CHEMISTRY A European Journal

Supporting Information

Azaindolo[3,2,1-*jk*]carbazoles: New Building Blocks for Functional Organic Materials

Thomas Kader,^[a] Berthold Stöger,^[b] Johannes Fröhlich,^[a] and Paul Kautny^{*[a]}

chem_201805578_sm_miscellaneous_information.pdf

Table of contents

1		General information	2
2		Experimental procedures	2
	2.	.1 Synthesis of the precursors	2
		General procedure for the nucleophilic aromatic substitution reactions towards carbazol	e
		precursors (GP1-A).	2
		General procedure for the condensation reactions (GP2).	2
		General procedure for the Nozaki type Buchwald Hartwig amination (GP3).	3
		General procedure for the nucleophilic aromatic substitution reactions towards carbolin	e
		precursors (GP1-B).	8
		General procedure for the N-oxide preparation (GP4)1	1
	2.	.2 Synthesis of mono substituted NICzs1	5
		General procedure for the ring closing C-H activation reactions (GP5)1	5
		General procedure for the reduction of the N-oxides (GP6)1	8
	2.	.3 Synthesis of twofold substituted NICzs	2
3		NMR Spectra2	5
4		Additional Screening results	6
5		Molar attenuation coefficient	8
6		Cyclic Voltammetry	8
7		HOMO / LUMO energy levels	1
8		Crystal packing	3
9		References	6

1 General information

Column chromatography was performed on silica 60 (Merck, 40-63 μ m). For preparative HPLC a Buchi Reveleris Prep Purification System with a Phenomenex Luna Prep silica (2) column (10 μ m) was used. NMR spectra were recorded on a Bruker Avance DRX-400 Spectrometer. An Agilent 6230 LC TOFMS mass spectrometer equipped with an Agilent Dual AJS ESI-Source was used for high resolution mass spectrometry.

2 Experimental procedures

9H-Pyrido[2,3-b]indole,¹ 9H-pyrido[3,4-b]indole,² 5H-pyrido[4,3-b]indole,³ 5H-pyrido[3,2-b]indole,⁴ 2,2'-diiodo-1,1'-biphenyl⁵ and allyl[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]chloropalladium(II) ((NHC)Pd(allyl)Cl)⁶ were synthesized according to literature.

2.1 Synthesis of the precursors

General procedure for the nucleophilic aromatic substitution reactions towards carbazole precursors (GP1-A). Carbazole (1 eq.) and Cs_2CO_3 (1.1 eq.) were placed in a glass vial and flushed with argon. DMF (2 ml/mmol) and the corresponding pyridine (1 eq.) were added and the reaction was stirred at 130 °C until full conversion (16 h – 20 h). After cooling, the reaction mixture was poured into water and repeatedly extracted with CH₂Cl₂. The organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography.

General procedure for the condensation reactions (GP2). 2,5-Dimethoxytetrahydrofuran (4 eq.) was added to a solution of the corresponding brominated aminopyridine (1 eq.) in acetic acid (15 ml/mmol). The reaction mixture was refluxed under argon atmosphere until full conversion according to GC-MS (18 h - 120 h). Depending on the progress of the reaction further 2,5-dimethoxytetrahydrofuran was added. After cooling, the reaction mixture was

poured into cold 1N HCl and repeatedly extracted with CH_2Cl_2 . The combined organic layers were washed with water and 2N NaOH, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure.

General procedure for the Nozaki type Buchwald Hartwig amination (GP3). NaO^tBu (6 eq.) was added to a solution of the corresponding brominated aminopyridine (1 eq.), 2,2'diiodo-1,1'-biphenyl (1 eq.), Pd₂(dba)₃ (2 mol%) and 1,1'-bis(diphenylphosphino)ferrocene (4 mol%) in degassed anhydrous toluene (4 ml/mmol) under argon atmosphere in a three-necked flask. The reaction mixture was refluxed overnight. After cooling, the reaction mixture was filtered through a celite pad and washed with CH_2Cl_2 . The filtrate was concentrated under reduced pressure and purified by column chromatography.

bromo**-4PCz**

9-(2-Bromopyridin-3-yl)-9H-carbazole (bromo-4PCz). Compound bromo-*4PCz* was prepared according to GP2 starting from 3-amino-2-bromopyridine (1.73 g, 10.0 mmol) and 2,5-dimethoxytetrahydrofuran (5.29 g, 40.0 mmol). The crude product was flashed over a silica pad (CH₂Cl₂). Recrystallization from EtOH gave bromo-**4PCz** (1.69 g, 5.23 mmol, 52%) as orange crystals. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 4.7, 1.8 Hz, 1H), 8.17 (d, J = 7.8 Hz, 2H), 7.83 (dd, J = 7.7, 1.8 Hz, 1H), 7.53 (dd, J = 7.7, 4.7 Hz, 1H), 7.43 (t, J = 8.2 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 143.9, 140.7, 139.6, 134.8, 126.3, 123.9, 123.8, 120.7, 120.7, 109.9. HRMS (ESI): m/z calcd for $C_{17}H_{12}BrN_2^+$ [M+H]⁺ 323.0178, found 323.0187.

9-(2-Chloropyridin-3-yl)-9H-carbazole (chloro-4PCz). Compound chloro-4PCz was prepared according to GP1-A starting from carbazole (502 mg, 3.00 mmol) and 2-chloro-3-fluoropyridine (399 mg, 3.03 mmol) with Cs₂CO₃ (1.08 g, 3.30 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 40% - 60%) gave chloro-4PCz (580 mg, 2.08 mmol, 69%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, J = 4.8, 1.8 Hz, 1H), 8.17 (d, J = 7.7 Hz, 2H), 7.89 (dd, J = 7.7, 1.8 Hz, 1H), 7.50 (dd, J = 7.7, 4.8 Hz, 1H), 7.44 (t, J = 8.3 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 149.6, 140.6, 139.7, 132.4, 126.3, 123.8, 123.6, 120.7, 120.6, 109.9. HRMS (ESI): m/z calcd for C₁₇H₁₂ClN₂⁺ [M+H]⁺ 279.0684, found 279.0697.

9-(3-Bromopyridin-4-yl)-9H-carbazole (bromo-5PCz). Compound bromo-**5PCz** was prepared according to GP1-A starting from carbazole (502 mg, 3.00 mmol) and 3-bromo-4-chloropyridine (579 mg, 3.01 mmol) with Cs₂CO₃ (1.08 g, 3.30 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 40% - 75%) gave bromo-**5PCz** (669 mg, 2.07 mmol, 69%) as off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.75 (d, J = 5.1 Hz, 1H), 8.16 (d, J = 7.4 Hz, 2H), 7.48 (d, J = 5.1 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.35 (t, J = 7.9 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 149.9, 145.0, 139.8, 126.4, 125.3, 124.0, 121.0, 121.0, 120.7, 110.3. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂⁺ [M+H]⁺ 323.0178, found 323.0179.

