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1 Left eigenvector projects onto center positions

Here, we provide additional details to the derivation of the relation Eq (16). Let the full diagonalization1

of the matrix K be K̄ = T−1KT . Without loss of generality, let er be the first column of the
transformation matrix T , and let el be the first row vector of T−1, with el · er = 1. Now, the projection
of the perturbation δy onto contributions along er isolates displacements of the center position: the
perturbation δy = erδϕ corresponds to a shift ϕ+ δϕ in the center position (by definition, see Eq (14)).
We left multiply this relation with el to see that elδy = elerδϕ = δϕ. Finally, we take the time
derivative, which yields:

˙δϕ = el ˙δy. (S1)

Thus, to find an equation for the temporal dynamics of changes in the center positions, we project
the system Eq (13) onto contributions along the er eigenspace by left multiplying by el. In the full
matrix equations, this corresponds to rewriting the system Eq (13) as

T−1 ˙δy = K̄T−1δy.

Restricting this onto only the first dimension (the er eigenspace) and using Eq (S1), we find that the
linear dynamics vanish (since the first entry in K̄ is zero) and we are left with:

ϕ̇ = ˙δϕ = el ˙δy = 0 · elδy, (S2)

where we have assumed that ϕ(t) = ϕ(t = 0) + δϕ(t).
Thus, left-multiplying the linearized equations Eq (13) by el yields a differential equation for the

changes δϕ of the center position.

2 Derivation of the left eigenvector

We will find a parametrized vector y′(y) =
(
tT (y),vT (y), zT (y)

)T
that for y = er fulfills the transposed

eigenvalue equation of the left eigenvector:

KTy′(er) = 0. (S3)

1Or Jordan normal form, if K is not fully diagonalizable. Since we know there exists a zero eigenvalue with one
dimensional Eigenspace, the corresponding normal form will have a diagonal 0 entry with er being the corresponding
eigenvector.
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The system of equations resulting from ẏ′ = KTy′ reads (cf. Eq (13)):

ṫi = − ti
τs

+
∑
j

wjiu0,jx0,jφ
′

jtj + U
∑
j

wji(1− u0,j)φ
′

jvj −
∑
j

wjiu0,jx0,jφ
′

jzj (S4)

v̇i = − vi
τu

+ φ0,ix0,i(ti − zi)− Uφ0,ivi (S5)

żi = − zi
τx

+ u0,iφ0,i (ti − zi) (S6)

Let us first consider the system without facilitation or depression. The linearized dynamics of δs are
given by the upper left N ×N block Ks of Eq (13), with U → 1, u0 → 1, x0 → 1 (which recovers the
case of [1]):

δṡi = − 1

τs
δsi + φ′0,i

∑
j

wijδsj (S7)

≡ Ksδs (S8)

We assume that wji = wij , which in general holds for the symmetric synaptic connectivity of common
models of continuous attractor networks (see below a concrete spiking model). The transposed block KT

s

then describes the linear dynamics of perturbations to the input variables Ji =
∑
j wijsj [1]. To see this,

we differentiate δJi =
∑
j wijδsj with respect to time, use Eq (S7), and use the symmetric connectivity,

to arrive at:

δJ̇i =
∑
j

wijδṡj =
∑
j

wij

(
− 1

τs
δsj + φ′0,jδJj

)

=

− 1

τs
+
∑
j

wjiφ
′
0,j

 δJj

=
(
KT
s δJ

)
i
. (S9)

If ˙δsi = 0 for all i, which is the case if δsi = er restricted to the first N entries, we know that
˙δJi =

∑
j wij

˙δsj = 0. Thus, in this restricted case, the left eigenvector proportional to ti = δJi since it
fulfills Eq (S3) restricted to the first N ×N block.

We now consider again the full system (with facilitation and depression), where we start with the
same Ansatz for parametrization of the variables ti

2:

ti ≡
∑
j

wijδsj , (S10)

and continue to find variables vi and zi that satisfy the full equations Eq (S3).
First, we differentiate Eq (S10) with respect to time and use the linear response Eq (13) to obtain

ṫi =
∑
j

wij δ̇sj =
∑
j

wij

(
−δsj
τs

+ φ
′

ju0,jx0,j
∑
k

wjkδsk + φ0,jx0,jδuj + φ0,ju0,jδxj

)

= − ti
τs

+
∑
j

wiju0,jx0,jφ
′

jtj +
∑
j

wijφ0,jx0,jδuj +
∑
j

wijφ0,ju0,jδxj . (S11)

