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Details of the segmentation procedure 

The stitched image mosaic of an entire tissue acquisition can be as large as 

12000x12000x300 pixels, leading to images of several tens of gigabytes. Each elementary 

acquisition volume ranges between 256x256x300 and 1024x1024x300 voxels and many 

hundreds are assembled within a mosaic. For this reason, the automatic treatment of the 

image is much more easily handled with a customized and scriptable home-made C++ 

code, which we developed using the Cimg library (http://cimg.sourceforge.net/index.shtml).  

We first segmented the two tissue regions where there was no “lobular organization” as 

opposed to the one where lobules could be segmented 1. A mean 3D filter from Fiji 

software was set up, whose size could vary depending on the sample. The mean 3D filter 

was chosen to be significantly larger in the x and y directions than in the z direction to take 

account of the anisotropy of the tissue in the z direction. Then, a simple thresholding of the 

graylevel was performed. Since the signal was much lower in peripheral regions than in 

the core region it was accentuated by using the 3D filter. After this thresholding-

segmentation step, the smallest connected components were removed. Finally a convex-

hull algorithm using the 3D mesh voxelizer program binvox 

(http://www.patrickmin.com/binvox/) was used to delineate the core region inside which the 

lobule segmentation was to be performed.  

In order to objectively identify the organization of the 3D lobules, we designed a specific 

work-flow consisting of the eight steps outlined in Figure 1 

 a) The stitching was performed with free software 2,3 with a 10% overlap between 

the adjacent volume of the mosaic and based upon maximum correlation. A pyramid of 

images with three hierarchical levels was also created so as to save memory allocation in 

some parts of the work-flow. 

 b) This step was decomposed into b1 and b2. In b1) the filtering step was adapted. 

Because of the large heterogeneity of the image texture within each lobule (see Figure 1a) 

which, in many cases, is as large as the amplitude of the background noise, there was a 

http://cimg.sourceforge.net/index.shtml
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need to find an adapted filter which, on one the hand, would smooth graylevels inside the 

lobules, while, on the other hand, preserving or even improving the contrast at their edges, 

so as to help their further segmentation. For these reasons, step b1) is crucial, with the 

additional requirement that image inhomogeneity associated with the background 

illumination is dealt with. Various methods such as variational or level-set methods and 

texture filtering could have been used in this first step 4. We used an adapted Kuwahara 

texture filter, which allowed local edges to be preserved in the smoothing of lobules 5,6. For 

each pixel, this approach considers a current cubic window of size L= Lx x Ly x Lz, centred 

on the current voxel. This window is composed of Nx x Ny x Nz sub-windows, of size Sx x 

Sy x Sz (in voxels).  On each sub-window, the average grayscale texture is computed and 

then the central voxel is set to the value of the median of all means. For algorithmic 

optimality, when performing the computation in one pixel, the benefit of the previous 

computations is kept for its neighbour. Thus only the contribution of each new surface 

within each cubic-window is evaluated, whilst disregarding the contribution of lost surfaces, 

as is usual in sliding window methods. The algorithmic cost is thus O(NxNyNzL3) with Nx, Ny 

and Nz corresponding to the image dimensions in the x, y, and z directions. Varying the 

size of the window, the number of sub-windows and their sizes showed that Nx x Ny x Nz = 

3x3x1, Sx x Sy x Sz = 3x3x3, so L = Lx x Ly x Lz = 9x9x3 gave the best results for edge 

preservations and graylevel smoothing within the lobules. In b2) the image was 

thresholded for further use in the work-flow. Various threshold values were tested.   

 c) A simple threshold was used in order to binarize the filtered lobules (Figure 1c). 

 d) Then the Euclidean distance map to the binarized lobules was computed so as to 

be able to separate the various entities by a simple thresholding on the distance map 

(Figure 1d1). This procedure is similar to a mathematical morphology closure but permits 

elongated throats and bridges to be cut while preserving the shape of the lobules. Step 

1d2) is the computation of the gradient of the thresholded lobules using the classical Sobel 
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method. 

 e) We proceeded with the thresholding of the distance map, cleaning the smallest 

islands, labelling the connected components and evaluating each connected component 

barycentre, to be used as a seed in step f). 

 f) Seeding step. 

 g) Finally, we combined the seeding step (f) with identified non-overlapping 

territories for each lobule and the gradient step (d2) to provide the barriers of the 

watershed step. Each connected component was associated with a colour-coded 

representation of the label. 