Compound bromo-**5PCz** was prepared according to GP2 starting from 4-amino-3bromopyridine (2.60 g, 15.0 mmol) and 2,5-dimethoxytetrahydrofuran (7.93 g, 60.0 mmol). During the reaction additional 2,5-dimethoxytetrahydrofuran (11.89 g, 90.0 mmol) was added stepwise and the reaction was refluxed for 120 h. Purification by column chromatography (light petroleum/CH₂Cl₂ 40% - 60%) and recrystallization from EtOH gave bromo-**5PCz** (1.53 g, 4.73 mmol, 32%) as white crystals. ¹H NMR according to the preparation following GP1-A.

Compound bromo-**5PCz** was prepared according to GP3 starting from 4-amino-3bromopyridine (865 mg, 5.00 mmol) and 2,2'-dibromo-1,1'-biphenyl (2.03 g, 5.00 mmol) with NaO^tBu (2.88 g, 30.00 mmol), $Pd_2(dba)_3$ (92 mg, 0.10 mmol) and 1,1'bis(diphenylphosphino)ferrocene (111 mg, 0.20 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 1:1) gave bromo-**5PCz** (1.32 g, 4.08 mmol, 81%) as white solid. ¹H NMR according to the preparation following GP1-A.

9-(3-Chloropyridin-4-yl)-9H-carbazole (chloro-5PCz). Compound chloro-**5PCz** was prepared according to GP1-A starting from carbazole (502 mg, 3.00 mmol) and 3-chloro-4-fluoropyridine (395 mg, 3.00 mmol) with Cs₂CO₃ (1.08 g, 3.30 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 50% - 60%) gave chloro-**5PCz** (795 mg, 2.85 mmol, 95%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.72 (d, J = 5.1 Hz, 1H), 8.16 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 5.1 Hz, 1H), 7.44 (t, J = 8.3 Hz, 2H), 7.35 (t, J = 7.9 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 149.4, 143.1, 139.8, 130.4, 126.4, 124.6, 124.1, 121.1, 120.7, 110.3. HRMS (ESI): m/z calcd for $C_{17}H_{12}CIN_2^+$ [M+H]⁺ 279.0684, found 279.0687.

9-(4-Bromopyridin-3-yl)-9H-carbazole (bromo-6PCz). Compound bromo-6PCz was prepared according to GP3 starting from 3-amino-4-bromopyridine (87 mg, 0.50 mmol) and 2,2'-diiodo-1,1'-biphenyl (203 mg, 0.50 mmol) with NaO'Bu (288 mg, 3.00 mmol), Pd₂(dba)₃ (9 mg, 0.01 mmol) and 1,1'-bis(diphenylphosphino)ferrocene (11 mg, 0.02 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 50%) gave bromo-6PCz (108 mg, 0.33 mmol, 67%) as brown solid. ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.61 (d, J = 4.4 Hz, 1H), 8.17 (d, J = 8.1 Hz, 2H), 7.85 (d, J = 5.0 Hz, 1H), 7.43 (t, J = 8.3 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 150.3, 140.8, 134.4, 134.4, 129.1, 126.4, 123.7, 120.7, 120.7, 109.9. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂⁺ [M+H]⁺ 323.0178, found 323.0181.

chloro-6PCz

9-(4-Chloropyridin-3-yl)-9H-carbazole (chloro-6PCz). Compound chloro-6PCz was prepared according to GP1-A starting from carbazole (502 mg, 3.00 mmol) and 4-chloro-3-fluoropyridine (397 mg, 3.02 mmol) with Cs₂CO₃ (1.08 g, 3.30 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 50%) gave chloro-6PCz (476 mg, 1.71 mmol, 57%) as colorless oil, which crystallized after several weeks. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.70 (d, J = 5.3 Hz, 1H), 8.17 (d, J = 7.7 Hz, 2H), 7.66 (d, J = 5.3 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H). ¹³C NMR (101

MHz, CDCl₃) δ 152.0, 150.4, 143.7, 140.8, 132.5, 126.4, 125.8, 123.8, 120.8, 120.7, 109.8. HRMS (ESI): m/z calcd for C₁₇H₁₂ClN₂⁺ [M+H]⁺ 279.0684, found 279.0687.

bromo-7PCz

9-(3-Bromopyridin-2-yl)-9H-carbazole (bromo-7PCz). Compound bromo-**7PCz** was prepared according to GP1-A starting from carbazole (836 mg, 5.00 mmol) and 3-bromo-2-chloropyridine (968 mg, 5.03 mmol) with Cs₂CO₃ (1.79 g, 5.50 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 40%) gave bromo-**7PCz** (593 mg, 1.83 mmol, 37%) as colorless oil. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.69 (dd, J = 4.6, 1.6 Hz, 1H), 8.24 (dd, J = 8.0, 1.6 Hz, 1H), 8.16 (d, J = 7.4 Hz, 2H), 7.43 (ddd, J = 8.3, 7.3, 1.2 Hz, 2H), 7.39 (dd, J = 8.0, 4.6 Hz, 1H), 7.33 (t, J = 8.0 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 149.9, 149.4, 143.9, 140.5, 126.5, 125.4, 124.2, 121.1, 120.9, 119.9, 111.3. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂⁺ [M+H]⁺ 323.0178, found 323.0178.

Compound bromo-**7PCz** was prepared according to GP2 starting from 2-amino-3bromopyridine (1.73 g, 10.0 mmol) and 2,5-dimethoxytetrahydrofuran (5.29 g, 40.0 mmol). During the reaction additional 2,5-dimethoxytetrahydrofuran (7.93 g, 60.0 mmol) was added and the reaction was stopped after refluxing for 68 h. Purification by column chromatography (light petroleum/CH₂Cl₂ 40% - 60%) gave bromo-**7PCz** (1.25 g, 3.87 mmol, 39%; including minor impurities) as brown oil. ¹H NMR according to the preparation following GP1-A.

Compound bromo-7PCz was prepared according to GP3 starting from 2-amino-3bromopyridine (554 mg, 3.20 mmol) and 2,2'-diiodo-1,1'-biphenyl (1.30 g, 3.20 mmol) with NaO^tBu mmol), mmol) (1.83 g, 19.0 $Pd_2(dba)_3$ (59) mg, 0.06 and 1,1'bis(diphenylphosphino)ferrocene Purification (71 mg, 0.12 mmol). by column chromatography (light petroleum/CH₂Cl₂ 40% - 60%) gave bromo-**7PCz** (37 mg, 0.11 mmol, 4%) as colorless oil. ¹H NMR according to the preparation following GP1-A.

chloro-7PCz

9-(3-Chloropyridin-2-yl)-9H-carbazole (chloro-7PCz). Compound chloro-**7PCz** was prepared according to GP1-A starting from carbazole (836 mg, 5.00 mmol) and 3-chloro-2-fluoropyridine (660 mg, 5.02 mmol) with Cs₂CO₃ (1.79 g, 5.50 mmol). Purification by column chromatography (light petroleum/CH₂Cl₂ 40%) gave chloro-**7PCz** (1.31 g, 4.70 mmol, 94%) as colorless oil. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.65 (dd, J = 4.6, 1.5 Hz, 1H), 8.17 (d, J = 7.7 Hz, 2H), 8.06 (dd, J = 8.1, 1.5 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.34 (t, J = 7.5 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 148.7, 148.6, 140.6, 140.5, 130.0, 126.5, 125.1, 124.3, 121.2, 120.8, 111.4. HRMS (ESI): m/z calcd for C₁₇H₁₂ClN₂⁺ [M+H]⁺ 279.0684, found 279.0686.

