Detailed Model Outputs
The following loop will for each variable: Plot the individual lines, fit the appropriate mixed model, print the model summary and the residual plot.
# change the order of factor levels (intercept = controls)
data$A_K <- data$A_K %>% fct_relevel("K", "A")
# define function
print_lmer <- function(variable){
print("--------------------------------------------------------------")
print(variable)
print("--------------------------------------------------------------")
plot_develop_indiv(variable) %>% print()
model <- get_lmer(variable)
model %>% summary() %>% print()
model %>% plot() %>% print()
}
# applies function to every important variable
walk(important_vars, print_lmer)
## [1] "--------------------------------------------------------------"
## [1] "LBM_kg"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 2.34944726424691e-09"
## [1] "baseline to lmem_tr: 0.877808818743114"
## [1] "baseline to lmem_age_tr_i: 3.41186287966931e-08"
## [1] "lmem_age to lmem_age_tr: 0.88556380362213"
## [1] "lmem_age to lmem_age_tr_i: 0.37646121700274"
## Linear mixed model fit by REML ['lmerMod']
## Formula: LBM_kg ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 576.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.00078 -0.64913 -0.05592 0.65768 1.97456
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 30.0138 5.4785
## age_16 0.8638 0.9294 -0.12
## Residual 0.8498 0.9218
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 58.5152 1.1758 49.767
## age_16 1.9522 0.2117 9.222
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.140
## [1] "--------------------------------------------------------------"
## [1] "fat_kg"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 1.93048282469141e-05"
## [1] "baseline to lmem_tr: 0.0196999078663384"
## [1] "baseline to lmem_age_tr_i: 2.22526351168085e-05"
## [1] "lmem_age to lmem_age_tr: 0.0193847702018757"
## [1] "lmem_age_tr to lmem_age_tr_i: 0.471988563139435"
## Linear mixed model fit by REML ['lmerMod']
## Formula: fat_kg ~ age_16 + A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: -57
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2660 -0.5881 -0.0789 0.6027 2.4161
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.203018 0.45058
## age_16 0.006596 0.08121 -0.57
## Residual 0.018019 0.13424
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.46024 0.12283 11.889
## age_16 0.10664 0.02042 5.223
## A_KA -0.39157 0.16301 -2.402
##
## Correlation of Fixed Effects:
## (Intr) age_16
## age_16 -0.448
## A_KA -0.602 0.000
## [1] "--------------------------------------------------------------"
## [1] "fat_perc"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.000436534762697919"
## [1] "baseline to lmem_tr: 0.00400583770097151"
## [1] "baseline to lmem_age_tr_i: 0.000101167777608284"
## [1] "lmem_age to lmem_age_tr: 0.00389217919377166"
## [1] "lmem_age_tr to lmem_age_tr_i: 0.537147822051965"
## Linear mixed model fit by REML ['lmerMod']
## Formula: fat_perc ~ age_16 + A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: -102.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.20113 -0.54550 -0.08097 0.61028 2.37438
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.124754 0.35321
## age_16 0.004797 0.06926 -0.62
## Residual 0.013951 0.11811
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.92870 0.09553 20.189
## age_16 0.07019 0.01757 3.995
## A_KA -0.37912 0.12389 -3.060
##
## Correlation of Fixed Effects:
## (Intr) age_16
## age_16 -0.487
## A_KA -0.588 0.000
## [1] "--------------------------------------------------------------"
## [1] "weight_kg"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 1.81518186660196e-08"
## [1] "baseline to lmem_tr: 0.570706662747848"
## [1] "baseline to lmem_age_tr_i: 3.68525120101223e-07"
## [1] "lmem_age to lmem_age_tr: 0.565034634210204"
## [1] "lmem_age to lmem_age_tr_i: 0.594614819368363"
## Linear mixed model fit by REML ['lmerMod']
## Formula: weight_kg ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 695.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0507 -0.5863 -0.0621 0.5325 2.8154
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 56.790 7.536
## age_16 1.585 1.259 -0.20
## Residual 1.982 1.408
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 62.6177 1.6198 38.658
## age_16 2.3971 0.2915 8.224
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.219