We then equate Eqs. (S4) and (S11), which yields the following identity:∑
j

wijφ0,j (x0,jδuj + u0,jδxj) =
∑
j

wjiφ
′

j (U(1− u0,j)vj − u0,jx0,jzj) . (S12)

2This was motivated by numerical evaluations of the left eigenvector el of the full system, which showed that here also
ti = δJi.
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To relate the remaining variables δui and δxi to the new variables vi and zi, we make a linear Ansatz:

vi =α1δui + α2δxi, (S13)

zi =β1δui + β2δxi. (S14)

By differentiating these equations with respect to time and equating the result to Eqs. (S5) and (S6),
respectively, we find the following equations

− vi
τu

+ φ0,ix0,i(ti − zi)− Uφ0,ivi =α1δu̇i + α2δẋi (S15)

− zi
τx

+ u0,iφ0,i (ti − zi) =β1δu̇i + β2δẋi (S16)

The linear response for u̇i and ẋi can be obtained from Eq (13) (substituting ti =
∑
j wijδsj):

δu̇i = −δui
(

1

τu
− Uφ0,i

)
+ U(1− u0,i)φ′iti,

δẋi = −δxi
(

1

τx
− φ0,i

)
− x0,iφ0,iδui − u0x0φ′iti.

By inserting these two equations and Eqs. (S13) and (S14) into Eqs. (S15) and (S16), we obtain two
closed equations in δui, δxi, ti. By equating coefficients for δui, δxi, ti

3, we obtain solutions for the
coefficients α1, α2, β1, β2 that fulfill these equations:

α1 =
x0,iφ0,i [Uτuτxφ0,i + u0,i (τx − τu)]

U (1− u0,i)φ′i
[
τuτxφ0,i

(
U − u20,i

)
+ u0,i (τx − τu)

]
α2 = −

τuτxu0,iφ
2
0,i

φ′i
[
τuτxφ0,i

(
u20,i − U

)
+ u0,i (τu − τx)

]
β1 = −

τuτxu0,iφ
2
0,i

φ′i
(
τuτxφ0,i

(
u20,i − U

)
+ u0,i (τu − τx)

)
β2 =

u0,iφ0,i [τu (τxφ0,i (U − u0,i)− 1) + τx]

x0,iφ′i
[
τuτxφ0,i

(
u20,i − U

)
+ u0,i (τu − τx)

] . (S17)

A little bit of further algebra shows that these coefficients together with Eqs. (S13) and (S14) also
satisfy Eq (S12), as for every j it holds that φ

′

j (U(1− u0,j)vj − u0,jx0,jzj) = φ0,j (x0,jδuj + u0,jδxj).
Thus, we have found a linear parametrization

y′(y)T =
(

(Wδs)
T
, (α1δu + β1δx)

T
, (α2δu + β2δx)

T
)
, (S18)

which fulfills ẏ′ = KTy′. In addition, we know that if y = er, then the original system dynamics vanish
since ẏ = Ky = 0. Thus, since the parametrization is linear in the original variables, it also holds that
ẏ′ = 0, and the parametrization satisfies Eq (S3). This makes y′(er)

T proportional to the (unique) left
eigenvector el of the 0-eigenvalue.

Finally, we can evaluate the vector y′(er) by using Eq (14) in Eq (S18):

y′(er)
T =

(
dJ0

dϕ

T

,

(
α1
du0

dϕ
+ α2

dx0

dϕ

)T
,

(
β1
du0

dϕ
+ β2

dx0

dϕ

)T)
. (S19)

Note, that in the first component we used that
dJ0,i
dϕ =

∑
j wij

ds0,j
dϕ .

3Comparing coefficients of any two of the three variables yields 4 equations, which give the same solution and satisfy the
equations posed by the remaining variable.
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3 Normalization constant S

In the last section we have found a vector y′T proportional to the left eigenvector el. Since it holds that
eler = 1, it remains to calculate the normalization constant S such this normalization condition is
fulfilled by

el =
1

S
y′(er)

T . (S20)