General procedure for the nucleophilic aromatic substitution reactions towards carboline precursors (GP1-B). The corresponding carboline (1 eq.) and Cs_2CO_3 (2 eq.) were placed in a glass vial and flushed with argon. DMF (2 ml/mmol) and 1-bromo-2-fluorobenzene (2 eq.) were added and the reaction was stirred at 130 °C for 16 h. After cooling, the reaction mixture was poured into water and repeatedly extracted with CH₂Cl₂. The organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography.

5-(2-Bromophenyl)-5H-pyrido[3,2-b]indole (**4PCb**). Compound **4PCb** was prepared according to GP1-B starting from 5H-pyrido[3,2-b]indole (841 mg, 5.00 mmol) and 1-bromo-2-fluorobenzene (1.75 g, 10.0 mmol) with Cs₂CO₃ (3.26 g, 10.0 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 0% - 1%) gave **4PCb** (1.39 g, 4.30 mmol, 86%) as light brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.6 Hz, 1H), 8.47 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.58 – 7.35 (m, 6H), 7.32 (dd, J = 8.2, 4.7 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.2, 141.8, 136.0, 134.5, 134.5, 131.0, 130.7, 129.1, 128.2, 123.7, 122.4, 121.1, 121.1, 120.3, 117.4, 110.4. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂⁺ [M+H]⁺ 323.0178, found 323.0179.

5-(2-Bromophenyl)-5H-pyrido[4,3-b]indole (**5PCb**). Compound **5PCb** was prepared according to GP1-B starting from 5H-pyrido[4,3-b]indole (842 mg, 5.01 mmol) and 1-bromo-2-fluorobenzene (1.75 g, 10.0 mmol) with Cs₂CO₃ (3.26 g, 10.0 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 1% - 3%) gave **5PCb** (1.33 g, 4.11 mmol, 82%) as brown oil. ¹H NMR (400 MHz, CDCl₃) δ 9.39 (s, 1H), 8.51 (d, J = 5.8 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.87 (dd, J = 8.4, 1.4 Hz, 1H), 7.56 (ddd, J = 8.0, 7.1, 1.5 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.39 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H), 7.00 (dd, J = 5.8, 0.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 145.1, 142.7, 141.0, 135.5, 134.5, 131.0, 130.8, 129.1,

127.3, 123.5, 121.7, 121.6, 120.9, 120.2, 110.6, 105.6. HRMS (ESI): m/z calcd for $C_{17}H_{12}BrN_2^+ [M+H]^+$ 323.0178, found 323.0179.

9-(2-Bromophenyl)-9H-pyrido[*3,4-b*]*indole* (*6PCb*). Compound **6PCb** was prepared according to GP1-B starting from *9H*-pyrido[*3,4-b*]indole (505 mg, 3.00 mmol) and 1-bromo-2-fluorobenzene (1.05 g, 6.00 mmol) with Cs₂CO₃ (1.96 g, 6.00 mmol). Purification by column chromatography (CH₂Cl₂/Et₂O 1% - 3%) gave **6PCb** (894 mg, 2.77 mmol, 92%) as orange oil which crystallized after several days. ¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.52 (m, 2H), 8.21 (d, J = 7.9 Hz, 1H), 8.03 (dd, J = 5.3, 1.0 Hz, 1H), 7.88 (dd, J = 8.0, 1.3 Hz, 1H), 7.59 – 7.49 (m, 3H), 7.46 (ddd, J = 8.0, 7.2, 1.9 Hz, 1H), 7.36 (ddd, J = 8.0, 7.2, 0.9 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 140.2, 137.0, 135.9, 134.6, 133.5, 130.9, 130.8, 129.1, 129.0, 128.8, 123.6, 122.0, 121.6, 120.8, 114.7, 110.9. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂⁺ [M+H]⁺ 323.0178, found 323.0182.

9-(2-Bromophenyl)-9H-pyrido[2,3-b]indole (7PCb). Compound 7PCb was prepared according to GP1-B starting from 9H-pyrido[2,3-b]indole (506 mg, 3.01 mmol) and 1-bromo-2-fluorobenzene (1.05 g, 6.00 mmol) with Cs_2CO_3 (1.96 g, 6.00 mmol). After 16 h additional 1-bromo-2-fluorobenzene (1.05 g, 6.00 mmol) was added and the reaction was stopped after 48 h. Purification by column chromatography (light petroleum/CH₂Cl₂ 80% - 100%) gave 7PCb (331 mg, 1.02 mmol, 34%) as colorless oil which crystallized after several days. ¹H

NMR (400 MHz, CD₂Cl₂) δ 8.46 – 8.41 (m, 2H), 8.17 (d, J = 8.1 Hz, 1H), 7.88 (dd, J = 8.1, 1.1 Hz, 1H), 7.62 – 7.52 (m, 2H), 7.51 – 7.44 (m, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.26 (dd, J = 7.3, 5.2 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 152.7, 147.1, 140.6, 136.3, 134.5, 132.1, 131.0, 129.3, 128.9, 127.5, 124.5, 121.6, 121.3, 121.3, 116.7, 116.7, 111.0. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂⁺ [M+H]⁺ 323.0178, found 323.0178.

General procedure for the N-oxide preparation (GP4). The corresponding PCb (1 eq.) was dissolved in CH_2Cl_2 (2 ml/mmol) and cooled to 0 °C. mCPBA (4 eq.) was added portionwise and the reaction was slowly warmed to room temperature and stirred overnight. The reaction mixture was diluted with CH_2Cl_2 and washed with 2N NaOH. The organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography.

5-(2-Bromophenyl)-5H-pyrido[3,2-b]indole 1-oxide (4PCb-Ox). Compound 4PCb-Ox was prepared according to GP4 starting from 4PCb (729 mg, 2.26 mmol) with mCPBA (1.55 g, 8.98 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 1% - 2%) gave 4PCb-Ox (663 mg, 1.95 mmol, 87%) as light brown solid. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.88 (d, J = 7.9 Hz, 1H), 8.19 (d, J = 6.3 Hz, 1H), 7.90 (dd, J = 8.0, 1.1 Hz, 1H), 7.63 – 7.48 (m, 4H), 7.41 (t, J = 8.0 Hz, 1H), 7.24 (dd, J = 8.3, 6.4 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 140.9, 138.2, 135.5, 135.0, 132.6, 131.8, 131.7, 131.5, 129.8, 129.1, 124.0, 123.9, 122.0, 121.8, 118.1, 110.3, 108.0. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂O⁺ [M+H]⁺ 339.0128, found 339.0129.

5-(2-Bromophenyl)-5H-pyrido[4,3-b]indole 2-oxide (5PCb-Ox). Compound 5PCb-Ox was prepared according to GP4 starting from 5PCb (802 mg, 2.48 mmol) with mCPBA (1.71 g, 9.91 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 1% - 4%) gave 5PCb-Ox (512 mg, 1.51 mmol, 61%) as light brown solid. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.23 (dd, J = 7.0, 1.3 Hz, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.53 – 7.45 (m, 3H), 7.37 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 137.7, 136.9, 134.8, 134.7, 132.1, 131.4, 130.7, 129.3, 128.7, 123.2, 122.1, 121.4, 121.3, 119.9, 111.1, 107.3. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂O⁺ [M+H]⁺ 339.0128, found 339.0132.

