

Supporting Information

ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H₂ Evolution in Water

Moritz F. Kuehnel⁺, *Charles E. Creissen*⁺, *Constantin D. Sahm*⁺, *Dominik Wielend, Anja Schlosser, Katherine L. Orchard, and Erwin Reisner*^{*}

anie_201814265_sm_miscellaneous_information.pdf

Experimental Section

Materials. Zinc stearate (purum, Sigma-Aldrich), octadecane (99 %, Sigma-Aldrich), trioctylphosphine (90 %, Sigma-Aldrich), selenium powder (99 %, Sigma-Aldrich), *n*-heptane (99 %, Aldrich), methanol (99.8 %, Fisher-scientific), acetone (laboratory reagent grade, Fisher-scientific), 1-butanol (99 %, Alfa Aesar), trimethyloxonium tetrafluoroborate (96 %, Sigma-Aldrich), tetramethyl ammonium hydroxide pentahydrate (99 %, Sigma-Aldrich), 3-mercaptopropionic acid (MPA, ≥99 %, Sigma-Aldrich), L-ascorbic acid (99 %, Sigma-Aldrich), Fe(BF₄)₂·6 H₂O (97 %, Sigma-Aldrich), Co(BF₄)₂·6 H₂O (99 %, Sigma-Aldrich), Ni(BF₄)₂·6 H₂O (99 %, Acros) and K₂PtCl₄ (99.9 %, Sigma-Aldrich), Pt colloids (3 nm, 1000 ppm in water, Sigma-Aldrich) were used as received. Anhydrous solvents were purchased from Acros Organics with the following purities: CHCl₃ (99.9 %), *N*,*N*-dimethylformamide (DMF, 99.8 %), acetonitrile (ACN, 99.9 %). Cu(acetate)₂·H₂O (ACROS Organics, ACS reagent), Cr(NO₃)₃·9H₂O (Sigma-Aldrich, ≥99 %), and triethanolamine (Sigma-Aldrich, ≥99.5 %) were used for CuCrO₂ film preparation. ITO-coated glass sheets (Vision Tek Systems Ltd., R = 12 Ω cm⁻², thickness of 1.1 mm) were cut into 3 × 3 cm² slides then scored into 1 × 1.5 cm² before use. All aqueous experimental solutions were prepared with distilled water and all aqueous analytical samples were prepared with ultrapure water (DI water; Milli-Q[®], 18.2 MΩ cm).

ZnSe-St.^[1] A zinc precursor solution was prepared by mixing zinc stearate (632 mg, 1.00 mmol) and octadecane (8 g) in a 50 mL three-necked flask and degassed at 50 °C for 2 h before raising the temperature to 300 °C under N₂. A selenium precursor solution was prepared by dissolving Se powder (79.0 mg, 1.00 mmol) in trioctylphosphine (2.5 mL) under N_2 at 50 °C for 50 min. The Se solution was then heated to 100 °C and quickly injected into the stirred Zn solution (500 rpm) with a glass syringe. After stirring the reaction mixture for 25 min at 300 °C, it was quenched by placing the flask into a cold oil bath. When a temperature of 55 °C was reached, *n*-heptane (40 mL) was quickly added to prevent octadecane solidification. The mixture was divided into 4 equal parts, and to each part methanol (10 mL) was added to precipitate ZnSe-St followed by adding acetone (2x10 mL) to form a single phase. Particles were separated by centrifugation (6,500 rpm, 8 min) and washed by repeated dissolution in CHCl₃ (5 mL), precipitation with methanol (15 mL), and centrifugation (6,500 rpm, 8 min). The precipitate was mechanically separated from the tube walls, dispersed in 1butanol (10 mL), sonicated for 10 min and separated by centrifugation (6,500 rpm, 8 min). Residual butanol was removed by repeatedly adding methanol (10 mL), sonicating for 10 min and centrifugation (6,500 rpm, 8 min). Finally, the washed ZnSe-St was dissolved in CHCl₃ (3-4 mL) and centrifuged (6,500 rpm, 8 min), resulting in a cloudy upper layer, a clear middle layer and some precipitate on the bottom. The clear middle solution was collected and stored as stock solution at 4 °C.