First, we calculate the components of the vector er, Eq (14), using the steady-state values of Eq (12):

ds0,i
dϕ

= τs

(
u0,ix0,iφ

′
0,i

dJ0,i
dϕ

+ x0,iφ0,i
du0,i
dϕ

+ u0,iφ0,i
dx0,i
dϕ

)
, (S21)

du0,i
dϕ

= u′0,iφ
′
0,i

dJ0,i
dϕ

=
(1− U)Uτu

(Uφ0,iτu + 1) 2
φ′0,i

dJ0,i
dϕ

, (S22)

dx0,i
dϕ

= x′0,iφ
′
0,i

dJ0,i
dϕ

= − Uτx (φ0,iτu (Uφ0,iτu + 2) + 1)

(Uφ0,i (τu + φ0,iτuτx + τx) + 1) 2
φ′0,i

dJ0,i
dϕ

, (S23)

where we introduced the shorthand notations u′0,i =
du0,i

dφ0,i
, x′0,i =

dx0,i

dφ0,i
and φ′0,i = dφi

dJi

∣∣∣
J0,i

. We have also

used the steady-state values of Eq (12) to calculate the values of u′0,i and x′0,i by differentiating with
respect to φ0,i.

Now, using Eq. (S20) in el · er = 1, and plugging in Eqs. (14) and (S19), we find that:

S =y′(er)
T · er

=τs
∑
i

dJ0,i
dϕ

(
u0,ix0,iφ

′
0,i

dJ0,i
dϕ

+ x0,iφ0,i
du0,i
dϕ

+ u0,iφ0,i
dx0,i
dϕ

)
(S24)

+
∑
i

du0,i
dϕ

(
α1
du0,i
dϕ

+ α2
dx0,i
dϕ

)
+
∑
i

dx0,i
dϕ

(
β1
du0,i
dϕ

+ β2
dx0,i
dϕ

)

=τs
∑
i

(
dJ0,i
dϕ

)2

φ′0,i
(
u0,ix0,i + x0,iφ0,iu

′
0,i + u0,iφ0,ix

′
0,i

)
+
∑
i

(
dJ0,i
dϕ

)2

φ′20,i
[
α1u

′2
0,i + β2x

′2
0,i + 2α2u

′
0,ix
′
0,i

]

=U
∑
i

(
dJ0,i
dϕ

)2
φ′i

[Uφ0,i (τu (τxφ0,i + 1) + τx) + 1] 3[
τs [τuφ0,i (Uτuφ0,i + 2) + 1] [Uφ0,i (τu (τxφ0,i + 1) + τx) + 1]

−φ0,i
[
(U − 1) τ2u + Uτ2x (τuφ0,i + 1) (τuφ0,i (Uτuφ0,i + 2) + 1)

]
(S25)

− (U − 1)Uτ2uτxφ0,i (τuφ0,i + 1)

(Uτuφ0,i + 1)

]
, (S26)

which defines the normalization constant S. In the last equation we used the steady-state values of
Eq (12) to calculate the values of u′0,i and x′0,i by differentiating with respect to φ0,i. Additionally, the
coefficients of Eq (S17) were used.
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4 Diffusion strength B

To calculate the correlation function of Eq (22), we first note that only terms 〈ηi(t)ηi(t+ τ)〉 = δ(τ)
remain in expectation. Thus, we arrive at:

〈ϕ̇(t)ϕ̇(t+ τ)〉 = 〈elL(t)elL(t+ τ)〉

=

n∑
i=1

(
e2l,iu

2
0,ix

2
0,i + e2l,n+iU

2(1− u0,i)2 + e2l,2n+iu
2
0,ix

2
0,i

)
φ0,iδ(τ)

+ 2

n∑
i=1

[(el,iel,n+i − el,n+iel,2n+i)U(1− u0,i)− el,iel,2n+iu0,ix0,i]u0,ix0,iφ0,iδ(τ)

=
1

S2

∑
i

(
dJ0,i
dϕ

)2

φ0,i

[
u20,ix

2
0,i + U2(1− u0,i)2φ

′2
0,i

(
α1u

′
0,i + α2x

′
0,i

)2
+u20,ix

2
0,iφ

′2
0,i

(
β1u
′
0,i + β2x

′
0,i

)2]
δ(τ)

+
2

S2

∑
i

(
dJ0,i
dϕ

)2

φ0,iu0,ix0,iU(1− u0,i)[
φ′0,i

(
α1u

′
0,i + α2x

′
0,i

)
− φ

′2
0,i

(
α1u

′
0,i + α2x

′
0,i

) (
β1u
′
0,i + β2x

′
0,i

)]
δ(τ)