 h) A simple thresholding of the original grayscale image (b2) which was then 

multiplied (pointwise multiplication) by the watershed mask (g), was used to illustrate the 

quality of the labelling in Figure 1h. In this figure, it can be seen that very small 

imperfections in the frontier of watershed domains can result in small multi-coloured sets 

of points at lobule edges. A final correction step to eliminate residual over-segmented 

watershed regions was performed using a graph merging procedure. Each segmented 

region was described as the node of a graph, and was connected with other nodes when 

the watershed regions were neighbours. The edges of the resulting graph were weighted 

by the number of neighbouring pixels normalized by the average surface of the two lobules 

in contact ( 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖,𝑗𝑗

�𝑆𝑆𝑖𝑖+𝑆𝑆𝑗𝑗� 2⁄
for two lobules having labels i and j). The graph-merging procedure 

consisted of merging two edges when their edge weight was larger than a threshold. This 

threshold was selected as a quartile of all edge weights. The result is illustrated Figure 1i 

where the small isolated red watershed region inside the blue region visible in Figure 1h 

has been merged. Similar ideas of merging areas by a graph representation have already 

been used in various contexts 7,8. The final result of the lobule segmentation seems to be 

improved by this last step, the main interest of which is to eliminate over-connected 

segmented lobules. The gradient procedure that defines the walls for the watershed might 
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still have some “holes” separating entities that would not be disconnected otherwise.  

In the following table, we provide the list of parameters adjusted for the four segmentations 

(3 with autofluorescence signal and one with lectin signal): 

Work-flow step Inguinal fat pad n°1 Inguinal fat pad n°2 Inguinal fat pad n°3 

SLA mean-filter  
(x, y, z) 35x35x15 35x35x20 50x35x15 

B2 (threshold) 100 90 70 

B1 (Kuwahara-like 
mask) 
number of windows 
(x, y ,z) 
size of window 
(x, y, z) 

 
 

3x3x1 
 

3x3x3 
 

 
 

3x3x1 
 

3x3x3 

 
 

3x3x1 
 

3x3x3 

C (threshold) 50 120 70 

C (fill holes) 400 200 125 

E (threshold) 70 100 50 

F (size of smallest 
connected 
components 
removed) 

2500 2500 1500 

I (percentage of 
merged lobules) 80% 90% 80% 

Supplementary table S1: Parameters of the segmentation workflow for the three fat 
pads from mice maintained at 22°C. 
 

Work-flow step Inguinal fat pad n°4 Inguinal fat pad n°5 
SLA mean-filter  
(x, y, z) 25x25x15 25x25x15 

B2 (threshold) 70 110 
B1 (Kuwahara-like 
mask) 
number of windows 
(x, y ,z) 
size of window 
(x, y, z) 

 
 

3x3x1 
 

3x3x3 
 

 
 

3x3x1 
 

3x3x3 
 

C (threshold) 90 110 
C (fill holes) 300 300 
E (threshold) 40 115 
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F (size of smallest 
connected 
components 
removed) 

1000 500 

I (percentage of 
merged lobules) 80% -- 

Supplementary table S2: Parameters of the segmentation workflow for the two fat 
pads from mice exposed to 4°C for 48 hours. 
 

Let us finally discuss the limitation of the study associated with the lobule segmentation 

procedure. It must be pointed out that, since several arbitrary parameters (such as the 

binary thresholds) were used through the work-flow, the results might be different if other 

parameters were chosen. Due to the lack of benchmark and/or ground truth for segmented 

lobules, image analysis validation used an expert’s visual segmentation. Another limitation 

of the method concerns the previously described border artefacts of the watershed, which 

are generic. Since the segmented structures are complex and heterogeneous, the 

watershed can over-connect some of them, which will thus not stop at the precise frontier 

of the “real” lobule. The segmentation of the “core-region”, the filtering, and the graph 

merging were implemented to reduce the spread of the watershed, but some artefacts 

might still persist, resulting in spurious, hopefully limited, very small subunits. 

 

Robustness of segmentation method: 

In this section we investigated the influence of parameter variations in the segmentation 

results. Focusing on fat pad n°1, we modified the arbitrary parameters at steps C, E and I 

(used in table S1) for three values (5, 10 and 20% variations) and studied their effects at a 

given slice in the tissue sample. Once a parameter of a given step was changed, all other 

parameters were kept identical to study its specific influence. Size of the Kuwahara-like 

mask and its sub-windows as well as the type quantity computed in each sub-window at 

step B1 were not investigated on this section because of its computational time on the full 

3D image and the many parameters involved. However, its qualitative effects were studied 
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on small crops of tissue for several sub-windows sizes, sub-window numbers and quantity 

computed on each sub-window (variance, mean and median). The previously given 

parameters were seen to provide the best homogenization of gray levels as well as the 

preservation of contrasts between entities. The size influence of the smallest connected 

component was not investigated since it is in direct relation with the percentage of merged 

lobules in step I. Indeed, keeping larger connected components in step F (respectively 

smaller) will lead to a smaller (respectively larger), percentage of merged lobules in step I. 