6PCb-Ox

9-(2-Bromophenyl)-9H-pyrido[3,4-b]indole 2-oxide (6PCb-Ox). Compound 6PCb-Ox was prepared according to GP4 starting from 6PCb (488 mg, 1.51 mmol) with mCPBA (1.04 g, 6.03 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 1% - 3%) gave 6PCb-Ox (463 mg, 1.37 mmol, 90%) as light brown foam. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 6.7, 1.5 Hz, 1H), 8.14 (d, J = 0.9 Hz, 1H), 8.07 (d, J = 7.9 Hz, 1H), 7.91 (d, J = 6.7 Hz, 1H), 7.86 (dd, J = 7.5, 2.3 Hz, 1H), 7.56 (ddd, J = 8.1, 7.1, 1.7 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.36 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 138.2, 134.7, 134.7, 132.5, 131.5, 130.7, 129.3, 128.4, 123.7, 123.3, 121.9, 121.5, 121.3, 121.2, 116.5, 111.0. HRMS (ESI): m/z calcd for C₁₇H₁₂BrN₂O⁺ [M+H]⁺ 339.0128, found 339.0130.

5-(2-*Chloropyridin-3-yl)-5H-pyrido*[*3*,2-*b*]*indole* (*4*,12*PyCb*). Sodium hydride (144 mg, 6.00 mmol, 2 eq.) was added in portions to a stirred solution of *5H*-pyrido[3,2-*b*]indole (505 mg, 3.00 mmol, 1 eq.) in 6 ml DMF under argon atmosphere. The solution was heated to 40 °C and stirred for 1 h. 2-Chloro-3-fluoropyridine (592 mg, 4.50 mmol, 1.5 eq.) was added and the reaction was stirred at 50 °C for 16 h. After cooling, the reaction mixture was quenched with water and repeatedly extracted with CH₂Cl₂. The organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Column chromatography (CH₂Cl₂/MeOH 1%) gave **4,12PyCb** (749 mg, 2.68 mmol, 89%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.67 – 8.60 (m, 2H), 8.46 (d, J = 7.7 Hz, 1H), 7.90 (dd, J = 7.8, 1.8 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.45 – 7.37 (m, 2H), 7.34 (dd, J = 8.3, 4.6 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 150.0, 143.2, 142.7, 141.4, 139.5, 134.1, 131.5, 128.4, 123.7, 122.9, 121.7, 121.2, 120.5, 117.1, 110.1. HRMS (ESI): m/z calcd for C₁₆H₁₁ClN₃⁺ [M+H]⁺ 280.0636, found 280.0637.

5-(3-Bromopyridin-4-yl)-5H-pyrido[4,3-b]indole (5,11PyCb). Compound 5,11PyCb was prepared according to GP1-A starting from 5H-pyrido[4,3-b]indole (336 mg, 2.00 mmol) and 3-bromo-4-chloropyridine (385 mg, 2.00 mmol) with Cs₂CO₃ (717 mg, 2.20 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 1% - 3%) gave 5,11PyCb (246 mg, 0.76 mmol, 38%) as red solid. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 9.08 (s, 1H), 8.79

(d, J = 5.1 Hz, 1H), 8.55 (d, J = 5.7 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 7.03 (dd, J = 5.7, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 150.3, 145.8, 144.1, 143.6, 143.3, 139.8, 127.5, 124.9, 122.4, 122.1, 121.1, 120.7, 120.6, 110.6, 105.6. HRMS (ESI): m/z calcd for C₁₆H₁₁BrN₃⁺ [M+H]⁺ 324.0131, found 324.0132.

9-(4-*Chloropyridin-3-yl*)-9*H-pyrido*[*3*,4-*b*]*indole* (**6**,10*PyCb*). Compound **6**,10*PyCb* was prepared according to GP1-A starting from 9*H*-pyrido[*3*,4-*b*]indole (288 mg, 1.71 mmol) and 4-chloro-3-fluoropyridine hydrochloride (287 mg, 1.71 mmol) with Cs₂CO₃ (1.11 g, 3.42 mmol). Purification by column chromatography (CH₂Cl₂/MeOH 1% - 2%) gave **6**,10*PyCb* (231 mg, 0.83 mmol, 49%) as light brown solid. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.73 (d, J = 5.3 Hz, 1H), 8.57 (d, J = 5.3 Hz, 1H), 8.54 (d, J = 0.8 Hz, 1H), 8.21 (d, J = 7.6 Hz, 1H), 8.03 (dd, J = 5.3, 1.0 Hz, 1H), 7.68 (d, J = 5.3 Hz, 1H), 7.56 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 151.0, 143.4, 141.6, 140.8, 136.9, 133.0, 131.6, 129.6, 129.1, 125.9, 122.1, 122.0, 121.5, 114.9, 110.5. HRMS (ESI): m/z calcd for C₁₆H₁₁ClN₃⁺ [M+H]⁺ 280.0636, found 280.0638.

9-(4-Chloro-1-oxidopyridin-3-yl)-9H-pyrido[3,4-b]indole 2-oxide (6,10PyCb-Ox). Compound 6,10PyCb-Ox was prepared according to GP4 with double amount of oxidant starting from 6,10PyCb (356 mg, 1.27 mmol) with mCPBA (1.73 g, 10.02 mmol). After 20 h additional mCPBA (431 mg, 2.50 mmol) was added and the reaction was stirred overnight again. After standard work up purification by column chromatography (CH₂Cl₂/MeOH 5% - 10%) gave **6,10PyCb-Ox** (202 mg, 0.65 mmol, 51%) as light brown solid. ¹H NMR (400 MHz, DMSO) δ 8.84 (d, J = 2.0 Hz, 1H), 8.66 (d, J = 0.9 Hz, 1H), 8.47 (dd, J = 7.1, 2.1 Hz, 1H), 8.26 (dd, J = 9.2, 7.4 Hz, 2H), 8.17 (dd, J = 6.7, 1.5 Hz, 1H), 7.89 (d, J = 7.1 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 141.7, 141.3, 141.1, 138.0, 132.8, 132.2, 129.4, 128.1, 127.8, 123.4, 122.0, 121.5, 121.3, 119.9, 117.2, 110.7. HRMS (ESI): m/z calcd for C₁₆H₁₁ClN₃O₂⁺ [M+H]⁺ 312.0534, found 312.0538.

2.2 Synthesis of mono substituted NICzs

General procedure for the ring closing C-H activation reactions (GP5). A glass vial was charged with the corresponding halogenated precursor (1 eq.), K_2CO_3 (2 eq.) and (NHC)Pd(allyl)Cl (5 mol%) and flushed with argon. After addition of 10 ml/mmol degassed DMA, the reaction was stirred under argon atmosphere until full conversion at 130 °C (4 h – 8 h). After cooling, the reaction mixture was poured into water and repeatedly extracted with CH₂Cl₂. The organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography.