− 2

S2

∑
i

(
dJ0,i
dϕ

)2

φ0,iu
2
0,ix

2
0,iφ
′
0,i

(
β1u
′
0,i + β2x

′
0,i

)
δ(τ)

=
U2

S2

∑
i

(
dJ0,i
dϕ

)2
φ0,i

(
1 + 2τuφ0,i + Uτ2uφ

2
0,i

)
2

(Uφ0,i (τu (τxφ0,i + 1) + τx) + 1) 4
δ(τ)

≡Bδ(τ). (S27)

In the last equation we again have used the steady-state values of Eq (12) to calculate the values of u′0,i
and x′0,i by differentiating with respect to φ0,i. Additionally, the coefficients of Eq (S17) were used.

5 Drift term

Left-multiplying Eq. (25) by the left eigenvector el yields:

ϕ̇ = el

 x0u0∆~φ(ϕ)

U(1− u0)∆~φ(ϕ)

−x0u0∆~φ(ϕ)

+
√
Bη

=
1

S

∑
i

[
dJ0,i
dϕ

x0,iu0,i +

(
α1
dui
dϕ

+ α2
dxi
dϕ

)
U (1− u0,i)

−
(
β1
dui
dϕ

+ β2
dxi
dϕ

)
x0,iu0,i

]
∆φi(ϕ) +

√
Bη

=
U

S

∑
i

dJ0,i
dϕ

1 + τuφ0,i (Uτuφ0,i + 2)

(Uφ0,i (τuτxφ0,i + τu + τx) + 1) 2
∆φi(ϕ) +

√
Bη,

where we have used Eqs. (S22) and (S23), as well as Eq (S17) in the last equality.
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Fig S1-1. Pre-factor of normalizer for vanishing facilitation. Pre-factor
dJ0,i
dϕ

2
φ′0,i

1
(1+φ0,iτx)3

for

varying firing rates φ0,i and depression time constant τx. Color legend on the right hand side shows
values of τx in units of ms.

6 Critical depression time constant

To analyze the vanishing normalization constant for growing depression time constant τx (see
Supplementary Figure S8 Fig), we set U = 1 in the normalization constant S (Eq (19) of the main text),
which yields:

S =
∑
i

dJ0,i
dϕ

2

φ′0,i

(
φ0,iτsτx − φ0,iτ2x + τs

)
(1 + φ0,iτx)3

. (S28)

Inspecting Eq (S28), we find that S will be crossing to zero if φ0,iτsτx − φ0,iτ2x + τs ≤ 0 for many
summands. Solving this at equality for τx yields a single positive solution

τx,i =
1

2

(
τs +

√
τs(φ0,iτs + 4)

φ0,i

)
, (S29)

which approaches τs for large firing rates φ0,i →∞. Thus, summands of Eq (S28) with larger firing rates
φ0,i will be the first to turn negative if τx > τs. As τx grows further, also summands with smaller firing
rates will become negative according to Eq (S29), eventually turning the total sum to zero. On the other
hand, the range of firing rates that contribute at all to Eq (S28) is limited to the flanks of the firing rate

profile: the pre-factors
dJ0,i
dϕ

2
φ′0,i in Eq (S28) will vanish for φ0,i → 0 and φ0,i → maxi φ0,i, since in both

cases
dJ0,i
dϕ = 0. This interplay of single summands turning negative and their contributing only in

bump-shape dependent ranges is hard to generally analyze further. However, the relation found in
Eq (S29) is valid for any bump system with depression, and will eventually lead to a vanishing
normalization factor S.

We will now resort to a numerical analysis for the spiking system used in the main text. Plotting the

pre-factor
dJ0,i
dϕ

2
φ′0,i

1
(1+φ0,iτx)3

against the firing rate φ0,i for varying τx (see Fig (S1-1)), we see that as τx
increases beyond 50ms, the range of firing rates with positive contributions to the sum quickly decays to
between 0 and 15Hz, with maxima between 2Hz and 5.5Hz. Evaluating Eq (S29) for τs = 100ms at these
firing rates, the corresponding values of τx,i in Eq (S29) are 279.1ms (for 2Hz) and 193.8ms (for 5.5Hz).
This only yields an estimate of the range in which summands will switch to negative values, and not the
value of the total sum in Eq (S28). A numerical solution of Eq (S28) yields the depression time constant
at which Eq (S28) becomes zero: τx, c = 223.9ms, which nevertheless lies in the thus estimated range.
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