Finally, threshold in B2 wasn't investigated as it is mostly a visualization parameter and its 

influence would be mainly focussed on merging step I. Considering the image dynamic, 

the relative differences in terms of normalized contact-surface between pre-segmented 

entities wouldn't change much from the threshold at step B2. 

Figure S1 shows the segmentation obtained for fat pad n°1 with different parameters at 

depth z = 487.05 µm. Reference (obtained with parameters described in table S1 and 

illustrated in figure S2A, top panel) is displayed for direct comparison. Colors of 

segmented units were attributed to the spatially closest units based on reference 

segmentation. Supplementary table S3 summarizes the parameters used for this study.  

The results show that the most critical arbitrary parameter is the threshold at step B. With 

a variation of 5%, the final segmentation keeps the main characteristics of the reference 

segmentation with a large central pink subunit (Figure S1 b1) but a higher threshold by a 

20% variation will lead to over segmented subunits as illustrated in Figure S1 b2. Size of 

gap filling is quite robust and leads to almost identical segmentations (Figure S1 c1 and 

c2) as is the threshold on step E (Figure S1 d1 and d2). Most of the segmented subunits 

are the same as in reference segmentation although one main subunit close to the lymph 

node in reference segmentation (dark blue color) is now divided in two subunits (Figure S1 

d1 and d2). Finally, changing the number of merged subunits (Figure S1 e1 and e2) lead 

to having two main central subunits instead of the main pink one. 
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We also quantify  for each new  2D crop image, the relative difference with the reference 

from computing the relative mutual information (relative-MI) 9  as the ratio of the maximum 

MI, i.e. the MI between the reference image and itself, and the MI between the new 

segmented image. The results are displayed on supplementary table S3. The higher the 

relative-MI is, the closer is the image to the reference. As illustrated in Figure S1, the 

lowest relative-MI value is obtained for 20% threshold variations at step C (Relative-MI = 

82%, table S3) as it is the least similar segmented image compared to the reference.  

Although the segmentations lead to sometimes slightly different results, it must be kept in 

mind that we changed only one parameter for each segmentation step and kept the others 

identical. During the segmentation workflow, if discrepancies appear in one intermediate 

image or within the final one, backward steps can be applied and new parameters adapted 

to get a more realistic final segmentation. Such backward steps were not used here which 

can explain the differences compared to the reference segmentation.  

Work-flow 
step 

reference 
image 

C 
(threshold) 

+5% 

C 
(threshold) 

+20% 

C 
(fill 

holes) 
+5% 

C 
(fill 

holes) 
+20% 

E 
(threshold) 

+5% 

E 
(threshold) 

+20% 

I 
(% of 
merge

d 
lobules

) 
+5% 

I 
(% of 
merge

d 
lobules

) 
+20% 

C 
(threshold) 70 74 84 70 70 70 70 70 70 

C 
(fill holes) 125 125 125 132 150 125 125 125 125 

E 
(threshold) 50 50 50 50 50 53 60 50 50 

I 
(percentage 
of merged 
lobules) 

80% 80% 80% 80% 80% 80% 80% 84% 96% 

Relative 
MI of 

maximum 
MI 

100% 97% 82% 91% 91% 90% 87% 98% 91% 

Supplementary table S3: Consequences of changes in the value of segmentation 
parameters. Last line reports the relative mutual information (MI) between the reference 
segmentation image and the new segmentation image obtained with a given set of 
parameters (Fig. S5). The relative-MI was expressed as the ratio between the maximum-MI 
obtained with the two images. 
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Timing of the segmentation method: 

Supplementary table S4 provides timing (in seconds) at each step on a 1.5 GB 3D image 

(fat pad n°3), on a Intel i7 Core 33MHz with 12 processors and 125GB of ram. 

Work-flow step Computational times (in seconds)  
B2 (threshold) 110 

B1 (Kuwahara-like 
mask) 18510 

C (threshold) 3 
C (fill holes) 89 

D1 (distance map) 300 
D2 (gradient) 174 
E (threshold) 3 
F (connected 
components) 33 

Supplementary table S4: Computational times of the segmentation of fat pad n°5 
corresponding to an image size of 1.5GB. 
 

