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1 Derivation of the Results
1.1 Interval for the Optimal Design
Result 1. If we assume σ1 = σ2 and 1 − β > 0.5 then the optimal design is given by
t0 = 1

2 . It is not necessary to assume 1− β > 0.5 but it is convenient to do so in order
to avoid a situation where N(t) = 0 for all t ∈ (0, 1).

Proof. The numerator of N(t) does not depend on t in this case, therefore N(t) is
minimized by t0 = 1

2 .

Result 2. For 1− β > 0.5 and 0 < σ1 < σ2 the sample size is minimized by t0 ∈ [I1, I2]
with I1 ≤ I2 <

1
2 . The minimizer is unique in the interval (0, 1). The bounds I1 and I2

are given by
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Additionally the following equivalence holds

t0 <
1
2 ⇐⇒ σ1 < σ2. (3)

Proof. First we calculate the derivative of N which is given by

d
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where the functions f and g are defined by
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2.

Only g(t) has a root in (0, 1). Therefore, we only need to consider this function for
finding the optimal t0. To prove the equivalence we start with t0 <

1
2 . In this case,

t0 > λ = 1
κ+1 . Because 1

2 > t0 > λ it follows that κ > 1. The other direction can be
proved in a similar manner.

Now that we know t0 <
1
2 we can easily construct an interval for t0. A lower bound is

given by λ. For the upper bound we use the monotonic function

h(t) = u1−α/2 σ(2t− 1)√q − uβ
(
σ2

1(1− t)2 − σ2
2t

2
)
. (5)

This function satisfies h(t) < g(t) for all t ∈ (0, 1
2) and it has exactly one root I2 in

(0, 1
2). From this it immediately follows that t0 < I2.

For the uniqueness in (0, 1), consider a second solution t′0 ≤ t0. It follows immediately
that t′0 > λ and consequently λ ≤ t′0 ≤ t0 ≤ 1

2 . But g is strictly monotone in (0, 1
2),

therefore both roots are equal.

Result 3. For 1− β > 0.5 and σ1 > σ2 > 0 the sample size is minimized by t0 ∈ [I2, I1]
with I1 ≥ I2 >

1
2 . The minimizer is unique in the interval (0, 1). The bounds are the

same as in the previous theorem. Additionally the following equivalence holds

t0 >
1
2 ⇐⇒ σ1 > σ2. (6)

Proof. Similar proof as in the case 0 < σ1 < σ2.

Result 4. For the case σ1 = 0 < σ2, we cannot apply the result from before. But using
a similar idea we can find a lower bound l(t) for the function g(t) which is defined by

l(t) = u1−α/2 σ(2t− 1)σ2 t+ uβ σ
2
2 t

2 (7)

and this function only has one root in (0, 1), namely

I
(0)
1 =

u1−α/2 σ

2u1−α/2 σ + u1−β σ2
= 1

2 + γ
, (8)

where γ = u1−β σ2
/ (
u1−α/2 σ

)
. Then an interval for the optimal design is given by

[I(0)
1 , I2].
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1.2 Optimality of a Balanced Design
From the construction of an interval for t0 it is clear that t0 = 1/2 if and only if σ2

1 = σ2
2.

The equality of variances simply means

∫
F 2

2 dF1 −
(∫

F2dF1

)2

=
∫
F 2

1 dF2 −
(∫

F1dF2

)2

. (9)

From that we can easily conclude the equivalence

t0 = 1
2 ⇐⇒

∫
F 2

1 dF2 =
∫

(1− F2)2dF1. (10)

Result 5. Let us now consider normalized cumulative distribution functions F1, F2 for
which an a ∈ R exists such that for all x ∈ R

F1(a+ x) = 1− F2(a− x) . (11)

holds, that is,

F1(a+ x) = 1− F2(a− x). (12)

Then the optimal design is given by t0 = 1/2. Furthermore if such an a exists and
the expectations of the two distributions are finite, then the constant a can be explicitly
calculated as

a = 1
2

(∫
xdF1(x) +

∫
xdF2(x)

)
, (13)

that is, a is the average of the expected values. If the third moments are finite, then it
follows from (11) that the variances of the distributions F1 and F2 are equal and their
skewness have opposite sign. In the case F1 = F2, the assumption (11) simply means
that F1 is a symmetric distribution.