## [1] "--------------------------------------------------------------"
## [1] "height_cm"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 1.38894428913354e-08"
## [1] "baseline to lmem_tr: 0.94280698828231"
## [1] "baseline to lmem_age_tr_i: 4.73140135469937e-07"
## [1] "lmem_age to lmem_age_tr: 0.946649973985829"
## [1] "lmem_age to lmem_age_tr_i: 0.997471404694807"
## Linear mixed model fit by REML ['lmerMod']
## Formula: height_cm ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 490.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.89615 -0.45978 -0.00515 0.51653 2.29413
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 45.0247 6.7100
## age_16 0.4015 0.6336 0.18
## Residual 0.4183 0.6468
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 176.6888 1.4337 123.239
## age_16 1.2099 0.1448 8.353
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 0.144
## [1] "--------------------------------------------------------------"
## [1] "biolage_y"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 3.97065180591532e-21"
## [1] "baseline to lmem_tr: 0.625869499041139"
## [1] "baseline to lmem_age_tr_i: 2.29743140671939e-19"
## [1] "lmem_age to lmem_age_tr: 0.656249912278727"
## [1] "lmem_age to lmem_age_tr_i: 0.632880389143895"
## Linear mixed model fit by REML ['lmerMod']
## Formula: biolage_y ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: -118
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6564 -0.4343 0.0273 0.5093 3.9639
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.152608 0.39065
## age_16 0.002802 0.05293 -0.50
## Residual 0.012186 0.11039
## Number of obs: 153, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 16.35416 0.08482 192.81
## age_16 0.49601 0.01442 34.39
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.480
## [1] "--------------------------------------------------------------"
## [1] "vmax_kmh"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.682562268243043"
## [1] "baseline to lmem_tr: 2.81556367613805e-11"
## [1] "baseline to lmem_age_tr_i: 1.18478030487875e-09"
## [1] "lmem_tr to lmem_age_tr: 0.669179910229647"
## [1] "lmem_tr to lmem_age_tr_i: 0.907729720545447"
## Linear mixed model fit by REML ['lmerMod']
## Formula: vmax_kmh ~ A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 195.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.82273 -0.57320 0.09308 0.58563 2.56108
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.39777 0.6307
## age_16 0.06697 0.2588 -0.56
## Residual 0.10612 0.3258
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 13.0068 0.1550 83.94
## A_KA 2.6245 0.2305 11.39
##
## Correlation of Fixed Effects:
## (Intr)
## A_KA -0.672
## [1] "--------------------------------------------------------------"
## [1] "PV_LBM"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.851395615526362"
## [1] "baseline to lmem_tr: 0.00826051719414931"
## [1] "baseline to lmem_age_tr_i: 0.0122235746075533"
## [1] "lmem_tr to lmem_age_tr: 0.777149918852594"
## [1] "lmem_tr to lmem_age_tr_i: 0.139894989312937"
## Linear mixed model fit by REML ['lmerMod']
## Formula: PV_LBM ~ A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 828.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.68121 -0.72851 0.01516 0.65179 2.15842
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 9.8806 3.1433
## age_16 0.1431 0.3782 -0.16
## Residual 9.6513 3.1067
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 57.6255 0.9582 60.142
## A_KA 4.3290 1.4223 3.044
##
## Correlation of Fixed Effects:
## (Intr)
## A_KA -0.674
## [1] "--------------------------------------------------------------"
## [1] "BV_LBM"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 8.21284254715656e-06"
## [1] "baseline to lmem_tr: 0.0255462801053515"
## [1] "baseline to lmem_age_tr_i: 3.84612230795517e-06"
## [1] "lmem_age to lmem_age_tr: 0.0239636299700118"
## [1] "lmem_age_tr to lmem_age_tr_i: 0.0887688223002162"
## Linear mixed model fit by REML ['lmerMod']
## Formula: BV_LBM ~ age_16 + A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 863.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6601 -0.7416 -0.1305 0.7467 2.1637
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 16.0640 4.0080
## age_16 0.9421 0.9706 0.13
## Residual 10.8707 3.2971
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 96.5276 1.3027 74.097
## age_16 1.8681 0.3358 5.564
## A_KA 4.6247 1.9042 2.429
##
## Correlation of Fixed Effects:
## (Intr) age_16
## age_16 -0.180
## A_KA -0.662 0.000
## [1] "--------------------------------------------------------------"
## [1] "EV_LBM"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 3.54742183717463e-09"
## [1] "baseline to lmem_tr: 0.457466908407772"
## [1] "baseline to lmem_age_tr_i: 8.31398894420757e-08"
## [1] "lmem_age to lmem_age_tr: 0.475902031632312"
## [1] "lmem_age to lmem_age_tr_i: 0.628871260584055"
## Linear mixed model fit by REML ['lmerMod']
## Formula: EV_LBM ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 675.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7949 -0.6328 -0.1044 0.5826 2.5630
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 7.9135 2.8131
