3)	2854(3)	22(1)	
C(8)	8713(4)	6281(3)	4348(2)	21(1)	
C(9)	6531(4)	5863(3)	2991(2)	15(1)	
C(10)	6091(4)	6911(3)	3186(2)	17(1)	
C(11)	4612(4)	7020(3)	2965(2)	21(1)	
C(12)	3567(4)	6105(3)	2582(2)	18(1)	
C(13)	3998(4)	5071(3)	2388(2)	17(1)	
C(14)	5485(3)	4931(3)	2580(2)	14(1)	
C(15)	5526(3)	2895(2)	2984(2)	13(1)	
C(16)	6569(4)	3505(3)	4020(2)	17(1)	
C(17)	6215(4)	2992(3)	4681(2)	22(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) For [**2f**][SbF₆]·H₂O. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(18)	4619(4)	3108(3)	4687(3)	25(1)
C(19)	3590(4)	2492(3)	3674(3)	21(1)
C(20)	3800(4)	1271(3)	3319(3)	23(1)
C(21)	5388(4)	1171(3)	3306(2)	20(1)
C(22)	5683(4)	1658(3)	2616(2)	16(1)
C(23)	3926(4)	3011(3)	3014(3)	19(1)
C(24)	6435(4)	1784(3)	4320(3)	23(1)
C(25)	5286(3)	2848(2)	908(2)	13(1)
C(26)	3584(3)	2599(3)	558(2)	18(1)
C(27)	3048(4)	2058(3)	-547(2)	21(1)
C(28)	3543(4)	2850(3)	-945(3)	28(1)
C(29)	5211(4)	3085(3)	-619(2)	25(1)
C(30)	5865(4)	2009(3)	-965(2)	24(1)
C(31)	5363(4)	1229(3)	-564(2)	18(1)
C(32)	5903(4)	1749(3)	533(2)	17(1)
C(33)	5776(4)	3632(3)	488(2)	19(1)
C(34)	3684(4)	980(3)	-905(2)	21(1)

Solid-state structure of [2g][SbF₆] with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms, disorder, and [SbF₆]⁻ counterion omitted for clarity.

Crystal data and structure refinement for [2]	\mathbf{g}][SbF ₆].	
Identification code	JS-09	
CCDC Code	1835371	
Empirical formula	C35 H44 Au Cl0.95 F9 I0	.05 N O P Sb
Formula weight	1055.42	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.0238(6) Å	$\alpha = 106.082(2)^{\circ}$
	b = 11.7115(7) Å	$\beta = 106.450(2)^{\circ}$
	c = 16.7522(11) Å	$\gamma = 97.925(2)^{\circ}$
Volume	1761.65(19) Å ³	
Ζ	2	
Density (calculated)	1.990 Mg/m ³	
Absorption coefficient	5.166 mm ⁻¹	
<i>F</i> (000)	1028	
Crystal size	0.29 x 0.28 x 0.26 mm ³	
Theta range for data collection	1.344 to 28.316°.	
Index ranges	$-13 \le h \le 13, -14 \le k \le 15,$	$-21 \le l \le 22$
Reflections collected	30660	
Independent reflections	8761 [<i>R</i> (int) = 0.0353]	
Completeness to theta = 25.242°	100.0%	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.7457 and 0.5596	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	8761 / 2 / 456	
*		

Goodness-of-fit on F^2	1.026
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0267, wR2 = 0.0587
<i>R</i> indices (all data)	R1 = 0.0327, w $R2 = 0.0611$
Extinction coefficient	n/a
Largest diff. peak and hole	2.624 and -0.785 e.Å ⁻³