ZnSe-BF₄.^[2] ZnSe-St (6-10 mL stock solution) were placed in a Schlenk flask and the solvent was removed *in vacuo*. The residue was dissolved in anhydrous CHCl₃ (3.0 mL) and anhydrous DMF (0.20 mL) under N₂. [Me₃O][BF₄] (1.0 M in anhydrous MeCN, 3-5 mL) was added dropwise, causing ZnSe-BF₄ to precipitate. The mixture was centrifuged (10,000 rpm, 10 min), the supernatant discarded, and precipitate re-dispersed in anhydrous DMF (3-4 mL), followed by sonication (20 min) and centrifugation (10,000 rpm, 10 min). The clear supernatant was degassed by two freeze-pump-thaw cycles and stored under N₂ at 4 °C.

ZnSe-MPA.^[3] Tetramethyl ammonium hydroxide (TMAOH, 25 % in water, 1 mL) was added to a solution of mercaptopropionic acid (0.75 mL) in 1:1 CHCl₃/MeOH (15 mL) and the pH was adjusted to 11 by adding solid TMAOH (approx. 16 scoops). Under N₂, this solution was added to ZnSe-St (3 mL stock solution) and stirred at 300 rpm for 70 h in the dark. Subsequently, acetone (50 mL) was added and ZnSe-MPA was separated by centrifugation (6,500 rpm, 8 min). The precipitate was repeatedly suspended in acetone (5-10 mL), sonicated (5 min), and separated by centrifugation (6,500 rpm, 8 min). Finally, solid ZnSe-MPA was left to dry in air for 1 min and dissolved water (1.0 mL). The resulting clear solution was degassed by two freeze-pump-thaw cycles and stored under N₂ at 4 °C.

Powder X-ray diffraction (XRD). XRD was conducted using an PANalytical Empyrean Series 2 instrument using CuK_{α} irradiation. 100 µL ZnSe nanorod stock solution were drop-casted onto a Si wafer and dried under vacuum.

Inductively-coupled plasma-optical emission spectroscopy (ICP-OES). The concentration of all ZnSe nanorod stock solutions was determined by ICP-OES. Measurements were carried-out by the Microanalysis Services, Department of Chemistry, University of Cambridge using a Thermo Scientific iCAP 7400 spectrometer. Samples were digested in HNO₃ and diluted with ultrapure water to 1-10 ppm analyte concentration, and the Zn²⁺ concentration was determined. Blank samples of diluted HNO₃ were recorded as background. The ZnSe concentration was calculated from the determined Zn²⁺ concentration assuming an ideal 1:1 Zn:Se stoichiometry. CuCrO₂ |ZnSe loading values were determined in triplicate, along with diluted HNO₃ blanks and bare CuCrO₂ electrodes, by digestion of a 1 cm² electrode in HNO₃ (1 mL) overnight and dilution to 10% v/v in Milli-Q[®] H₂O. Both Se and Zn content were determined for these samples.

Transmission electron microscopy (TEM). TEM images were collected using a FEI Philips Tecnai F20-G2 TEM, operating at an accelerating voltage of 200 kV located at the Electron Microscopy Suite of the Cavendish Laboratory, University of Cambridge. ZnSe-St stock solutions were diluted 1:1,000 in CHCl₃, drop-casted onto Cu grids and dried in air. ZnSe-BF₄ stock solutions were diluted 1:5,000 in DMF, drop-casted onto Cu grids and dried under vacuum. The grid was subsequently washed 10 times with CHCl₃ and dried in air. Post-catalysis TEM images were collected using a Thermo Scientific (FEI) Talos F200X G2 TEM, operating at an accelerating voltage of 200 kV located at the Department of Chemistry, University of Cambridge. ZnSe-NRs were precipitated after photocatalysis (3 h) via centrifugation, re-dispersed in DMF (2 mL), diluted (1:25) in H₂O and drop-casted onto holey-carbon coated Cu grids.

Scanning electron microscopy (SEM). SEM images were recorded using a Tescan MIRA3 FEG-SEM. Energy-dispersive X-ray (EDX) spectra were recorded with an Oxford Instruments Aztec Energy X-maxN 80 EDX system (20 kV, 15 mm working distance).

