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FIG. S1. Accuracy and precision of radius and intracellular volume fraction, using Non-optgg,
plotted as a function of ground truth R and f;, for (a) SNR = 20, and (b) SNR = 80. Black points
represent cases where more than 50% of the fits resulted in extreme values (within 1% of the fit
constraints) for at least one parameter. Colour scales match those in Fig. 2 in main text.



Modelling asynchronous apoptosis: bimodal cell radius distribution

Simulations were performed to mimic asynchronous apoptosis, with some cells shrinking and some
remaining the same size. Similar to the simulations in the main text, this analysis starts with a
‘baseline’ microstructure with R =r, f; = f, D; = di, and D, = de. Two possible microstructural
changes were then considered: (i) a simple mimic of asynchronous apoptosis, with a fraction of
cells, p, remaining the same size, and the rest, 1 — p, shrinking (with a cell volume decrease of
60%). The volume fractions of the resulting two cell populations, a and b, were calculated such
that the cell density remained the same as at baseline. (ii) a simple mimic of complete cell death,
with f; decreasing from baseline, but R remaining constant. A specific example is shown in Figure
S2a for p = 0.50, along with the equations used to control the microstructural changes. The case
of p = 0 corresponds to the simulations presented in the main text; that is, where all cells shrink.

The effect of p on the SNR required for detecting AR and A f; was evaluated using the methods
described in the main text, for a baseline of R = 10pm, f; = 0.60, D; = 1pm?/ms, and D, =
21m?/ms, with D-optgg. Note that the generative signal model for change (i) here includes two
cell radii, while all fitting was performed with the original model which only considers a single
radius (Eqn. [1] in the main text). The biases associated with this are illustrated in Figure S2b,
which shows the accuracy of R (top row) and f; (bottom row) for the ‘baseline’ and two ‘change’
cases, as a function of SNR, for four p values (columns). The effect of having a generative model
with two radii and a fitting model with a single radius is evident in the R estimates for case (i):
as p increases, R estimates increase from ~ 7.37um to ~ 10 pm (gold crosses on top row of Fig.
S2b). Here, the R estimates are approximately a weighted average of the two population radii,
R, and Ry, with weightings governed by the respective volume fractions. For f;, the fitting model
clearly cannot distinguish f;, and f;,, but the total restricted volume fraction, f;, + f;,, is estimated
accurately (that is, gold crosses on bottom row of Fig. S2b are close to the dark orange dashed
line).

Figure S3 plots the SNR required for detecting AR and Af;, as a function of p. For AR, the
required SNR decreases slightly with increasing p, which is the result of a slight improvement in R
precision as f; increases, coupled with the fact that the total restricted volume fraction increases
with p. For Af;, the required SNR increases with p, such that at p = 0.75 a higher SNR is needed
to detect A f; than AR. This trend for f; is due to the magnitude of A f; decreasing with increasing
p, coupled with f; precision becoming poorer as f; increases.

While this suggests that detecting AR may be more feasible than detecting Af;, at least for
p >~ 0.6, this only considers the estimates’ precision. As there is significant bias in the R estimates
due to the bimodal radius distribution (see top row of Fig. S2b), the relevant radius decrease will
not be estimated accurately; moreover, the estimate tends towards the baseline radius for high p,
where it may be concluded that there is no change.

These simulations provide some insight into the application of single-radius models to data which
come from a tissue with a distribution of radii, which will generally be the case experimentally
(1). Further work could investigate fitting a radius distribution directly (2), though the SNR



requirements are likely to increase when fitting a model with more parameters.
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FIG. S2. Effects of having a bimodal cell radius distribution. (a) Schematic of baseline microstruc-
ture and changes, where a fraction, p, of cells remain the same size, and the rest, 1 — p, shrink. A
specific example with p = 0.50 is used in the schematic, with the equations governing the changes
shown at the bottom. The case of p = 0 corresponds to the simulations in the main text; that is,
where all cells shrink. (b) Accuracy of R (top row) and f; (bottom row) for three microstructures
(colours), for p = 0,0.25,0.50,0.75; dashed lines indicate ground truth, with the gold lines for R
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FIG. S3. SNR required for detecting AR (crosses) and Af; (circles), from changes (i) and (ii)
respectively, as a function of p, the fraction of cells remaining the same size.
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