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1 SUPPLEMENTARY MATERIAL

1.1 Derivation of Laplace’s law

To derive the law of Laplace we consider a spherical shell of inner radius, r and thin walls of a given thickness, h. Inflating the shell by applying a
pressure, p, within the shell’s cavity, induces deformation which causes the buildup of stresses within the wall. If we consider one half of the sphere,
the total force Fp acting on the inner surface must be balanced with the total force acting over the cut surface (see Fig. 1.A). Due to spherical
symmetry, the circumferential stresses σcirc(ρ) at any radius r ≤ ρ ≤ R must be the same and the shear stress is zero. Integrating circumferential

stresses over the cut surface yields the total force balancing the force due to the applied pressure. That is, we have

p r2 π
!= (R2 − r2)σcirc π. (1)

Assuming that h� r, radial stresses are small compared to circumferential stresses, σrr � σcirc, and the total stress tensor is approximated by

σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 = P

 σrr σrϕ σrθ

σϕr σϕϕ σϕθ

σθr σθϕ σθθ

P> ≈ P

 0 0 0
0 σcirc 0
0 0 σcirc

P> (2)

with respect to the spherical coordinate system and the projection matrix P = (er, eϕ, eθ)>, see Fig. 1.C. Note that σ in a spherical shell differs
from a stress tensor in the LV in various ways. Unlike in the LV, stresses in circumferential and meridonial/longitudinal direction are equal whereas
in the LV longitudinal stresses tend to be larger than circumferential stresses. Further, the assumption r � h is not justified, rather r ≈ h holds.
Thus radial stresses in the LV are non-negligible, that is, σrr is at an order of magnitude comparable to σcirc.
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FIGURE 1 Balance of forces in thin-walled spherical shell models, spherical coordinate system and displacement boundary conditions.

1.1.1 Laplace’s law for a thick-walled sphere

From Eq. (1) the circumferential stress in a thick-walled sphere is found as

σcirc =
p r2

(R2 − r2)
=

p r2

(R− r)(R+ r)
=

p r2

h(2 r + h)
=

p r2

2h r
(
1 + h

2 r

) =
p r

2h
(
1 + h

2 r

) = σL,H (3)

which we denote as σL,H.

1.1.2 Laplace’s law for a thin-walled sphere

Using assumption (A3), i.e. h/r � 1, we have
(
1 + h

2 r

)
≈ 1 which yields the simple law of Laplace for a thin-walled sphere given by

σcirc =
p r

2h
(
1 + h

2 r

) ≈ p r

2h
= σL,h (4)

which we denote as σL,h.
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1.1.3 Volume-based stress
Since radius r and wall thickness h are two quantities which are not always available or are hard to determine for a general geometry like a LV, we
rewrite Eq. (3) in terms of the cavity volume Vcav and the myocardial volume Vmyo. For the spherical shell geometry there holds Vcav = 4

3πr
3 and

Vcav = 4
3π (R3 − r3) which entails r =

(
3Vcav
4π

)1/3 and (r + h) =
( 3 (Vcav+Vmyo)

4π

)1/3
. Using the volume-based representations of r and r + h, we

can rewrite Eq. (3)

σL,H =
p r

2h
(
1 + h

2 r

) =
p

2h
r

(
1 + h

2 r

) =
p(

2h
r

+ 2h2

2 r2

) =
p(

r2

r2 + 2h r
r2 + h2

r2

)
− 1

=
p(

r+h
r

)2
− 1

=
p(

Vcav+Vmyo
Vcav

)2/3
− 1

= σL,V (5)

which we denote as σL,V.

1.2 Computation of power and work

The approximations σL,h, σL,H and σL,V for the circumferential stress σcirc can be used to derive an estimator for the internal power

Pint(t) =
∫
Ω

σ(u, t) : ε̇(u, t) dx (6)

and internal work

Wint =

t∫
t0

Pint(τ)dτ. (7)

For this sake, we consider Eq. (6) and the simplified representation of the total stress tensor Eq. 2. In Eq. (6) an approximation of the strain rate ε̇
is required. Rewriting the strain tensor ε in spherical coordinates, as done for the stress tensor σ, we obtain

ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 = P

 εrr εrϕ εrθ

εϕr εϕϕ εϕθ

εθr εθϕ εθθ

P>

where P is the projection matrix introduced in Sec. 1.1. Similarly, the strain rate ε̇ is expressed as

ε̇ = P

 ε̇rr ε̇rϕ ε̇rθ

ε̇ϕr ε̇ϕϕ ε̇ϕθ

ε̇θr ε̇θϕ ε̇θθ

P>.