Photocatalytic H₂ generation. A ZnSe-NR stock solution (ZnSe-BF₄, ZnSe-MPA or ZnSe-St, 6.39 mg ZnSe mL⁻¹, 15.6 μ L) and co-catalyst stock solution (2 mM aq. Ni(BF₄)₂·6H₂O, 20 μ L) were diluted in aq. ascorbic acid (0.4 M, pH adjusted to 4.5 with NaOH) to a total volume of 2.00 mL, to give a ZnSe concentration of 50 mg L⁻¹. The mixture was then added to a Pyrex photoreactor containing a stirrer bar (7.91 mL internal volume), sealed with a rubber septum and purged with N₂ (2 % CH₄) for 10 min in the dark. The photoreactor was then thermostated with a water circulator at 25 °C, stirred at 600 rpm and irradiated by a solar light simulator (Newport Oriel, 100 mW cm⁻²) equipped with an air mass 1.5 global filter (AM 1.5G). IR irradiation was filtered with a water filter

(10 cm path length). Where indicated, UV irradiation was filtered with a 400 nm long pass filter (UQG Optics). Generated H_2 was quantified through periodic headspace gas analysis (50 μ L) by gas chromatography.

For long-term stability tests, photocatalysis experiments were performed for 21 h, followed by either purging with N₂ (2 % CH₄) or centrifugation (10 min, 10,000 rpm). The separated precipitate was resuspended in its original supernatant or in fresh aq. AA (0.4 M, pH 4.5). Alternatively, fresh ZnSe-BF₄ stock solution (6.39 mg ZnSe mL⁻¹, 15.6 μ L) was added to used supernatant. All samples were sealed, purged with N₂ (2 % CH₄) for 10 min in the dark and irradiation was continued as stated above.

Gas chromatography analysis. Gas chromatography was carried out on either an Agilent 7890A gas chromatograph using a thermal conductivity detector and a HP-5 column (kept at 45 °C) and N₂ as the carrier gas or a Shimadzu Tracera GC2010 Plus gas chromatograph using a barrier ionization discharge (BID) detector and a molsieve column (kept at 130°C) with He as the carrier gas. Methane (2 % CH₄ in N₂, BOC) was used as internal standard after calibration with different mixtures of known CH₄/H₂/N₂ compositions.

External quantum efficiency (EQE). Photocatalysis samples were prepared as stated above, but using an airtight, flat-sided quartz cuvette (1 cm path length) as the photoreactor. The cuvette was purged with N₂/CH₄ (2 %) and irradiated with monochromatic light (λ = 400±5 nm, *I* = 1.0 mW cm⁻², *A* = 0.20 cm²) using an LOT Quantum Design MSH-300 monochromator. Aliquots of headspace gas were taken periodically and analyzed by gas chromatography. The EQE was calculated according to equation (1).

EQE (%) =
$$\frac{2n \times N_A \times h \times c}{t_{irr} \times \lambda \times I \times A} \times 100$$
 (1)

Where *n* is the amount of H₂ produced per time, N_A is Avogadro's constant, *h* is the Planck constant, *c* is the speed of light, t_{irr} is the irradiation time, λ is the irradiation wavelength, *I* is the irradiation intensity and *A* is the irradiated area. The internal quantum yield (IQE) was calculated by dividing the EQE by the extinction at 400 nm.

Determination of co-catalyst attachment. After 3 h photocatalytic H₂ production at standard conditions (*vide supra*), the reaction mixtures of 3 experiments were combined, transferred to a centrifuge tube and centrifuged for 10 min at 10,000 rpm. The precipitate was dissolved in conc. HNO₃ (2 mL) and diluted to 10 mL with ultrapure water. By ICP-OES, the Ni:Se ratio was found to be 0.450 ng Ni per μ g Se. Using the ZnSe bulk density of 5.27×10⁶ g m⁻³, the weight of an individual ZnSe-NR (5.2±0.6 nm diameter, 30.0±4.8 nm long) was estimated at 3.36±0.92×10⁻¹⁸ g, corresponding to a Ni content of 8.26±2.27×10⁻²² g or 8.5±2.3 Ni atoms per NR.

UV–Vis spectroscopy. UV–Vis spectra were recorded on a Varian Cary 50 UV–Vis spectrophotometer using quartz glass cuvettes (1 cm path length). Spectra of electrodes were recorded in transmission mode with a blank ITO-coated glass background.