Pyrido[2',3':4,5]*pyrrolo*[3,2,1-*jk*]*carbazole* (4NICz). Compound 4NICz was prepared according to GP5 starting from bromo-4PCz (323 mg, 1.00 mmol) with K₂CO₃ (278 mg, 2.01 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (CH₂Cl₂/MeOH 0% - 2%) gave 4NICz (224 mg, 0.93 mmol, 93%) as off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 4.9, 1.2 Hz, 1H), 8.28 (d, J = 7.5 Hz, S15

1H), 8.14 – 8.06 (m, 3H), 7.80 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 8.2 Hz, 1H), 7.41 (dd, J = 8.3, 4.9 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 144.0, 143.1, 138.8, 133.1, 129.7, 127.2, 123.8, 123.4, 122.5, 121.3, 120.5, 120.4, 119.2, 118.7, 117.6, 112.3. HRMS (ESI): m/z calcd for C₁₇H₁₁N₂⁺ [M+H]⁺ 243.0917, found 243.0921.

Compound **4NICz** was prepared according to GP5 starting from chloro-**4PCz** (279 mg, 1.00 mmol) with K_2CO_3 (279 mg, 2.02 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (CH₂Cl₂/MeOH 0% - 2%) gave **4NICz** (238 mg, 0.98 mmol, 98%) as off-white solid. ¹H NMR according to the preparation starting from bromo-**4PCz**.

Pyrido[3',4':4,5]*pyrrolo*[3,2,1-*jk*]*carbazole* (5NICz). Compound 5NICz was prepared according to GP5 starting from bromo-5PCz (324 mg, 1.00 mmol) with K₂CO₃ (277 mg, 2.00 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (CH₂Cl₂/MeOH 1%) gave 5NICz (233 mg, 0.96 mmol, 96%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 8.65 (d, J = 5.6 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.95 (t, J = 7.9 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 5.6 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.36 (t, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 144.7, 143.6, 142.4, 138.2, 130.7, 127.2, 126.1, 124.1, 123.4, 123.0, 120.3, 120.0, 118.8, 116.2, 112.8, 107.5. HRMS (ESI): m/z calcd for C₁₇H₁₁N₂⁺ [M+H]⁺ 243.0917, found 243.0922.

Compound **5NICz** was prepared according to GP5 starting from chloro-**5PCz** (280 mg, 1.00 mmol) with K₂CO₃ (282 mg, 2.04 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml

DMA. Purification by column chromatography ($CH_2Cl_2/MeOH 1\%$) gave **5NICz** (235 mg, 0.97 mmol, 97%) as white solid. ¹H NMR according to the preparation starting from bromo-**5PCz**.

Pyrido[4',3':4,5]*pyrrolo*[3,2,1-*jk*]*carbazole* (6NICz). Compound 6NICz was prepared according to GP5 starting from bromo-6PCz (129 mg, 0.40 mmol) with K₂CO₃ (2 eq., 112 mg, 0.81 mmol) and (NHC)Pd(allyl)Cl (5 mol%, 11 mg, 0.02 mmol) in 4 ml DMA. Purification by column chromatography (CH₂Cl₂/MeOH 1%) gave 6NICz (77 mg, 0.32 mmol, 80%) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, J = 0.9 Hz, 1H), 8.57 (d, J = 5.2 Hz, 1H), 8.07 – 8.02 (m, 2H), 7.99 (d, J = 7.5 Hz, 1H), 7.93 (dd, J = 5.2, 1.0 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.35 (td, J = 7.7, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.3, 138.4, 135.9, 134.8, 134.3, 129.9, 127.4, 123.5, 123.4, 122.5, 121.8, 120.8, 119.4, 117.6, 116.3, 112.6. HRMS (ESI): m/z calcd for C₁₇H₁₁N₂⁺ [M+H]⁺ 243.0917, found 243.0920.

Compound **6NICz** was prepared according to GP5 starting from chloro-**6PCz** (281 mg, 1.01 mmol) with K_2CO_3 (281 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (CH₂Cl₂/MeOH 1%) gave **6NICz** (225 mg, 0.93 mmol, 92%) as yellow solid. ¹H NMR according to the preparation starting from bromo-**6PCz**.

Pyrido[3',2':4,5]*pyrrolo*[3,2,1-*jk*]*carbazole* (7NICz). Compound 7NICz was prepared according to GP5 starting from bromo-7PCz (326 mg, 1.01 mmol) with K₂CO₃ (282 mg, 2.04 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (light petroleum/CH₂Cl₂ 60%) gave 7NICz (205 mg, 0.85 mmol, 84%) as white solid. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.52 (dd, J = 5.0, 1.6 Hz, 1H), 8.37 (dd, J = 7.7, 1.6 Hz, 1H), 8.23 (d, J = 8.1 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 7.4 Hz, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.41 (td, J = 7.7, 1.0 Hz, 1H), 7.28 (dd, J = 7.7, 5.0 Hz, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 151.4, 146.5, 143.3, 138.6, 131.2, 130.6, 127.7, 124.0, 123.9, 123.5, 123.2, 120.8, 120.5, 119.5, 117.7, 116.5, 114.3. HRMS (ESI): m/z calcd for C₁₇H₁₁N₂⁺ [M+H]⁺ 243.0917, found 243.0921.

Compound **7NICz** was prepared according to GP5 starting from chloro-**7PCz** (281 mg, 1.01 mmol) with K₂CO₃ (280 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (light petroleum/CH₂Cl₂ 60%) gave **7NICz** (235 mg, 0.97 mmol, 96%) as white solid. ¹H NMR according to the preparation starting from bromo-**7PCz**.

General procedure for the reduction of the N-oxides (GP6). The mixture of the N-oxide isomers (1 eq.) and iron powder (2 eq.) were dissolved in AcOH (22 ml/mmol) and stirred at 60°C under argon atmosphere for 2 hours. After cooling, the reaction mixture was poured into cold 2N NaOH and repeatedly extracted with CH_2Cl_2 . The organic phases were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography.

Dibenzo[*b*,*e*]*pyrido*[2,3,4-*gh*]*pyrrolizine* (1NICz)and pyrido[2',3':4,5]pyrrolo[3,2,1*jk]carbazole* (4NICz). Compounds 1NICz and 4NICz were prepared according to GP5 starting from 4PCb (323 mg, 1.00 mmol) with K₂CO₃ (280 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by repeated column chromatography (CH₂Cl₂/Et₂O 1%) gave pure **1NICz** (108 mg, 0.45 mmol, 45%) and **4NICz** (37 mg, 0.15 mmol, 15%) as off-white solids. Additional mixed fractions included dehalogenated side product which could not be separated. 1NICz: ¹H NMR (400 MHz, $CDCl_3$) δ 8.83 (d, J = 5.1 Hz, 1H), 8.32 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.80 -7.76 (m, 3H), 7.61 – 7.55 (m, 2H), 7.38 (t, J = 8.1 Hz, 1H), 7.32 (t, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 140.4, 140.2, 140.2, 138.4, 129.6, 129.3, 129.2, 128.7, 124.9, 124.6, 123.0, 122.8, 122.4, 113.9, 112.9, 112.7. HRMS (ESI): m/z calcd for C₁₇H₁₁N₂⁺ [M+H]⁺ 243.0917, found 243.0919. ¹H NMR of **4NICz** according to the preparation starting from bromo-**4PCz**.