Au(1)	6146(1)	5645(1)	7174(1)	10(1)	
Sb(1)	2359(1)	-1787(1)	1095(1)	14(1)	
Cl(1)	8027(2)	5307(2)	6550(1)	10(1)	
P(1)	4358(1)	6222(1)	7717(1)	9(1)	
F(2)	1233(3)	226(2)	4611(2)	29(1)	
F(8)	1863(3)	-1783(2)	-77(2)	33(1)	
F(9)	3668(3)	-274(2)	1457(2)	28(1)	
F(4)	918(3)	-980(3)	1244(2)	35(1)	
F(7)	3774(3)	-2607(3)	913(2)	38(1)	
F(3)	1732(3)	-1167(2)	3677(2)	30(1)	
F(1)	1301(3)	446(3)	3399(2)	38(1)	
F(6)	1044(3)	-3292(2)	704(2)	32(1)	
C(26)	3254(3)	5011(3)	7950(2)	10(1)	
F(5)	2888(3)	-1761(3)	2259(2)	43(1)	
O(1)	3331(3)	497(3)	4410(2)	27(1)	
C(33)	4315(4)	4622(3)	8639(2)	12(1)	
C(23)	2125(4)	6138(3)	6218(2)	15(1)	
C(27)	2106(4)	5479(3)	8334(2)	13(1)	
N(1)	7641(3)	7112(3)	8328(2)	14(1)	
C(12)	7262(4)	9179(3)	10352(2)	18(1)	
C(14)	4924(4)	7997(3)	9387(2)	12(1)	
C(28)	1317(4)	4453(3)	8561(2)	14(1)	
C(16)	3333(3)	7044(3)	7032(2)	9(1)	
C(32)	3504(4)	3617(3)	8869(2)	13(1)	
C(2)	5010(4)	4042(3)	6210(2)	13(1)	
C(34)	2475(4)	3879(3)	7114(2)	13(1)	
C(4)	3474(4)	2691(4)	4767(3)	22(1)	
C(13)	5801(4)	8877(3)	10180(2)	16(1)	
C(30)	1676(4)	2870(3)	7350(2)	15(1)	
C(35)	2388(4)	4097(3)	9249(2)	15(1)	
C(29)	558(4)	3339(3)	7731(2)	16(1)	
C(22)	1398(4)	6830(4)	5623(3)	21(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [**2g**][SbF₆]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(18)	3656(4)	8444(4)	6149(3)	19(1)	
C(11)	7845(4)	8598(3)	9739(2)	17(1)	
C(10)	6967(4)	7709(3)	8949(2)	12(1)	
C(3)	4088(4)	3890(4)	5379(2)	17(1)	
C(011)	2484(5)	7516(4)	5338(3)	24(1)	
C(8)	8648(4)	6447(4)	8760(3)	22(1)	
C(17)	4421(4)	7754(3)	6732(3)	16(1)	
C(1)	1935(4)	23(4)	4034(2)	18(1)	
C(24)	2696(4)	7991(3)	7562(2)	14(1)	
C(21)	738(4)	7744(4)	6150(3)	23(1)	
C(5)	3819(4)	1718(4)	5020(3)	22(1)	
C(31)	2752(4)	2501(3)	8030(2)	15(1)	
C(25)	1916(4)	8664(3)	6965(3)	17(1)	
C(19)	3003(4)	9363(3)	6678(3)	19(1)	
C(15)	5484(4)	7387(3)	8759(2)	11(1)	
C(6)	4733(4)	1855(4)	5831(3)	22(1)	
C(9)	8456(4)	8050(4)	8075(3)	21(1)	
C(7)	5344(4)	3021(4)	6431(3)	19(1)	
I(1)	8258(7)	5184(9)	6574(5)	27(2)	

Solid-state structure of [2j][SbF₆] with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms, disorder, and [SbF₆]⁻ counterion omitted for clarity.

Crystallographic Data for [2j][SbF ₆].				
Identification code	JS-12			
CCDC Code	1835371			
Empirical formula	C34 H44 Au Br Cl0.77 F6	5 IO.23 N P Sb		
Formula weight	1066.78			
Temperature	100.0 K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 10.1820(10) Å	$\alpha = 109.033(4)^{\circ}$		
	b = 11.4038(13) Å	$\beta = 100.165(3)^{\circ}$		
	c = 16.3043(16) Å	$\gamma = 100.426(4)^{\circ}$		
Volume	1702.7(3) Å ³			
Ζ	2			
Density (calculated)	2.081 Mg/m ³			
Absorption coefficient	6.646 mm ⁻¹			
F(000)	1029			
Crystal size	0.26 x 0.24 x 0.18 mm ³			
Theta range for data collection	1.926 to 28.275°.			
Index ranges	$-13 \le h \le 13, -14 \le k \le 15,$	$-21 \le l \le 21$		
Reflections collected	30650			
Independent reflections	8451 [$R(int) = 0.0374$]			
Completeness to theta = 25.242°	100.0%			
Absorption correction	Semi-empirical from equiv	valents		
Max. and min. transmission	0.7457 and 0.5487			
Refinement method	Full-matrix least-squares of	on F^2		
Data / restraints / parameters	8451 / 2 / 418			
Goodness-of-fit on F^2	1.028			

Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0276, WR2 = 0.0582
<i>R</i> indices (all data)	R1 = 0.0348, w $R2 = 0.0604$
Extinction coefficient	n/a
Largest diff. peak and hole	1.913 and -3.742 e.Å ⁻³

Au(1)	1103(1)	1550(1)	7182(1)	9(1)	
Sb(1)	1382(1)	6967(1)	8946(1)	12(1)	
Br(1)	1456(1)	3684(1)	3837(1)	30(1)	
P(1)	3370(1)	1458(1)	7651(1)	8(1)	
F(1)	2285(3)	8172(2)	8535(2)	25(1)	
F(2)	647(3)	5811(3)	7764(2)	32(1)	
F(3)	2930(3)	6303(2)	9026(2)	30(1)	
F(4)	497(3)	5794(2)	9376(2)	27(1)	
F(5)	2132(2)	8154(2)	10132(2)	23(1)	
F(6)	-160(2)	7656(2)	8884(2)	22(1)	
N(1)	786(3)	1234(3)	8386(2)	12(1)	
C(1)	-320(4)	25(4)	8158(3)	21(1)	
C(2)	312(4)	2383(4)	8881(3)	20(1)	
C(3)	2045(4)	1211(3)	8975(2)	11(1)	
C(4)	3299(4)	1341(3)	8731(2)	10(1)	
C(5)	4484(4)	1370(3)	9345(2)	12(1)	
C(6)	4412(4)	1277(4)	10164(2)	15(1)	
C(7)	3147(4)	1123(4)	10380(3)	16(1)	
C(8)	1967(4)	1087(4)	9787(2)	14(1)	
C(9)	1281(4)	2111(4)	6130(2)	12(1)	
C(10)	1367(4)	1315(4)	5305(2)	12(1)	
C(11)	1432(4)	1796(4)	4623(3)	15(1)	
C(12)	1380(4)	3051(4)	4778(3)	18(1)	
C(13)	1240(4)	3833(4)	5582(3)	18(1)	
C(14)	1185(4)	3362(4)	6263(3)	15(1)	
C(15)	3649(4)	-107(3)	6946(2)	10(1)	
C(16)	4731(4)	-547(3)	7489(2)	13(1)	
C(17)	4888(4)	-1848(3)	6887(3)	13(1)	
C(18)	3504(4)	-2849(4)	6593(3)	16(1)	
C(19)	2412(4)	-2440(4)	6051(3)	16(1)	
C(20)	2855(5)	-2319(4)	5226(3)	21(1)	
C(21)	4242(4)	-1321(4)	5528(3)	18(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for [**2j**][SbF₆]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(22)	2254(4)	-1133(3)	6640(3)	12(1)	
C(23)	5337(4)	-1728(4)	6066(3)	19(1)	
C(24)	4119(4)	-3(4)	6118(2)	14(1)	
C(25)	4739(4)	2926(3)	7845(2)	10(1)	
C(26)	4626(4)	3268(4)	6991(2)	13(1)	
C(27)	5689(4)	4543(4)	7199(3)	15(1)	
C(28)	5411(4)	5616(4)	7947(3)	15(1)	
C(29)	5546(4)	5290(3)	8791(2)	13(1)	
C(30)	6999(4)	5149(4)	9088(3)	16(1)	
C(31)	7274(4)	4078(4)	8334(3)	16(1)	
C(32)	6226(4)	2800(3)	8139(3)	13(1)	
C(33)	4475(4)	4039(3)	8600(2)	12(1)	
C(34)	7150(4)	4403(4)	7488(3)	17(1)	
I(1)	-1468(1)	1453(1)	6680(1)	19(1)	
Cl(1)	-1166(1)	1459	6725	19(1)	

Solid-state structure of [2r][SbF₆] with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms, disorder, and [SbF₆]⁻ counterion omitted for clarity.