Preparation of CuCrO₂ |ZnSe electrodes. CuCrO₂ electrodes were prepared directly on ITO-coated glass slides, which were previously cleaned (sonication in isopropanol, ethanol, and acetone, 15 min) and dried at 100 °C. A solution of Cu(acetate)₂·H₂O (0.2 M), Cr(NO₃)₃·9H₂O (0.2 M), and triethanolamine (0.2 M), was prepared in absolute ethanol and stirred for 15 h before spin coating

on ITO slides (Laurell WS-650MZ spin coater, 1500 rpm, 15 s, 3000 rpm s⁻¹ acceleration, 0.4 mL volume). Samples were annealed in a chamber furnace (Carbolite Gero) to 400 °C with a ramp rate of 10 °C min⁻¹ for 45 min. Spin-coating and annealing steps repeated for a total of 3 layers. A tube furnace fitted with a quartz tube, end seals, and insulation plugs (Carbolite Gero) was used to anneal samples to 600 °C with a 5 °C min⁻¹ ramp rate for 45 min under Ar flow (150 SCCM). ZnSe was immobilized through dropcasting 8 μ L cm⁻² of a stock solution (1.66 mg/mL, acetonitrile) and drying in air. CuCrO₂ |ZnSe photoelectrodes were used directly after preparation.

Photoelectrochemical measurements. Photoelectrochemical measurements were conducted in a one-compartment 3-necked cell with a flat borosilicate window, using an Ivium CompactStat potentiostat. A three-electrode setup was used with a Pt-counter, Ag/AgCl/KCl_{sat} reference, and a CuCrO₂-based working electrode (0.25 cm² active area). The aqueous Na₂SO₄ electrolyte solution (0.1 M, pH 5.5) was purged with N₂ for 15 minutes prior to measurements. Electrodes were illuminated from the front using a calibrated Newport Oriel solar light simulator (150 W, 100 mW cm⁻², AM 1.5G) with an IR water filter and a UQG Optics UV-Filter ($\lambda > 400$ nm).

Controlled potential photoelectrolysis (CPPE). CPPE experiments were conducted in triplicate at 0.0 V vs. RHE in an airtight two-compartment electrochemical cell with a flat quartz window and a Nafion membrane divider. The working compartment volume was 12 mL with a gas headspace of 5 mL and the counter compartment contained 4.5 mL solution and a 3.5 mL headspace. Both compartments were purged with 2 % CH₄ in N₂ for 30 minutes prior to electrolysis and the amount of hydrogen determined using gas chromatography (see above). The partial pressure of H₂ was calculated to account for dissolved gas in the solution and this was added to the amount of hydrogen to obtain the Faradaic efficiency.

Incident photon-to-current efficiency measurements. IPCE spectra were recorded in a 3-necked one-compartment cell with a flat borosilicate glass window in N₂-purged aqueous Na₂SO₄ (0.1 M, pH 5.5). A three-electrode setup with a Pt-counter, Ag/AgCl/KCl_{sat} reference, and a CuCrO₂-based working electrode (0.25 cm² active area) was used. Monochromatic light was supplied using a 300 W Xenon lamp coupled to a monochromator (MSH300, LOT quantum design). The intensity was adjusted to 1.0 mW cm⁻² for each wavelength and the applied potential maintained at 0.0 V vs. RHE. Triplicate data was acquired for each electrode tested.

Treatment of data. All analytical measurements were performed in triplicate and are given as unweighted mean \pm standard deviation (σ) unless otherwise stated. σ of a measured value was calculated using equation (2).

$$\sigma = \sqrt{\frac{\Sigma(x-\bar{x})^2}{n-1}}$$
(2)

Where *n* is the number of repeated measurements, *x* is the value of a single measurement and \overline{x} is the unweighted mean of the measurements. σ was increased to 5 % of \overline{x} in the event that the calculated σ was below this threshold.

Supporting Figures

Figure S1. Physical characterization of ligand-free ZnSe nanorods. (A-C) Size distribution from (D-E) transmission electron micrographs; powder X-ray diffractogram with comparison to zinc blende-ZnSe (PDF 01-0715977 37-1463) and Wurtzite-ZnSe (PDF 01-089-2940 15-105).

Figure S2. (A) Stacked UV-visible absorption spectra of ZnSe nanorods with different capping ligands. (B) Photoluminescence emission spectrum of ZnSe-BF₄ in DMF with indicated separation of the two emission maxima attributed to Zinc blende (467 nm) and Wurtzite (451 nm) polymorphs (excitation at 370 nm).^[4] (C) PL quenching of aqueous ZnSe-BF₄ in the presence of ascorbic acid (AA) at various concentrations (excitation at 390 nm) and (D) corresponding Stern-Volmer plot of the PL intensity at 451 nm.