## age_16 0.5658 0.7522 0.30
## Residual 2.6547 1.6293
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 39.1197 0.6441 60.738
## age_16 1.8662 0.2072 9.008
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 0.028
## [1] "--------------------------------------------------------------"
## [1] "HbM_LBM"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 4.40893341816593e-05"
## [1] "baseline to lmem_tr: 0.796690717779169"
## [1] "baseline to lmem_age_tr_i: 0.000792829111660354"
## [1] "lmem_age to lmem_age_tr: 0.803351532693272"
## [1] "lmem_age to lmem_age_tr_i: 0.965361650660138"
## Linear mixed model fit by REML ['lmerMod']
## Formula: HbM_LBM ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 241
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.11311 -0.57254 0.00248 0.54531 3.02417
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.78795 0.8877
## age_16 0.03756 0.1938 0.11
## Residual 0.13712 0.3703
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 13.24398 0.19672 67.324
## age_16 0.24820 0.05097 4.869
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.041
## [1] "--------------------------------------------------------------"
## [1] "HbM_g"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 6.50293558122721e-08"
## [1] "baseline to lmem_tr: 0.958155735043722"
## [1] "baseline to lmem_age_tr_i: 1.55150475223909e-06"
## [1] "lmem_age to lmem_age_tr: 0.967104144547207"
## [1] "lmem_age to lmem_age_tr_i: 0.759279628379613"
## Linear mixed model fit by REML ['lmerMod']
## Formula: HbM_g ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 1548
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1029 -0.6230 -0.0170 0.5861 4.0476
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 8738.3 93.48
## age_16 587.7 24.24 0.14
## Residual 565.9 23.79
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 775.396 20.230 38.328
## age_16 42.041 5.514 7.624
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 0.083
## [1] "--------------------------------------------------------------"
## [1] "HbM_gkg"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.00146278409049112"
## [1] "baseline to lmem_tr: 0.205418296998794"
## [1] "baseline to lmem_age_tr_i: 0.0084677643210548"
## [1] "lmem_age to lmem_age_tr: 0.210228376837079"
## [1] "lmem_age to lmem_age_tr_i: 0.453976685115016"
## Linear mixed model fit by REML ['lmerMod']
## Formula: HbM_gkg ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 258.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.18833 -0.61944 0.02217 0.59601 2.02979
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.85014 0.9220
## age_16 0.02941 0.1715 0.01
## Residual 0.16117 0.4015
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 12.40620 0.20499 60.521
## age_16 0.17014 0.04882 3.485
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.143
## [1] "--------------------------------------------------------------"
## [1] "VO2max_LBM"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 3.95690095457991e-05"
## [1] "baseline to lmem_tr: 5.90362390665445e-07"
## [1] "baseline to lmem_age_tr_i: 3.13790752784746e-09"
## [1] "lmem_age to lmem_age_tr: 4.18237467831802e-07"
## [1] "lmem_age_tr to lmem_age_tr_i: 0.958873195029178"
## Linear mixed model fit by REML ['lmerMod']
## Formula: VO2max_LBM ~ age_16 + A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 767.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.37877 -0.42027 -0.03865 0.52653 2.50250
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 7.2417 2.6910
## age_16 0.6519 0.8074 -0.51
## Residual 6.1507 2.4801
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 63.9088 0.8310 76.908
## age_16 1.3250 0.2622 5.053
## A_KA 7.0930 1.0747 6.600
##
## Correlation of Fixed Effects:
## (Intr) age_16
## age_16 -0.495
## A_KA -0.582 -0.003
## [1] "--------------------------------------------------------------"
## [1] "VO2max_abs"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 1.82067644253205e-08"
## [1] "baseline to lmem_tr: 0.00659471027681868"
## [1] "baseline to lmem_age_tr_i: 9.39548202782665e-09"
## [1] "lmem_age to lmem_age_tr: 0.00651551672281263"
## [1] "lmem_age_tr to lmem_age_tr_i: 0.277586775151503"
## Linear mixed model fit by REML ['lmerMod']
## Formula: VO2max_abs ~ age_16 + A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 2068
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.01996 -0.58979 0.02481 0.46945 2.44125