Proof. This equivalence holds since F1 and F2 satisfy
∫
F 2

1 dF2 =
∫

(1−F2)2dF1. Equation
(13) follows directly after some calculations by first considering F1 and F2 to be either
continuous or discrete. Then (13) also holds for distributions with a continuous and
discrete proportion. First we proof (13) for the discrete case. Note that from (11) we
can conclude that P (X1 = x) = P (X2 = 2a− x) holds. Then for discrete X1 ∼ F1 and
X2 ∼ F2 the result follows from

EX1 =
∑
i

xiP (X1 = xi)

= −
∑
i

(2a− xi)P (X2 = 2a− xi) + 2a = −EX2 + 2a .

The derivation for the continuous case is similar.
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2 Simulation Results
For the simulation results from Section 5 from the main manuscript, we provide here
the detailed results in tables. For the first simulation we used Beta(5, 5) and Beta(3, i)
distributed random numbers in the first and second group for i = 1, 2. For each α =
0.01, 0.02, . . . , 0.1, we generated 106 random numbers for each group and calculated the
optimal allocation rate t0 and the total sample sizes N(t0) and N(1/2) (corresponding
to a balanced design) to achieve at least 80% power. The results for this simulation are
given in Table 1.

t0 N(t0) N(1/2) p κ α Effect
0.482 50344960.322 50409713.296 0.500 1.346 0.010 small
0.481 222750477.448 223086550.485 0.500 1.348 0.020 small
0.479 443308371.783 444071245.977 0.500 1.354 0.030 small
0.479 67091178.939 67213282.976 0.500 1.349 0.040 small
0.478 11583242.470 11606226.291 0.500 1.354 0.050 small
0.477 498345769.404 499384278.237 0.500 1.352 0.060 small
0.476 16344782.706 16380754.863 0.500 1.353 0.070 small
0.476 8086796.166 8105460.208 0.501 1.353 0.080 small
0.475 1089424989.407 1092041624.592 0.500 1.352 0.090 small
0.475 3308023.922 3316170.091 0.499 1.349 0.100 small
0.476 153.568 153.920 0.657 1.532 0.010 medium
0.474 131.511 131.862 0.657 1.531 0.020 medium
0.473 117.487 117.835 0.658 1.532 0.030 medium
0.472 108.820 109.170 0.658 1.532 0.040 medium
0.471 102.184 102.534 0.657 1.530 0.050 medium
0.470 96.490 96.843 0.657 1.533 0.060 medium
0.469 91.355 91.707 0.657 1.532 0.070 medium
0.468 87.552 87.906 0.657 1.532 0.080 medium
0.467 84.237 84.592 0.657 1.531 0.090 medium
0.467 80.319 80.674 0.657 1.534 0.100 medium
0.472 28.609 28.698 0.841 1.975 0.010 large
0.470 24.329 24.418 0.841 1.974 0.020 large
0.468 21.739 21.827 0.841 1.970 0.030 large
0.466 19.922 20.010 0.841 1.972 0.040 large
0.465 18.522 18.611 0.841 1.973 0.050 large
0.464 17.376 17.464 0.841 1.973 0.060 large
0.463 16.445 16.535 0.841 1.980 0.070 large
0.462 15.625 15.714 0.841 1.974 0.080 large
0.461 14.900 14.989 0.841 1.975 0.090 large
0.460 14.204 14.292 0.841 1.973 0.100 large

Table 1: Simulation results for varying type-I error probability α.
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For the second simulation we investigated the behaviour of t0 for increasing power (or
decreasing β). The results are displayed in Table 2.

In both simulations we observed that an increasing power or type-I error rate leads to
larger differences of |1/2−t0|, that is the groups will be even more unbalanced. Similarly,
from the simulations we also saw that a larger relative effect p and κ increase |1/2− t0|.
But the difference of total sample sizes between using a balanced design and the optimal
design was negligible. For larger and medium effects this difference was at most 1, that
is |N(t0) − N(1/2)| ≤ 1. For small effect p ∼ 0.5 these differences are larger but they
are still negligible as the total sample size itself is very large. Note that increasing p also
changes κ, in our case κ increases with p.