Figure S3. Optimization of the photocatalytic H₂ generation using aqueous ZnSe-BF₄ NRs. (A) Variation of NR concentration (3 h irradiation). (B) Variation of the AA concentration. (C) Variation of the solution pH. (D) Variation of the co-catalyst concentration (3 h irradiation). Conditions unless otherwise stated: 50 mg L⁻¹ ZnSe-BF₄, 0.4 M AA, pH 4.5, 25 °C, 100 mW cm⁻², AM 1.5G, λ >400 nm, under N₂. Lines between data points have been added to guide the eye.

Figure S4. Long-term photocatalytic H₂ generation using aqueous ZnSe-NRs. After 21 h irradiation, samples were centrifuged, and separated precipitate was re-suspended in fresh aq. AA (0.4 M, pH 4.5), or in used aq. AA (supernatant from the same sample), or fresh ZnSe-BF₄ stock solution (6.39 mg ZnSe mL⁻¹, 15.6 μ L) was added to used aq. AA (supernatant from another sample). Conditions: 50 mg L⁻¹ ZnSe-BF₄, 0.4 M AA, pH 4.5, 25 °C, 100 mW cm⁻² AM 1.5G, λ >400 nm, under N₂. Lines between data points have been added to guide the eye.

Figure S5. UV-vis spectra of ZnSe-BF₄ NRs during long-term photocatalytic H₂ generation. Conditions: 50 mg L⁻¹ ZnSe-BF₄, 20 μ M Ni(BF₄)₂·6 H₂O, 0.4 M AA, pH 4.5, illuminated with 1.00 mW cm⁻², λ = 400±5 nm, under N₂, room temperature.

Figure S6. TEM images of ZnSe-BF₄ NRs after 3 hours photocatalytic H₂ generation. Image (A) shows a NR aggregate and (B) confirms the nanocrystalline features which are retained after catalysis. Conditions: 50 mg L⁻¹ ZnSe-BF₄, 0.4 M AA, pH 4.5, 25 °C, 100 mW cm⁻² AM 1.5G, λ >400 nm, under N₂.

Figure S7. Cross-sectional SEM image of the as-assembled CuCrO₂ |ZnSe photocathode.

Figure S8. Energy-dispersive X-ray (EDX) spectra of the CuCrO₂ |ZnSe electrode. Left: Top-down view. Right: View of ZnSe-modified and bare CuCrO₂ areas.

Figure S9. Stacked UV-vis spectra of a CuCrO₂ electrode before (black) and after (red) immobilization of ZnSe-BF₄ NRs (blue).

Figure S10. Controlled potential photoelectrolysis (CPPE) of a $CuCrO_2$ |ZnSe photocathode (1 cm² active geometrical area) held at 0 V vs. RHE. Conditions: aqueous Na₂SO₄ (0.1 M, pH 5.5), illuminated with 100 mW cm⁻², AM 1.5G, using a 400 nm cut-off filter, room temperature.

Figure S11. Controlled potential photoelectrolysis of a $CuCrO_2$ |ZnSe photocathode (1 cm² active area) in the presence of 20 μ M Ni(BF₄)₂ held at 0 V vs. RHE under visible-light irradiation. Conditions: aqueous Na₂SO₄ (0.1 M, pH 5.5), illuminated with 100 mW cm⁻², AM 1.5G, using a 400 nm cut-off filter, room temperature.

Figure S12. IPCE spectrum for CuCrO₂ (black) and CuCrO₂ |ZnSe (blue) electrodes recorded in aqueous Na_2SO_4 (0.1 M, pH 5.5) at an applied potential of 0.0 V vs. RHE with light intensity maintained at 1.0 mW cm⁻².

Supporting Tables

Table S1. Optimization of the photocatalytic H ₂ generation using ZnSe nanorods. Unless otherwise stated, conditions were: 50 mg L ⁻¹ ZnSe-
BF ₄ , 20 μM Ni(BF ₄) ₂ ×6H ₂ O in 2 mL 0.4 M aq. AA, pH 4.5 under N ₂ ; 3 h irradiation at 100 mW cm ⁻² , AM 1.5G, λ >400 nm, 25 °C).