Crystallographic Data for [2r][SbF ₆].		
Identification code	JS-17	
CCDC Code	1835366	
Empirical formula	C45 H49 Au Cl0.85 F6 I0	.15 N O P Sb
Formula weight	1132.70	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.0424(11) Å	$\alpha = 101.463(3)^{\circ}$
	b = 12.0230(13) Å	$\beta = 101.135(3)^{\circ}$
	c = 19.663(2) Å	$\gamma = 100.103(3)^{\circ}$
Volume	2225.8(4) Å ³	
Ζ	2	
Density (calculated)	1.690 Mg/m ³	
Absorption coefficient	4.149 mm ⁻¹	
<i>F</i> (000)	1111	
Crystal size	0.25 x 0.22 x 0.18 mm ³	
Theta range for data collection	1.773 to 26.452°.	
Index ranges	$-12 \le h \le 12, -15 \le k \le 15,$, $-24 \le l \le 24$
Reflections collected	61519	
Independent reflections	9174 [$R(int) = 0.0487$]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.6465 and 0.5276	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	9174 / 0 / 526	
Goodness-of-fit on F^2	1.114	
Final <i>R</i> indices $[I \le 2\sigma(I)]$	R1 = 0.0460, wR2 = 0.095	6

<i>R</i> indices (all data)	R1 = 0.0624, w $R2 = 0.1054$
Extinction coefficient	n/a
Largest diff. peak and hole	2.770 and -3.305 e.Å ⁻³

	Х	У	Z	U(eq)	
Au(1)	8747(1)	8127(1)	2346(1)	28(1)	
Sb(1)	8659(1)	2683(1)	819(1)	54(1)	
P(1)	6451(2)	8178(1)	1870(1)	17(1)	
Cl(1)	11102(3)	8142(3)	2743(3)	39(1)	
F(6)	7153(5)	3379(4)	666(3)	58(1)	
F(3)	8074(5)	1772(4)	-108(3)	60(1)	
F(5)	9733(5)	3803(5)	500(3)	71(2)	
C(19)	5165(6)	6772(5)	1714(3)	21(1)	
F(2)	10188(7)	2025(9)	993(4)	132(4)	
O(1)	8334(7)	4433(4)	5181(3)	57(2)	
C(10)	5593(6)	9333(5)	3041(3)	22(1)	
C(29)	8585(6)	7911(5)	3334(4)	26(1)	
C(25)	2690(6)	5642(5)	1247(4)	28(2)	
N(1)	9124(6)	8318(5)	1318(3)	33(1)	
F(4)	7577(7)	1522(8)	1114(4)	116(3)	
C(8)	6625(7)	8400(5)	996(3)	27(1)	
C(26)	3666(6)	6845(5)	1394(4)	24(1)	
C(9)	6024(6)	9523(5)	2354(3)	21(1)	
C(20)	5621(6)	5870(5)	1177(4)	24(1)	
C(24)	2739(7)	5250(6)	1944(4)	35(2)	
C(21)	4626(7)	4674(5)	1033(4)	28(2)	
C(16)	7392(6)	10480(5)	2543(3)	22(1)	
C(15)	7175(6)	11617(5)	2977(4)	25(1)	
C(27)	5209(7)	6372(5)	2411(3)	27(1)	
C(28)	3156(7)	4763(5)	713(4)	31(2)	
C(32)	8622(6)	7682(5)	4742(4)	28(1)	
C(30)	8688(6)	8862(5)	3878(4)	30(2)	
C(11)	5428(7)	10496(5)	3480(4)	31(2)	
C(39)	8451(8)	5404(6)	5061(4)	43(2)	
C(3)	7910(8)	8446(5)	818(4)	33(2)	
C(31)	8686(6)	8740(5)	4566(4)	28(1)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [2**r**][SbF₆]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(34)	8756(7)	8489(6)	6047(4)	33(2)	
C(44)	8561(6)	6802(5)	3486(4)	31(2)	
C(22)	4683(7)	4289(5)	1727(4)	36(2)	
C(38)	8564(8)	6450(6)	5629(5)	42(2)	
C(33)	8649(7)	7551(6)	5473(4)	32(2)	
C(43)	8565(7)	5800(5)	2969(4)	32(2)	
C(7)	5496(7)	8497(5)	486(4)	30(2)	
C(14)	6004(7)	12027(5)	2529(4)	31(2)	
C(45)	8542(7)	6691(5)	4189(4)	30(2)	
C(23)	4221(7)	5165(6)	2258(4)	34(2)	
C(18)	6793(7)	11411(5)	3662(4)	28(2)	
C(35)	8806(7)	8353(7)	6728(4)	38(2)	
C(40)	8472(8)	5570(6)	4342(4)	38(2)	
C(17)	4875(7)	9952(5)	1904(4)	28(1)	
C(42)	8487(8)	4736(6)	3125(4)	40(2)	
C(13)	4661(7)	11085(5)	2347(4)	34(2)	
C(6)	5642(10)	8650(6)	-176(4)	44(2)	
C(12)	4274(7)	10898(6)	3037(4)	38(2)	
C(4)	8047(9)	8599(6)	150(4)	43(2)	
C(5)	6930(11)	8712(6)	-340(4)	53(3)	
C(2)	10305(8)	9355(7)	1426(4)	47(2)	
C(41)	8437(8)	4627(6)	3807(4)	42(2)	
C(36)	8737(8)	7278(7)	6876(4)	45(2)	
F(1)	9258(7)	3616(12)	1740(3)	171(5)	
C(37)	8610(8)	6327(7)	6324(5)	45(2)	
C(1)	9561(8)	7223(6)	1016(5)	49(2)	
I(1)	11428(5)	8134(4)	3083(3)	36(2)	