t0 N(t0) N(1/2) p κ 1− β Effect
0.500 16527695.653 16527695.653 0.500 1.346 0.500 small
0.496 96422766.696 96430226.036 0.500 1.348 0.550 small
0.492 239229025.677 239297902.533 0.500 1.354 0.600 small
0.488 44000655.214 44026179.733 0.500 1.349 0.650 small
0.484 9106746.129 9115651.669 0.500 1.354 0.700 small
0.481 466636900.324 467303128.247 0.500 1.352 0.750 small
0.478 18219581.045 18255539.953 0.500 1.353 0.800 small
0.474 10804151.660 10832469.375 0.501 1.353 0.850 small
0.471 1778183697.600 1784259299.398 0.500 1.352 0.900 small
0.466 6949665.830 6980860.750 0.499 1.349 0.950 small
0.500 51.920 51.920 0.657 1.532 0.500 medium
0.494 58.363 58.371 0.657 1.531 0.550 medium
0.489 64.711 64.742 0.658 1.532 0.600 medium
0.484 72.500 72.573 0.658 1.532 0.650 medium
0.480 81.243 81.378 0.657 1.530 0.700 medium
0.475 90.959 91.185 0.657 1.533 0.750 medium
0.471 102.053 102.404 0.657 1.532 0.800 medium
0.466 116.654 117.190 0.657 1.532 0.850 medium
0.461 136.368 137.194 0.657 1.531 0.900 medium
0.454 166.142 167.507 0.657 1.534 0.950 medium
0.500 11.010 11.010 0.841 1.975 0.500 large
0.494 12.045 12.047 0.841 1.974 0.550 large
0.488 13.092 13.099 0.841 1.970 0.600 large
0.482 14.227 14.246 0.841 1.972 0.650 large
0.476 15.478 15.512 0.841 1.973 0.700 large
0.471 16.879 16.936 0.841 1.973 0.750 large
0.465 18.547 18.637 0.841 1.980 0.800 large
0.459 20.564 20.700 0.841 1.974 0.850 large
0.452 23.235 23.444 0.841 1.975 0.900 large
0.443 27.374 27.716 0.841 1.973 0.950 large

Table 2: Simulation results for varying power 1− β.
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3 R Code
3.1 Power Simulation
x1 # vector of synthetic data of first group
x2 # vector of synthetic data of second group

R <- 10ˆ4
reject <- 0
n1 <- 299
n2 <- 299
set.seed(0)
for(i in 1:R){
z1 <- sample(x1, size = n1, prob = NULL, replace = TRUE)
z2 <- sample(x2, size = n2, prob = NULL, replace = TRUE)

df = data.frame(grp = c(rep(1,n1), rep(2,n2)), z = c(z1,z2))
df$grp <- as.factor(df$grp)

p <- rank.two.samples(z˜grp, data = df, wilcoxon = "asymptotic",
info = FALSE, shift.int=FALSE,
alternative = "two.sided")$Wilcoxon$p.Value
if(p <= 0.05){
reject <- reject + 1
}
}

3.2 Minimize t

x1 # vector of synthetic data of first group
x2 # vector of synthetic data of second group
alpha = 0.05
beta=0.8
m1 <- length(x1)
m2 <- length(x2)

# ranks among union of samples:
R <- rank(c(x1,x2), ties.method="average")
R1 <- R[1:m1]
R2 <- R[m1+(1:m2)]

# ranks within samples:
R11 <- rank(x1, ties.method="average")
R22 <- rank(x2, ties.method="average")
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# placements:
P1 <- R1 - R11
P2 <- R2 - R22

# effect size:
pStar <- (mean(R2)-mean(R1)) / (m1+m2) + 0.5

# variances:
sigmaStar <- sqrt(sum((R11-((m1+1)/2))ˆ2) / m1ˆ3)
sigma1Star <- sqrt(sum((P1-mean(P1))ˆ2) / (m1*m2ˆ2))
sigma2Star <- sqrt(sum((P2-mean(P2))ˆ2) / (m1ˆ2*m2))

sigmaStar <- sqrt(sum( (R- (m1+m2+1)/2)ˆ2 )/(m1+m2)ˆ3)

ss = function(t){
return((sigmaStar*qnorm(1-alpha/2) + qnorm(beta)*sqrt(t*sigma2Starˆ2 +
(1-t)*sigma1Starˆ2))ˆ2 / (t*(1-t)*(pStar-0.5)ˆ2))
}

# sample size with balanced groups
ss(1/2)

# optimal t
optimize(ss,interval=c(0,1), maximum=FALSE,tol = .Machine$double.eps)$minimum

# sample size given optimal t
optimize(ss,interval=c(0,1), maximum=FALSE,tol = .Machine$double.eps)$objective
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