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 121603 348.7
## age_16 11915 109.2 -0.10
## Residual 23796 154.3
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3724.62 104.13 35.767
## age_16 216.88 26.39 8.220
## A_KA 445.14 153.12 2.907
##
## Correlation of Fixed Effects:
## (Intr) age_16
## age_16 -0.142
## A_KA -0.666 -0.001
## [1] "--------------------------------------------------------------"
## [1] "VO2max_rel"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.00190749371299934"
## [1] "baseline to lmem_tr: 3.28242766635589e-07"
## [1] "baseline to lmem_age_tr_i: 7.57121461487558e-08"
## [1] "lmem_age to lmem_age_tr: 2.89758843980826e-07"
## [1] "lmem_age_tr to lmem_age_tr_i: 0.876574181383188"
## Linear mixed model fit by REML ['lmerMod']
## Formula: VO2max_rel ~ age_16 + A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 771.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.39881 -0.49169 0.01296 0.45157 2.43083
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 10.8752 3.2977
## age_16 0.7189 0.8479 -0.52
## Residual 5.9590 2.4411
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 59.0571 0.9772 60.438
## age_16 0.9137 0.2662 3.432
## A_KA 8.6963 1.2845 6.770
##
## Correlation of Fixed Effects:
## (Intr) age_16
## age_16 -0.468
## A_KA -0.593 -0.002
## [1] "--------------------------------------------------------------"
## [1] "VO2_per_BV"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.830525931271103"
## [1] "baseline to lmem_tr: 0.069144475761104"
## [1] "baseline to lmem_age_tr_i: 0.179430662559077"
## Linear mixed model fit by REML ['lmerMod']
## Formula: VO2_per_BV ~ 1 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: -559.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.35907 -0.57903 0.04661 0.66833 1.98519
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.0020410 0.04518
## age_16 0.0001129 0.01063 -0.65
## Residual 0.0009720 0.03118
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.683370 0.008065 84.73
## [1] "--------------------------------------------------------------"
## [1] "VO2_per_Hb"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.678122318821988"
## [1] "baseline to lmem_tr: 0.00183102418265141"
## [1] "baseline to lmem_age_tr_i: 0.0188635860043452"
## [1] "lmem_tr to lmem_age_tr: 0.614793764811338"
## [1] "lmem_tr to lmem_age_tr_i: 0.880901625284346"
## Linear mixed model fit by REML ['lmerMod']
## Formula: VO2_per_Hb ~ A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 45.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6010 -0.5138 -0.1029 0.6358 2.4302
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.127367 0.35689
## age_16 0.001084 0.03292 -0.23
## Residual 0.049797 0.22315
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.8697 0.1036 47.002
## A_KA 0.5131 0.1537 3.337
##
## Correlation of Fixed Effects:
## (Intr)
## A_KA -0.674
## [1] "--------------------------------------------------------------"
## [1] "VO2_per_PV"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.00468287008461115"
## [1] "baseline to lmem_tr: 0.273903455047344"
## [1] "baseline to lmem_age_tr_i: 0.00975486650505664"
## [1] "lmem_age to lmem_age_tr: 0.271441897599715"
## [1] "lmem_age to lmem_age_tr_i: 0.182633767496736"
## Linear mixed model fit by REML ['lmerMod']
## Formula: VO2_per_PV ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: -299.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.29782 -0.67068 0.01658 0.72803 1.83007
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.0063081 0.07942
## age_16 0.0003672 0.01916 -0.37
## Residual 0.0054236 0.07364
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.13255 0.01996 56.739
## age_16 0.02180 0.00716 3.045
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.536
## [1] "--------------------------------------------------------------"
## [1] "hb"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.927399218206841"
## [1] "baseline to lmem_tr: 0.0204580244537933"
## [1] "baseline to lmem_age_tr_i: 0.0568271784500187"
## [1] "lmem_tr to lmem_age_tr: 0.997133211908229"
## [1] "lmem_tr to lmem_age_tr_i: 0.340231875805212"
## Linear mixed model fit by REML ['lmerMod']
## Formula: hb ~ A_K + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 303.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.76366 -0.59333 0.07593 0.54393 3.06648
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.68308 0.8265
## age_16 0.01604 0.1267 -0.56
## Residual 0.27357 0.5230
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 15.1266 0.2164 69.887