Solid-state structure of [2s][SbF₆]₂ with thermal ellipsoids rendered at the 50% probability level and with hydrogen atoms, one co-crystallized DCM molecule and two [SbF₆]⁻ counterions omitted for clarity.

Crystallographic Data for [2s][SbF₆]₂·DCM. Identification code JS-03 CCDC Code 1835365 Empirical formula C64 H88 Au2 Cl6 F12 N2 P2 Sb2 Formula weight 2025.43 100.0 K Temperature Wavelength 0.71073 Å Crystal system Orthorhombic Space group Pccn Unit cell dimensions a = 20.8838(10) Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ b = 17.9885(10) Å $v = 90^{\circ}$ c = 18.4736(10) Å 6939.9(6) Å³ Volume 4 Ζ 1.939 Mg/m³ Density (calculated) 5.336 mm⁻¹ Absorption coefficient 3944 *F*(000) 0.22 x 0.08 x 0.05 mm³ Crystal size Theta range for data collection 1.857 to 24.998°. Index ranges $-24 \le h \le 24, -21 \le k \le 21, -21 \le l \le 21$ Reflections collected 36322 Independent reflections 6107 [R(int) = 0.1193]Completeness to theta = 24.998° 99.9% Absorption correction Semi-empirical from equivalents 0.7452 and 0.4798 Max. and min. transmission Full-matrix least-squares on F^2 Refinement method 6107 / 0 / 396 Data / restraints / parameters Goodness-of-fit on F^2 1 0 5 9 Final *R* indices $[I > \sigma(I)]$ R1 = 0.0468, wR2 = 0.1034

<i>R</i> indices (all data)	R1 = 0.0913, w $R2 = 0.1292$
Extinction coefficient	n/a
Largest diff. peak and hole	2.319 and -2.320 e.Å ⁻³