Using Eq. (2), an approximation of the internal power density, pint can be derived as (σ : ε̇) ≈ σcirc (ε̇ϕϕ + ε̇θθ). Due to the assumption of symmetry
(A2), strains in circumferential direction do not vary with space, i,e. εϕϕ = εθθ = εcirc, and the approximation for the internal power density

simplifies to
(σ : ε̇) ≈ 2σcirc ε̇circ. (8)

An approximation of the circumferential strain εcirc can be found based the Cauchy strain and considerations illustrated in Fig. 2. Accordingly,
for a given radius r circumferential strain can be approximated as

εcirc ≈
(l0 + δl)− l0

l0
=

(r0 + δr)α− r0 α
r0 α

=
(r0 + δr)− r0

r0
=

r

r0
− 1

and for the circumferential strain rate we obtain ε̇circ ≈ ṙ
r0
.

To approximate the circumferential strain rate ε̇circ(u, t) of a spherical shell of thickness h = R − r, we take the arithmetic mean of the strain

rate at inner radius r and outer radius R, that is

ε̇circ(u, t) ≈
1
2

(
ṙ(t)
r0

+
Ṙ(t)
R0

)
(9)

where r0 is the initial inner radius and R0 is the initial outer radius of the spherical shell at its stress free configuration, i.e. p = 0.
Using Eqs. (8) and (9), the internal power can be estimated by

Pint(t) =
∫
Ω

σ(u, t) : ε̇(u, t) dx ≈ Vmyo(t) 2σcirc(u, t)
1
2

(
ṙ(t)
r0

+
Ṙ(t)
R0

)
= Vmyo(t)σcirc(u, t)

(
ṙ(t)
r0

+
Ṙ(t)
R0

)
where Vmyo(t) is the volume of the shell’s wall at time t.
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FIGURE 2 Strain estimation.

Using an estimate for σcirc we obtain

Pint,?(t) = Vmyo(t)σL,?(t)
(
ṙ(t)
r0

+
Ṙ(t)
R0

)
with ? ∈ {h,H,V} and by integrating over time, we get an estimate for the internal work

Wint,? =

T∫
0

Pint,?(t) dt.

1.3 Methods

1.3.1 Model fitting
To delineate anisotropy from pure geometry effects, passive inflation experiments were also performed with LV models using the Demiray model
and passive mechanical behavior was compared to the spherical shell models Sph5, Sph25and Sph150. In these cases, parameters were set to
b = 7 and a was chosen in a patient-specific manner to obtain the same volume at maximum inflation pressure as with the Guccione model. Note
that in none of the simulations of a full cardiac cycle the Demiray model was considered as the resulting kinematics was in stark contrast to the
clinical data.

1.3.2 Analysis of LV inflation experiments
To evaluate the influence of violating the assumption on the geometry (A2), passive inflation experiments were performed with LV models and the
isotropic material due to Demiray,

ΨDem(C) =
κ

2
(log J)2 +

a

2 b
{

exp
[
b
(

tr(C)− 3
)]
− 1
}
,

following the same protocol as applied to the spherical shell models Sph5, Sph25 and Sph150. The parameter a in the Demiray model was set
to 0.45, 0.63, 0.41 and 0.38 kPa for the models LVA, LVB, LVC and LVD, respectively. The Laplace-based stress estimates σL,h, σL,H and σL,V
were compared to the mean stresses obtained from the FE solution. Stresses were evaluated with respect to an ellipsoidal coordinate system to
facilitate a comparison with stresses computed in the spherical shell models Sph5, Sph25 and Sph150 where spherical coordinates were used for
stress analysis. The ellipsoidal coordinate system for the LV models was constructed by assigning fiber and sheet orientations using a rule-based
method with a constant fiber angle of 0◦. Stress components σrr(x), σϕϕ(x) and σθθ(x) were averaged yielding σrr , σϕϕ and σθθ , respectively.
Note that all models except Sph5 showed marked spatial stress variations. Thus, the reported mean stresses σ̄ may deviate considerably from the
true local stresses σ(x). Laplace-based estimations of power Pint,? and workWint,?, were compared to those obtained by FE simulation, Pint and
Wint and to external hydrodynamic power and work in the LV cavity, Pext andWext.