different co-catalysts added			
co-catalyst	c(co-catalyst) /μM	n(H₂) / μmol	activity / mmol _{H2} g _{ZnSe} -1 h ⁻¹
none	0	10.06±0.60	33.6±2.0
$Fe(BF_4)_2 \times 6H_2O$	20 µM	12.31±1.16	41.0±3.9
$Co(BF_4)_2 \times 6H_2O$	20 µM	13.72±0.38	45.8±1.3
$Ni(BF_4)_2 \times 6H_2O$	20 µM	16.24±0.58	54.3±1.9
K ₂ PtCl ₄	20 µM	0.30±0.16	0.99±0.52
Pt NPs	20 µM	1.50±0.11	4.99±0.36
	varying co-catalyst	concentration	
co-catalyst	c(co-catalyst) / μM	n(H₂) / μmol	activity / mmol _{H2} g _{2nSe} ^{−1} h ^{−1}
Ni(BF4)2 × 6H2O	0	10.06±0.60	33.6±2.0
Ni(BF ₄) ₂ × 6H ₂ O	10	14.86±0.27	49.7±0.9
$Ni(BF_4)_2 \times 6H_2O$	20	16.24±0.58	54.3±1.9
$Ni(BF_4)_2 \times 6H_2O$	40	15.92±0.39	53.2±1.3
$Ni(BF_4)_2 \times 6H_2O$	50	13.52±0.14	45.2±0.5
	different cappi	ng ligands	
Photocatalyst	co-catalyst	n(H₂) / μmol	activity / mmol _{H2} g _{2nSe} ⁻¹ h ⁻¹
ZnSe-BF ₄	none	10.06±0.60	33.6±2.0
ZnSe-BF ₄	20μM Ni(BF ₄) ₂ × 6H ₂ O	16.24±0.58	54.3±1.9
ZnSe-MPA	none	6.22±0.16	20.7±0.5
ZnSe-MPA	20 μM Ni(BF ₄) ₂ × 6H ₂ O	13.83±0.42	45.9±1.4
ZnSe-St	none	2.19±0.43	7.3±1.4
ZnSe-St	20 μM Ni(BF ₄) ₂ × 6H ₂ O	3.64±0.82	12.1±2.7
varying irradiation spectrum			
Light spectrum	co-catalyst	n(H₂) / μmol	activity / mmol _{H2} g _{znSe} ⁻¹ h ⁻¹
AM 1.5G, >400 nm	none	10.06±0.60	33.6±2.0
AM 1.5G, >400 nm	20 μ M Ni(BF ₄) ₂ × 6H ₂ O	16.24±0.58	54.3±1.9
AM 1.5G	none	23.06±2.84	76.9±9.5
AM 1.5G	20 μM Ni(BF ₄) ₂ × 6H ₂ O	41.16±0.93	137.2±3.1

c(ZnSe-BF4) / mg _{znSe} L ⁻¹	co-catalyst	n(H₂) ∕ μmol	activity / mmol _{H2} $g_{z_n Se}^{-1} h^{-1}$	
25	none	6.88±0.76	46.0±5.1	
50	none	10.06±0.60	33.6±2.0	
100	none	19.47±0.41	32.6±0.7	
	varying AA concentratio	n (19 h irradiation) ^[a]		
c(AA) / M	co-catalyst	n(H₂) / μmol	activity / mmol _{H2} g _{znSe} ⁻¹ h ⁻¹	
0.1	none	34.54±1.72	18.1±0.9	
0.1	20 μM Ni(BF ₄) ₂ × 6H ₂ O	46.82±2.29 ^[b]	22.4±1.1 ^[b]	
0.4	none	40.08±5.73	21.0±3.0	
0.4	20 μM Ni(BF ₄) ₂ × 6H ₂ O	60.03±3.40	31.5±1.8	
0.8	none	41.63±0.22	21.9±0.1	
0.8	20 μM Ni(BF ₄) ₂ × 6H ₂ O	59.52±7.01	31.3±3.7	
varying pH (19 h irradiation) ^[a]				
рН	co-catalyst	n(H₂) / μmol	activity / mmol _{H2} g _{znSe} ^{−1} h ^{−1}	
3.5	none	36.35±1.14	19.2±0.6	
4.5	none	40.08±5.73	22.7±3.8	
5.5	none	33.04±3.99	17.4±2.1	

varying ZnSe concentration

[a] Data from two independent experiments; [b] 20 h irradiation.