Compounds **1NICz** and **4NICz** were prepared according to GP5 starting from **4PCb-Ox** (339 mg, 1.00 mmol) with K₂CO₃ (281 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. The crude product was flashed over silica to give a mixture of the formed N-oxide isomers (238 mg, 0.92 mmol, 92%). The N-oxides were then reduced according to GP6 with iron-powder (101 mg, 1.81 mmol) in 20 ml AcOH. Purification by repeated column chromatography (CH₂Cl₂/Et₂O 1%) gave pure **1NICz** (141 mg, 0.58 mmol, 58%) and **4NICz** (8 mg, 0.03 mmol, 3%) as off-white solids. According to ¹H-NMR the formed isomeric NICz mixture (167 mg, 0.69 mmol) contained **1NICz** (0.61 mmol) and **4NICz** (0.07 mmol). ¹H NMR according to the preparation starting from **4PCb** and bromo-**4PCz**, respectively.

Dibenzo[b,e]pyrido[3,4,5-gh]pyrrolizine (2NICz) and *pyrido[3',4':4,5]pyrrolo[3,2,1-jk]carbazole* (5NICz). Compounds 2NICz and 5NICz were prepared according to GP5 starting from 5PCb (322 mg, 1.00 mmol) with K₂CO₃ (279 mg, 2.02 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by repeated column chromatography (CH₂Cl₂/MeOH 1% - 2%) gave pure 2NICz (111 mg, 0.46 mmol, 46%) as off-white solid. According to ¹H-NMR the formed isomeric NICz mixture (211 mg, 0.87 mmol) contained 2NICz (0.76 mmol) and 5NICz (0.11 mmol). 2NICz: ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 2H), 8.09 (d, J = 7.8 Hz, 2H), 7.77 (d, J = 8.1 Hz, 2H), 7.55 (t, J = 7.8 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 139.0, 138.8, 128.2, 127.8, 124.0, 122.9, 115.9, 112.6. HRMS (ESI): m/z calcd for C₁₇H₁₁N₂⁺ [M+H]⁺ 243.0917, found 243.0920.

Compounds **2NICz** and **5NICz** were prepared according to GP5 starting from **5PCb-Ox** (339 mg, 1.00 mmol) with K_2CO_3 (277 mg, 2.00 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. The crude product was flashed over silica to give a mixture of the formed N-oxide isomers (231 mg, 0.89 mmol, 89%). The N-oxides were then reduced according to GP6 with iron-powder (98 mg, 1.76 mmol) in 20 ml AcOH. Purification by repeated column chromatography (CH₂Cl₂/MeOH 1% - 2%) gave pure **2NICz** (106 mg, 0.44 mmol, 44%) and **5NICz** (10 mg, 0.04 mmol, 4%) as off-white and white solid, respectively. According to ¹H-NMR the formed isomeric NICz mixture (184 mg, 0.76 mmol) contained **2NICz** (0.62 mmol) and **5NICz** (0.14 mmol). ¹H NMR according to the preparation starting from **5PCb** and bromo-**5PCz**, respectively.

Dibenzo[b,e]pyrido[2,3,4-gh]pyrrolizine (*INICz*) and *pyrido[4',3':4,5]pyrrolo[3,2,1-jk]carbazole* (*6NICz*). Compounds **1NICz** and **6NICz** were prepared according to GP5 starting from **6PCb** (324 mg, 1.00 mmol) with K₂CO₃ (281 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by repeated column chromatography (CH₂Cl₂/Et₂O 1% - 5%) gave pure **1NICz** (38 mg, 0.16 mmol, 16%) and **6NICz** (148 mg, 0.61 mmol, 61%) as off-white and yellow solid, respectively. According to ¹H-NMR the formed isomeric NICz mixture (225 mg, 0.93 mmol) contained **1NICz** (0.19 mmol) and **6NICz** (0.74 mmol). ¹H NMR according to the preparation starting from **4PCb** and bromo-**6PCz**, respectively.

Compounds **1NICz** and **6NICz** were prepared according to GP5 starting from **6PCb-Ox** (339 mg, 1.00 mmol) with K_2CO_3 (281 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. The crude product was flashed over silica to give a mixture of the formed N-oxide isomers (232 mg, 0.90 mmol, 90%). The N-oxides were then reduced according to GP6 with iron-powder (98 mg, 1.76 mmol) in 20 ml AcOH. Purification by repeated column chromatography (CH₂Cl₂/Et₂O 1% - 5%) gave pure **1NICz** (138 mg, 0.57 mmol, 57%) and **6NICz** (28 mg, 0.12 mmol, 12%) as off-white and white solids, respectively. According to ¹H-NMR the formed isomeric NICz mixture (210 mg, 0.87 mmol) contained **1NICz** (0.71 mmol) and **6NICz** (0.16 mmol). ¹H NMR according to the preparation starting from **4PCb** and bromo-**6PCz**, respectively.

2.3 Synthesis of twofold substituted NICzs

Benzo[*b*]*dipyrido*[3,2-*e*:4',3',2'-*gh*]*pyrrolizine* (1,4NICz)and pyrido[3,2b]pyrido[2',3':4,5]pyrrolo[3,2,1-hi]indole (4,12NICz). Compounds 1,4NICz and 4,12NICz were prepared according GP5 starting from 4,12PyCb (280 mg, 1.00 mmol) with K₂CO₃ (280 mg, 2.03 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography and preparative HPLC (CH₂Cl₂/MeOH 1% - 3%) gave 1,4NICz (98 mg, 0.40 mmol, 40%) and 4,12NICz (50 mg, 0.21 mmol, 21%) as white solids. According to ¹H-NMR the formed isomeric NICz mixture (228 mg, 0.94 mmol) contained **1,4NICz** (0.65 mmol) and **4,12NICz** (0.28 mmol). **1,4NICz**: ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, J = 5.2 Hz, 1H), 8.58 (dd, J = 4.8, 1.3 Hz, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.03 – 7.95 (m, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.53 (t, J = 8.3 Hz, 1H), 7.44 (dd, J = 8.3, 4.8 Hz, 1H), 7.36 (t, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 145.6, 144.0, 141.6, 140.3, 138.1, 134.9, 129.2, 129.2, 123.5, 123.5, 123.2, 122.7, 119.7, 114.2, 112.7. HRMS (ESI): m/z calcd for C₁₆H₁₀N₃⁺ $[M+H]^+$ 244.0869, found 244.0871. **4.12NICz**: ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 4.9, 1.3 Hz, 2H), 8.30 (d, J = 7.5 Hz, 2H), 7.96 (dd, J = 8.2, 1.3 Hz, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.38 (dd, J = 8.2, 4.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 144.0, 143.8, 133.1, 124.6, 122.2, 120.8, 118.7, 118.1. HRMS (ESI): m/z calcd for $C_{16}H_{10}N_3^+$ $[M+H]^+$ 244.0869, found 244.0870.