 

Additional discussion about the State of the art 

Image segmentation is a long standing topic in image analysis, of particular relevance to 

biomedical imaging communities. The workflow proposed in this article is original as it has 

been dedicated to the specific task at end but follows conventional pipelines.  Deep-

learning methods disrupt the field of image segmentation because they permit robust, 

performant, and fully automated workflows when possible (10-13). Deep-learning methods 

outperform traditional approaches when it is possible to train the algorithms on huge 

databases onto which ground truth segmentation is available. Nevertheless these 

supervised approaches are often a distressing step on large 3D images. Manual 

segmentation for building training data-set remains a big challenge for specific and 

dedicated task. When the segmentation concerns cancer tumors detection, it is easy to 

find among the radiologists community the required man power and motivation to build 
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such ground-truth data-set, because this task is indeed a crucial daily-based, intensely 

sensitive issue for a huge medical community. Regarding the topic of interest here, there is 

no chance of building the required training data-base of 3D fat-pad lobules. The building of 

a training data base is not only a costly and intensive issue, but also requires a huge 

amount of 3D images not possible to provide in our case. Hence for the issue at end in this 

very specific set of images, we did not found possible to use a deep-learning approach for 

3D-lobules segmentation.  
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Supplementary figures: 

Supplementary Movies 1 and 2: Different morphologies of two segmented 

polylobular subunits of the fat pad. Smoothed polylobular subunits are obtained by 

applying a mean filter followed by several successive dilatation and erosion steps.  Movie 

1 illustrates the elongated dark green subunit located below and to the right of the lymph 

node on Figure 4A. Movie 2 illustrates the cyan subunit connected to 7 other subunits (two 

blue, two pink, one violet, one dark green and one light green) in Figure S1B. 

 

Supplementary Movie 3: Preferential alignment of segmented subunits. This movie 

shows a skeleton superimposed on smoothed subunit shown in Movie 1. A. The skeleton 

was computed using the method reported by Risser et al.14 and then simplified by 

removing smallest segments.  

 

Supplementary figure S1: The segmentation procedure gives similar results when 

individual parameters are varied by 5% (left column) and 20% (right column). (A) The 

reference segmentation of fat pad n°3 at a given slice (z = 234.36 µm) obtained by using 

parameters described in supplementary table S1. Segmentation results for varying 

threshold of step C (b1 and b2), size of holes filled of step C (c1 and c2),  threshold of step 

E (d1 and d2) and percentage of merged units of step I (e1 and e2). 

 

Supplementary figure S2: The segmentation procedure gives similar results with 

two different signals, i.e. autofluorescence (a) and lectin signal (b) in one tissue 

sample. A) The images have been aligned around the lymph node, which is the rounded 

purple shape, the correspondence of which between the two images is sketched with the 

white dotted line. To illustrate the similarities between subunit segmentations, we have 
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used the same colour label on subunits that are qualitatively similar. B) Quantification of 

the volumes of the different segmented subunits identified by the acquisition of the 

autofluorescence (left panel) and lectin (right panel) signals. Histograms represent the 

number of subunits displaying equivalent volumes (from the smallest, i.e. <2mm3 to the 

largest, i.e. >5 mm3) identified by the two segmentation procedures. 

 

Supplementary figure S3: 2D Graph representation of the subunit locations, 

connections and sizes in the segmented zone for samples n°3 (A) and n°1 (B). The 

(x,y) coordinates indicate the position on a slice. The positions of the nodes of the graph, 

i.e. the centre of each circle, are those of the barycenters of the subunits. The radius of the 

circle is proportional to the volume of the subunits. The links between two nodes are 

computed as the ratio of the contact surface between two subunits to their mean total 

surface. Thus, the larger the link is, the stronger is the connection between two subunits. 

The grey and red dotted circles in each figure illustrate the two clusters of well-connected 

subunits. LN, Lymph node. 

 

Supplementary figure S4: The two clusters of subunits present distinct biological 

characteristics that could be predictive of browning abilities. Immunostaining of 

TOM20 (red, Figure A) and tyrosine hydroxylase (green, Figure B) performed on areas 1, 

2 and 3 of inguinal fat pad sections of C57Bl6 mice exposed to 22 °C. LN, lymph node. 

Scale bar corresponds to 100 µm (A) and 50 µm (B). C) Quantification of sympathetic 

nerve density on areas 1, 2 and 3. D) Proxy of vascular density on 3D regions of interests 

of the lectin-labelled sample n°3. *p < 0.05, **p < 0.01 and ***p < 0.001 comparison 

between areas. 
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Supplementary figure S5: Cold exposure does not change architecture of inguinal 

fat pad. A) Relative volume of segmented subunits. B) 2D Graph representation of the 

subunit locations, connections and sizes.  The grey and red dotted circles in each figure 

illustrate the two clusters of well-connected subunits. LN, Lymph node.  
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