Table S2. External quantum efficiency (EQE) determination for the photocatalytic H₂ evolution using ZnSe-NRs (50 mg L⁻¹ ZnSe-BF₄, in 2 mL 0.4 M aq. AA, pH 4.5 under N₂; $I = 1.00\pm0.01$ mW cm⁻², A = 0.20 cm², $\lambda = 400\pm5$ nm, room temperature).

no co-catalyst			
time / h	n(H₂) / μmol ^[a]	EQE / % ^[b]	IQE / % ^[b]
1	0.10±0.03	7.6±2.0	11.8±3.3
2	0.37±0.02	24.1±0.9	36.1±2.4
3	0.68±0.03	26.8±1.1	38.7±1.1
4	0.99±0.04	26.2±1.1	37.7±1.6
5	1.30±0.04	25.8±1.0	36.9±1.6
6	1.60±0.04	24.9±0.5	35.7±0.7
average over hours 3–6		25.9±1.2	37.2±1.7

with added co-catalyst (20 μ M Ni(BF₄)₂ × 6 H₂O)

time / h	n(H₂) / μmol ^[a]	EQE / % ^[b]	IQE / % ^[b]
1	0.10±0.01	8.2±1.2	12.5±1.3
2	0.42±0.03	27.3±1.8	39.2±2.5
3	0.82±0.07	34.0±3.1	48.3±4.1
4	1.25±0.07	36.5±0.5	51.1±0.9
5	1.67±0.08	35.4±1.3	49.3±0.9
6	2.12±0.08	37.5±2.9	52.3±5.0
average over hours 3–6		35.9±2.6	50.2±3.6

[a] Cumulative H₂ measured in headspace.[b] Quantum efficiency measured per time interval.

Table S3. Control experiments for the photocatalytic H ₂ generation using ZnSe-BF ₄ . Unless otherwise stated, conditions we	re: 50 mg L ⁻¹
ZnSe-BF ₄ , 20 μM Ni(BF ₄) ₂ × 6 H ₂ O in 2 mL 0.4 M aq. AA, pH 4.5 under N ₂ ; 100 mW cm ⁻² , AM 1.5G, λ >400 nm, 25 °C.	

description	time / h	n(H₂) ± σ / μmol
standard experiment	19	72.43±1.75
no Ni(BF₄)	19	45.01±2.42
no AA	20	0.015±0.011
no light	21	not detected
no ZnSe-BF₄	19	not detected

Table S4. Determination of ZnSe loading on CuCrO2 using ICP-OES	S. Conditions: Digestion in 10% v/v HNO ₃ in MilliQ [®] I	H ₂ O, 1 cm ⁻² electrode
---	---	--

photoelectrode	Zn ²⁺ / μg cm ⁻²	Se ²⁻ / μg cm ⁻²
CuCrO ₂	0.1 ± 0.1	0
CuCrO ₂ ZnSe-NRs	6.4 ± 0.3	7.0 ± 0.4

Table S5. Controlled-potential photoelectrolysis using a CuCrO₂ |ZnSe photocathode. Conditions: 0.1 M NaSO₄ (pH 5.5), $E_{app} = 0 V vs$. RHE, illumination of 100 mW cm⁻², AM 1.5G, $\lambda > 400$ nm, 1 cm² active area.

photoelectrode	time / h	n(H ₂) ^[a] / nmol cm ⁻²	F.E. /%
CuCrO ₂ ZnSe-NRs (entry 1)	4	38.2	9.0
CuCrO ₂ ZnSe-NRs (entry 2)	4	31.9	7.6
CuCrO ₂ ZnSe-NRs (entry 3)	4	34.0	5.2
	average	34.7 ± 3.2	7.3 ± 1.9
CuCrO ₂ ZnSe-NRs Ni ^{2+ [b]}	4	47.8	9.7
CuCrO ₂ blank	4	not detected	-

[a] corrected for the dissolved H_2 using Henry's law; [b] in presence of 20 μM Ni(BF_4)_2

Supporting references

- [1] P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, A. Pron, *Mater. Chem. Phys.* **2004**, *84*, 10-13.
- [2] M. F. Kuehnel, C. D. Sahm, G. Neri, J. R. Lee, K. L. Orchard, A. J. Cowan, E. Reisner, *Chem. Sci.* **2018**, *9*, 2501-2509.
- [3] C. M. Chang, K. L. Orchard, B. C. M. Martindale, E. Reisner, *J. Mater. Chem. A* **2016**, *4*, 2856-2862.
- [4] C.-Y. Yeh, S.-H. Wei, A. Zunger, *Phys. Rev. B* **1994**, *50*, 2715-2718.

End of Supporting Information