Benzo[*b*]*dipyrido*[4,3-*e*:3',4',5'-*gh*]*pyrrolizine* (2,5NICz)and pyrido[4,3b]pyrido[3',4':4,5]pyrrolo[3,2,1-hi]indole (5,11NICz). Compounds 2,5NICz and 5,11NICz were prepared according GP5 starting from 5,11PyCb (324 mg, 1.00 mmol) with K₂CO₃ (278 mg, 2.01 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography and preparative HPLC (CH₂Cl₂/MeOH 2% - 4%) gave 2,5NICz (130 mg, 0.53 mmol, 53%) and **5,11NICz** (37 mg, 0.15 mmol, 15%) as white solids. According to ¹H-NMR the formed isomeric NICz mixture (222 mg, 0.91 mmol) contained **2,5NICz** (0.72 mmol) and **5,11NICz** (0.19 mmol). **2,5NICz**: ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 9.24 (s, 1H), 9.20 (s, 1H), 8.76 (d, J = 5.6 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 5.6 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) & 148.2, 148.0, 145.6, 142.9, 139.9, 139.9, 138.4, 128.9, 128.4, 124.5, 124.4, 124.2, 116.2, 113.8, 113.2, 107.9. HRMS (ESI): m/z calcd for $C_{16}H_{10}N_3^+$ $[M+H]^+$ 244.0869, found 244.0871. **5,11NICz**: ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 2H), 8.74 (d, J = 5.5 Hz, 2H), 8.05 (d, J = 7.5 Hz, 2H), 7.73 (d, J = 5.5 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 145.1, 143.5, 142.4, 126.7, 125.3, 121.1, 116.6, 108.1. HRMS (ESI): m/z calcd for $C_{16}H_{10}N_3^+$ [M+H]⁺ 244.0869, found 244.0873.

Benzo[b]dipyrido[3,4-e:2',3',4'-gh]pyrrolizine (1,10NICz) and *pyrido[3,4-b]pyrido[4',3':4,5]pyrrolo[3,2,1-hi]indole* (6,10NICz). Compounds 1,10NICz and 6,10NICz were prepared according GP5 starting from 6,10PyCb (280 mg, 1.00 mmol) with K₂CO₃ (279 mg, 2.02 mmol) and (NHC)Pd(allyl)Cl (29 mg, 0.05 mmol) in 10 ml DMA. Purification by column chromatography (CH₂Cl₂/MeOH 1% - 4%) gave 1,10NICz (11 mg, 0.5 mmol, 5%) and 6,10NICz (186 mg, 0.76 mmol, 76%) as yellow and light brown solid, respectively.

1,10NICz: ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 8.88 (d, J = 5.0 Hz, 1H), 8.63 (d, J = 5.1 Hz, 1H), 8.15 (d, J = 5.1 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 5.0 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 143.4, 140.0, 139.2, 138.1, 135.9, 135.7, 134.9, 130.2, 129.1, 125.9, 125.3, 123.2, 117.2, 115.9, 113.4. HRMS (ESI): m/z calcd for C₁₆H₁₀N₃⁺ [M+H]⁺ 244.0869, found 244.0872. **6,10NICz**: ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 2H), 8.60 (d, J = 5.2 Hz, 2H), 8.09 (d, J = 7.5 Hz, 2H), 7.91 (dd, J = 5.2, 0.9 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 143.1, 135.8, 134.6, 134.5, 124.2, 123.4, 117.7, 117.2. HRMS (ESI): m/z calcd for C₁₆H₁₀N₃⁺ [M+H]⁺ 244.0869, found 244.0871.

Compounds **1,10NICz** and **6,10NICz** were prepared according GP5 starting from **6,10PyCb-Ox** (188 mg, 0.60 mmol) with K_2CO_3 (2 eq., 168 mg, 1.22 mmol) and (NHC)Pd(allyl)Cl (5 mol%, 17 mg, 0.03 mmol) in 10 ml DMA. The crude product was flashed over silica to give a mixture of the formed N-oxide isomers (96 mg, 0.35 mmol, 58%). The N-oxides were then reduced according to GP6 with iron-powder (4 eq., 78 mg, 1.4 mmol) in 8 ml AcOH. Purification with preparative HPLC (CH₂Cl₂/MeOH 2% - 4%) gave **1,10NICz** (57 mg, 0.23 mmol, 38%) and **6,10NICz** (4 mg, 0.02 mmol, 3%) as yellow and light brown solid, respectively. ¹H NMR according to the preparation starting from **6,10PyCb**.

3

Figure S2. ¹³C NMR spectrum of bromo-4PCz in CDCl₃.

Figure S3. ¹H NMR spectrum of chloro-4PCz in CDCl₃.

Figure S4. ¹³C NMR spectrum of chloro-4PCz in CDCl₃.

Figure S5. ¹H NMR spectrum of bromo-**5PCz** in CDCl₃.

Figure S6. ¹³C NMR spectrum of bromo-5PCz in CDCl₃.

Figure S8. ¹³C NMR spectrum of chloro-5PCz in CDCl₃.

Figure S10. ¹³C NMR spectrum of bromo-6PCz in CDCl₃.

Figure S11. ¹H NMR spectrum of chloro-6PCz in CDCl₃.

Figure S12. ¹³C NMR spectrum of chloro-6PCz in CDCl₃.

Figure S13. ¹H NMR spectrum of bromo-7PCz in CD₂Cl₂.

Figure S14. ¹³C NMR spectrum of bromo-7PCz in CD₂Cl₂.

Figure S16. ¹³C NMR spectrum of chloro-7PCz in CD₂Cl₂.

Figure S18. ¹³C NMR spectrum of 4PCb in CDCl₃.

Figure S20. ¹³C NMR spectrum of 5PCb in CDCl₃.

Figure S22. ¹³C NMR spectrum of 6PCb in CDCl₃.

Figure S24. ¹³C NMR spectrum of **7PCb** in CD₂Cl₂.

Figure S26. 13 C NMR spectrum of 4PCb-Ox in CD₂Cl₂.

Figure S28. ¹³C NMR spectrum of 5PCb-Ox in CDCl₃.

Figure S30. ¹³C NMR spectrum of 6PCb-Ox in CDCl₃.

Figure S32. ¹³C NMR spectrum of 4,12PyCb in CDCl₃.

Figure S33. ¹H NMR spectrum of 5,11PyCb in CDCl₃.

Figure S34. ¹³C NMR spectrum of **5,11PyCb** in CDCl₃.

Figure S35. ¹H NMR spectrum of 6,10PyCb in CDCl₃.

Figure S36. ¹³C NMR spectrum of 6,10PyCb in CDCl₃.

Figure S37. ¹H NMR spectrum of 6,10PyCb-Ox in DMSO.

Figure S38. ¹³C NMR spectrum of 6,10PyCb-Ox in DMSO.

Figure S40. ¹³C NMR spectrum of 1NICz in CDCl₃.

Figure S42. ¹³C NMR spectrum of 2NICz in CDCl₃.

Figure S44. ¹³C NMR spectrum of 4NICz in CDCl₃.

Figure S46. ¹³C NMR spectrum of 5NICz in CDCl₃.

Figure S48. ¹³C NMR spectrum of 6NICz in CDCl₃.

Figure S50. ¹³C NMR spectrum of 7NICz in CD₂Cl₂.

Figure S51. ¹H NMR spectrum of 1,4NICz in CDCl₃.

Figure S52. ¹³C NMR spectrum of 1,4NICz in CDCl₃.