## A_KA -0.8140 0.3213 -2.534
##
## Correlation of Fixed Effects:
## (Intr)
## A_KA -0.674
## [1] "--------------------------------------------------------------"
## [1] "hkt"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 3.20532403570735e-07"
## [1] "baseline to lmem_tr: 0.331476259693046"
## [1] "baseline to lmem_age_tr_i: 4.78738440486987e-06"
## [1] "lmem_age to lmem_age_tr: 0.345779491666498"
## [1] "lmem_age to lmem_age_tr_i: 0.520360557012096"
## Linear mixed model fit by REML ['lmerMod']
## Formula: hkt ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 696.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2819 -0.6716 -0.1114 0.7167 2.1271
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 5.6252 2.3718
## age_16 0.1457 0.3817 0.07
## Residual 3.6359 1.9068
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 43.5830 0.5745 75.859
## age_16 1.2049 0.1732 6.958
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.313
## [1] "--------------------------------------------------------------"
## [1] "reti_proz"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.00161412234817861"
## [1] "baseline to lmem_tr: 0.953891304115965"
## [1] "baseline to lmem_age_tr_i: 0.0188104315879513"
## [1] "lmem_age to lmem_age_tr: 0.975605908506663"
## [1] "lmem_age to lmem_age_tr_i: 0.98615915445703"
## Linear mixed model fit by REML ['lmerMod']
## Formula: reti_proz ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 6.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0953 -0.6857 -0.0596 0.4550 3.1965
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.014292 0.1195
## age_16 0.001246 0.0353 1.00
## Residual 0.044794 0.2116
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.91505 0.03906 23.429
## age_16 -0.06126 0.01839 -3.332
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.297
## [1] "--------------------------------------------------------------"
## [1] "epo"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.000703111177174793"
## [1] "baseline to lmem_tr: 0.587766639093916"
## [1] "baseline to lmem_age_tr_i: 0.00630581478778203"
## [1] "lmem_age to lmem_age_tr: 0.705516579066661"
## [1] "lmem_age to lmem_age_tr_i: 0.650954579900834"
## Linear mixed model fit by REML ['lmerMod']
## Formula: epo ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 700.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.77286 -0.66087 -0.08092 0.69931 2.56440
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 2.4515 1.5657
## age_16 0.1955 0.4422 1.00
## Residual 5.3154 2.3055
## Number of obs: 146, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 9.7665 0.4664 20.942
## age_16 0.7769 0.2121 3.664
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.175
## [1] "--------------------------------------------------------------"
## [1] "sTfR"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 0.00100403314739059"
## [1] "baseline to lmem_tr: 0.272303144006043"
## [1] "baseline to lmem_age_tr_i: 0.00580841414528383"
## [1] "lmem_age to lmem_age_tr: 0.268406458384257"
## [1] "lmem_age to lmem_age_tr_i: 0.42822823182741"
## Linear mixed model fit by REML ['lmerMod']
## Formula: sTfR ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 458.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.87754 -0.52489 0.02802 0.59450 2.24882
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 1.3818 1.1755
## age_16 0.1652 0.4064 -0.81
## Residual 0.8092 0.8995
## Number of obs: 152, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.0609 0.2850 28.281
## age_16 -0.4212 0.1135 -3.709
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.798
## [1] "--------------------------------------------------------------"
## [1] "ferritin"
## [1] "--------------------------------------------------------------"
## [1] "baseline to lmem_age: 4.78822316526038e-08"
## [1] "baseline to lmem_tr: 0.248620775037785"
## [1] "baseline to lmem_age_tr_i: 2.76496573271033e-07"
## [1] "lmem_age to lmem_age_tr: 0.173139360613315"
## [1] "lmem_age to lmem_age_tr_i: 0.17261492638739"
## Linear mixed model fit by REML ['lmerMod']
## Formula: ferritin ~ age_16 + (age_16 | ID)
## Data: data
##
## REML criterion at convergence: 174.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5116 -0.5632 -0.0024 0.5015 3.4369
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.180082 0.42436
## age_16 0.006716 0.08195 -1.00
## Residual 0.134725 0.36705
## Number of obs: 154, groups: ID, 22
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.46445 0.10477 33.068
## age_16 0.25124 0.03389 7.413
##
## Correlation of Fixed Effects:
## (Intr)
## age_16 -0.802
data$A_K <- data$A_K %>% fct_relevel("A", "K")