1.4 Results

1.4.1 Verification of the FE model
Similarly, with increasing h the accuracy of the thick-walled Laplace estimateWint,H performed better than the simpler thin-walled Laplace estimate
Wint,h. As expected on grounds of conservation of energy, the agreement between biomechanical work Wint and hemodynamic work Wext was
essentially perfect with differences < 2% for all models.
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1.4.2 Passive inflation of LV models
The LV models LVA–LVD were inflated following the loading protocol in Fig. 3.A. Passive material behavior was represented compliant with
(A1) by the isotropic Demiray model. The temporal evolution of FE- and Laplace-based stresses, power and work are shown in Fig. 3.B for model
LVD. Minor quantitative differences to other models LVA–LVC were observed, but qualitatively the overall behavior was identical. Stresses at
p = 4 kPa and the amount of work incurred during inflation up to this pressure are summarized in Tabs. 1 and 2.
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FIGURE 3 (A) Loading protocol. (B) Stresses, power and work for isotropic model. Data are shown for model LVD.

Setup σrr [kPa] σθθ [kPa] σϕϕ [kPa] σL,h [kPa] σL,H [kPa] σL,V [kPa] #elements d̄x [mm]

LVA−Dem −0.39 6.56 3.77 5.16 4.32 6.81 420704 1.52
LVB−Dem −0.38 8.26 4.78 5.92 5.07 8.24 332221 1.74
LVC−Dem −0.21 4.07 2.26 3.43 2.65 4.41 456553 1.84
LVD−Dem −0.31 6.53 4.28 5.81 4.69 7.06 394808 1.86

TABLE 1 Comparison of FE-based mean wall stresses σrr , σθθ and σϕϕ in radial, azimuthal and meridional direction, respectively, with the Laplace-
based wall stress estimates σL,h, σL,H and σL,V. All stresses refer to the maximum applied pressure of p = 4 kPa.

Setup Wext [mJ] Wint [mJ] Wint,h [mJ] Wint,H [mJ] Wint,V [mJ] #elements d̄x [mm]

Sph5 16.82 16.92 19.86 19.65 83825 0.65
Sph25 10.94 10.99 11.58 10.87 40974 1.23
Sph150 8.30 8.15 10.89 7.51 54449 2.31

LVA−Dem 67.03 65.48 67.94 55.67 89.30 420704 1.52
LVB−Dem 111.67 110.01 124.41 104.31 183.99 332221 1.74
LVC−Dem 96.19 94.90 100.48 75.44 128.44 456553 1.84
LVD−Dem 129.19 126.98 140.30 117.23 171.12 394808 1.86

LVA−Gu 93.19 89.34 89.11 72.65 116.26 420704 1.52
LVB−Gu 149.55 145.27 167.23 131.08 219.04 332221 1.74
LVC−Gu 136.84 133.42 146.17 109.42 183.75 456553 1.84
LVD−Gu 182.77 177.51 173.92 143.91 216.12 394808 1.86

TABLE 2 Comparison of FE-based biomechanical and hemodynamic work,Wint andWext, with the Laplace-based work estimatesWint,h,Wint,H and
Wint,V for passive inflation with a pressure of p = 4 kPa.
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1.4.3 Analysis of LV cycle experiments
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FIGURE 4 Comparison of FE-based computation Wint with Laplace-based estimates of work Wint,h, Wint,H and Wint,V. Top panels show the time
course of pressure p in the LV endocardium. The solid black vertical line indicates the instant, tp̂, when peak pressure in the LV, p̂LV, occurs.

LVA
tp̂

LVB

LVC

LVD

100ms

10W

100ms

10W

100ms

10W

100ms

10W

Pint

Pext

IVC
Ejection

IVR
+∆P
−∆P

FIGURE 5 Differences between mechanical versus hydrodynamic power, ∆P = Pint − Pext, during IVC and early ejection were very minor (dark
yellow area). A slightly more pronounced ∆P is witnessed during late ejection and IVR (gray area).
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