	Х	у	Z	U(eq)	
Au(1)	2084(1)	5662(1)	4609(1)	18(1)	
Sb(1)	3955(1)	3336(1)	3471(1)	27(1)	
Cl(1)	1940(1)	6015(1)	3399(1)	27(1)	
P(1)	2190(1)	5276(1)	5803(1)	18(1)	
Cl(3)	5138(1)	2465(2)	523(2)	49(1)	
Cl(2)	4936(2)	4028(2)	835(2)	58(1)	
F(2)	3431(3)	3244(3)	4286(3)	30(1)	
F(6)	3227(3)	3496(4)	2901(3)	44(2)	
F(5)	4476(3)	3436(4)	2652(3)	48(2)	
F(1)	4011(3)	4360(3)	3638(3)	46(2)	
F(4)	3887(3)	2315(3)	3295(4)	48(2)	
F(3)	4666(3)	3165(4)	4065(4)	50(2)	
N(1)	1760(4)	4539(5)	4385(4)	25(2)	
C(30)	2346(5)	6740(5)	4739(5)	21(2)	
C(28)	1955(4)	6579(5)	6623(5)	21(2)	
C(32)	3136(5)	7723(6)	4726(5)	22(2)	
C(3)	1742(5)	4038(5)	5038(5)	20(2)	
C(31)	2985(5)	6982(6)	4704(5)	23(2)	
C(23)	1481(5)	7052(6)	7056(5)	26(2)	
C(27)	377(5)	6040(6)	7094(5)	28(2)	
C(4)	1600(5)	3300(6)	4949(6)	26(2)	
C(19)	1641(4)	5819(5)	6404(5)	17(2)	
C(8)	1876(4)	4345(5)	5708(5)	20(2)	
C(26)	1030(5)	5976(6)	5963(5)	25(2)	
C(7)	1822(5)	3858(6)	6307(5)	24(2)	
C(24)	883(5)	7177(5)	6597(6)	28(3)	
C(2)	2216(5)	4219(6)	3823(5)	27(3)	
C(25)	557(5)	6437(6)	6411(6)	28(2)	
C(14)	4212(5)	5295(6)	6983(5)	26(2)	
C(20)	1451(5)	5402(6)	7106(5)	27(3)	
C(21)	983(5)	5894(6)	7555(6)	30(3)	

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $[2s][SbF_6]_2$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(6)	1672(5)	3126(6)	6211(6)	28(3)
C(17)	3142(5)	4686(6)	6761(5)	27(2)
C(22)	1296(5)	6637(6)	7741(6)	34(3)
C(1)	1107(4)	4566(5)	4070(6)	25(2)
C(15)	4125(5)	5747(6)	6296(5)	26(2)
C(9)	3050(4)	5142(5)	6056(5)	22(2)
C(5)	1560(5)	2843(6)	5549(6)	31(3)
C(29)	4401(5)	5326(7)	5649(5)	34(3)
C(10)	3355(5)	4712(7)	5413(6)	34(3)
C(18)	3861(5)	4550(6)	6906(6)	28(3)
C(11)	4070(5)	4582(7)	5570(6)	36(3)
C(16)	3397(5)	5884(6)	6167(6)	26(2)
C(33)	5175(6)	3166(6)	1186(6)	40(3)
C(12)	4147(5)	4129(6)	6261(6)	40(3)

VI. References

- 1. Ahrland, S.; Dreisch, K.; Norén, B; Oskarsson, Å. Mater. Chem. Phys. 1993, 35 281-289.
- Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L.; Buchwald, S. L. *Nature* 2014, 526, 687-691.
- 3. Joost, M.; Zeineddine, A.; Estévez, L; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 136, 14654-14657.
- 4. Neises, B.; Steglich, W. Angew. Chem. Int. Ed. 1978, 17, 522-524.
- 5. Zeineddine, A.; Estévez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. *Nat. Commun.* **2017**, *565*, 1-8.
- Chen, R.; John, J.; Lavrentieva, A.; Muller, S.; Tomala, M.; Zhao, Y. X.; Zweigerdt, R.; Beutel, S.; Hitzmann, B.; Kasper, C.; Martin, U.; Rinas, U.; Stahl, F.; Scheper, T. *Eng. Life Sci*, **2012**, *12*, 29-38.