Figure S54. ¹³C NMR spectrum of 4,12NICz in CDCl₃.

Figure S56. ¹³C NMR spectrum of 2,5NICz in CDCl₃.

Figure S58. ¹³C NMR spectrum of 5,11NICz in CDCl₃.

Figure S60. ¹³C NMR spectrum of **1,10NICz** in CDCl₃.

Figure S62. ¹³C NMR spectrum of 6,10NICz in CDCl₃.

4 Additional Screening results

Figure S63. Formation of dehalogenated byproduct during C-H activation of bromo-**4PCz** towards **4NICz** applying different catalysts. Reaction conditions: bromo-**4PCz** (0.025 mmol), K₂CO₃ (2 eq.), catalyst (10 mol%) and ligand (12 mol%: NHC, dppf; 22 mol%: PPh₃, PCy₃*HBF₄, JohnPhos), DMA, 130 °C.

Figure S64. C-H activation of bromo-**4PCz** towards **4NICz** applying different bases. Reaction conditions: bromo-**4PCz** (0.025 mmol), base (2 eq.), (NHC)Pd(allyl)Cl (10 mol%), DMA, 130 °C.

Figure S65. C-H activation towards 4NICz applying bromine and chlorine precursor. Reaction conditions: 4PCz (0.025 mmol), K₂CO₃ (2 eq.), (NHC)Pd(allyl)Cl (10 mol%), DMA, 130 °C.

Figure S66. C-H activation of bromo-**4PCz** towards **4NICz** applying different catalyst amounts. Reaction conditions: bromo-**4PCz** (0.025 mmol), K₂CO₃ (2 eq.), (NHC)Pd(allyl)Cl (2 – 10 mol%), DMA, 130 °C.

5 Molar attenuation coefficient

	maximum ^[a]		lowest energy peak	
	λ [nm]	$\varepsilon [L^* mol^{-1} * cm^{-1}]$	λ [nm]	$\varepsilon [L^* mol^{-1} * cm^{-1}]$
ICz	285	38100	363	11120
1NICz	280	16100	372	5660
2NICz	279	16400	344	2840
4NICz	297	22100	362	4820
5NICz	283	24860	351	19300
6NICz	284	25500	373	11640
7NICz	287	24220	357	7380
1,4NICz	294	23620	372	4780
2,5NICz	_[b]	-	341	4040
1,10NICz	283	16300	385	6820
4,12NICz	297	28140	351	4180
5,11NICz	285	12780	343	25160
6,10NICz	280	21060	379	14640

Table S1. Molar attenuation coefficients of peak maxima and lowest energy peaks of ICz and the synthesized NICz derivatives.

[a] Only peaks >270 nm considered due to possible influence of the solvent. [b] No distinct peak maximum above 270 nm observable.

6 Cyclic Voltammetry

Figure S67. Cyclic voltammograms of 1NICz (left) and 2NICz (right).

Figure S68. Cyclic voltammograms of 4NICz (left) and 5NICz (right).

Figure S69. Cyclic voltammograms of 6NICz (left) and 7NICz (right).

Figure S70. Cyclic voltammograms of 1,4NICz (left) and 4,12NICz (right).

Figure S71. Cyclic voltammograms of 2,5NICz (left) and 5,11NICz (right).

Figure S72. Cyclic voltammograms of 1,10NICz (left) and 6,10NICz (right).

Figure S73. Cyclic voltammogram of ICz.

7 HOMO / LUMO energy levels

Figure S74. Spatial distribution of the HOMO and LUMO levels of mono substituted isomers 4NICz, 5NICz, 6NICz and 7NICz.

Figure S75. Spatial distribution of the HOMO and LUMO levels of twofold substituted NICzs.

8 Crystal packing

Table S2. Geometries of the C—H…N contacts described in the text.	All CH distances are exactly 0.96 Å
since the H atoms were refined asriding on the parent C atoms.	

	H…N [Å]	C…N [Å]	C—H⋯N [°]
2NICz			
C7—H7…N2	2.64	3.595(10)	174.52
C9—H9…N2	2.58	3.539(10)	174.62
5NICz			
C7—H7…N5	2.49	3.438(9)	168.98
C9—H9…N5	2.80	3.756(8)	172.63
C7'—H7'…N5'	2.48	3.411(6)	162.73
C9'—H9'…N5'	2.85	3.806(7)	172.47
2,5NICz			
C7—H7⋯N2 (2×)	2.59	3.525(3)	165.32
1,10NICz			
C2—H2…N10'	2.85	3.715(6)	150.62
C9—H9…N1'	2.68	3.565(6)	153.38
C2'—H2'…N10	2.82	3.695(6)	152.58
C9'—H9'…N1	2.69	3.572(6)	153.54
6NICz			
C7—H7⋯N6	2.58	3.532(3)	173.39
C9—H9…N6	2.54	3.498(3)	175.10
C2'—H2'…N6'	2.74	3.489(3)	135.06
6,10NICz			
C7—H7⋯N6	2.51	3.351(2)	146.19
C9—H9…N6	2.70	3.575(2)	151.42

Figure S76. Packing of 1NICz. Color codes as in Figure 6. Disordered solvent molecules have been omitted.

Figure S77. Packing of the 6NICz molecules. Color codes as in Figure 6.

Figure S78. Chains of 6,10NICz connected by hydrogen bonding. Color codes as in Figure 6.

Figure S79. Packing of 7NICz. Color codes as in Figure 6.

9 References

- (1) Witkop, B. Studies on Carboline Anhydronium Bases. J. Am. Chem. Soc. 1953, 75 (14), 3361–3370.
- (2) Kamal, A.; Sathish, M.; Prasanthi, A. V. G.; Chetna, J.; Tangella, Y.; Srinivasulu, V.; Shankaraiah, N.; Alarifi, A. An Efficient One-Pot Decarboxylative Aromatization of Tetrahydro-β-Carbolines by Using N-Chlorosuccinimide: Total Synthesis of Norharmane, Harmane and Eudistomins. *RSC Adv.* 2015, *5* (109), 90121–90126.
- (3) Chen, J.; Chen, W.; Hu, Y. Microwave-Enhanced Fischer Reaction: An Efficient One-Pot Synthesis of Gamma-Carbolines. *Synlett* 2008, No. 1, 0077–0082.
- (4) Iwaki, T.; Yasuhara, A.; Sakamoto, T. Novel Synthetic Strategy of Carbolines via Palladium-Catalyzed Amination and Arylation Reaction. *J. Chem. Soc. Perkin Trans. 1* 1999, No. 11, 1505–1510.
- (5) Chan, K. L.; Watkins, S. E.; Mak, C. S. K.; McKiernan, M. J.; Towns, C. R.; Pascu, S. I.; Holmes, A. B. Poly(9,9-Dialkyl-3,6-Dibenzosilole)—a High Energy Gap Host for Phosphorescent Light Emitting Devices. *Chem. Commun.* 2005, No. 46, 5766–5768.
- Navarro, O.; Nolan, S. P. Large-Scale One-Pot Synthesis of N-Heterocyclic Carbene-Pd(allyl)Cl Complexes. *Synthesis (Stuttg).* 2006, No. 2, 366–367.