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Abstract 14 

The use of machine learning in high-dimensional biological applications, such as the human 15 

microbiome, has grown exponentially in recent years. Unfortunately, challenges still exists for 16 

machine learning algorithm developers who often lack domain expertise required for 17 

interpretation and curation of the heterogeneous microbiome datasets. We present Microbiome 18 

Learning Repo (ML Repo), a public, web-based repository of 33 curated classification and 19 

regression tasks from 15 published human microbiome datasets. We highlight the use of ML 20 

Repo in several use cases to demonstrate its wide application, and expect it to be an important 21 

resource for algorithm developers. 22 
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 2 

Findings 27 

 28 

Background 29 

Machine learning is widely used as a method for classification and prediction, with a growing 30 

number of applications in human health [1]. The use of machine learning in biological fields 31 

[2,3], and more specifically the microbiome research field [4–7], has grown exponentially due to 32 

the robustness of these algorithms to high dimensional data. However, challenges exist for 33 

large-scale meta-analysis as they often require manual curation of metadata and standardized 34 

processing of raw sequence data, resulting in variation in the results derived from chosen 35 

datasets across studies [8,9]. In addition, microbiome research data can be challenging to 36 

access and analyze for expert machine learning algorithm developers, who often do not have 37 

the domain expertise required to parse the data and metadata in complex microbiome studies. 38 

There exist general resources with curated classification tasks from variety of domains. The 39 

University of California Irvine (UCI) Machine Learning Repository [10] revolutionized machine 40 

learning methods development by giving developers access to many curated datasets; its 41 

widespread usage and impact can be seen from its thousands of resulting citations. Currently, 42 

we are unaware of any machine learning repository specifically for microbiome classification 43 

tasks. We constructed a complementary database to address this deficiency, in order to 44 

promote the development of and usage of improved machine learning methods for the 45 

microbiome community. 46 

 47 

Workflow 48 

We present the Microbiome Learning Repo (ML Repo), a repository of 33 curated classification 49 

and regression tasks using human microbiome data. Our 33 tasks are curated from 15 publicly 50 

available human microbiome datasets, which include 12 amplicon-based and 3 shotgun 51 

sequencing datasets [Table 1]. These datasets vary across sequencing technology platforms, 52 
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 3 

16s hypervariable regions, and study design, in order to help developer ensure robustness of 53 

algorithms across data types. We streamlined the microbiome data using a single post-54 

processing workflow [Fig 1A]. We downloaded trimmed and quality filtered sequencing reads for 55 

n=8 datasets from QIITA [11], and raw sequences for n=7 datasets from public repositories. We 56 

preprocessed raw sequences using SHI7 [12] or QIIME [13] according to individual technologies 57 

and characteristics of each study. Full details regarding the data preprocessing are provided for 58 

each data set in the repository. We picked Operational Taxonomic Units (OTUs) from all quality 59 

filtered sequences using a closed-reference method with the BURST [14] aligner against both 60 

the NCBI RefSeq 16S ribosomal RNA project [15] and the Greengenes 97 database [16]. 61 

Samples with depths lower than 1000 sequences per sample were dropped for n=10 datasets, 62 

while we applied a lower threshold of 100 sequences per sample for n=5 datasets which had 63 

lower expected bacterial load. As a result, for each dataset we generated RefSeq-based OTU 64 

and taxa abundance counts, and Greengenes-based OTU and taxa abundance counts. We 65 

excluded additional post-processing filtering and normalization steps so that these parameters 66 

can be included in future benchmarking use cases as needed. We also limit our data to OTU 67 

and taxa tables as other metrics such as alpha and beta diversity can be subsequently 68 

generated as needed. 69 

 70 

Sample metadata from individual studies were manually curated to generate viable prediction 71 

tasks. When available, published study exclusion criteria was applied accordingly and 72 

confounders were removed by dropping samples or stratification. Studies that were cross-73 

sectional by design but contained several samples per subject were filtered to contain one 74 

sample per subject. Well-known confounders, such as geography, were accounted for when 75 

constructing prediction tasks for other human-associated conditions. Longitudinal studies were 76 

reduced to single time points of interest to minimize the effect of high intra-individual similarities. 77 

Hence, each prediction task is made available as an individual, compartmentalized metadata file 78 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 

that contains sample identifiers, responses to predict, and optionally, confounder variables to 79 

control for. As a result, we generated 33 distinct tasks for predicting human-associated 80 

responses. 81 

 82 

Publicly available web-based interface 83 

We expect two types of users: (1) machine-learning algorithm developers with limited 84 

knowledge of microbiome study designs and (2) microbiome researchers interested in obtaining 85 

additional datasets for meta-analysis. Generally, we expect that methods developers will be 86 

most interested in sweeping through the full set of prediction tasks for benchmarking, and hence 87 

would prefer to download a single compressed file containing all tasks and data. On the other 88 

hand, we expect that microbiome researchers will be more selective in downloading specific 89 

datasets and tasks depending on their research domain. Hence, researchers may prefer to 90 

browse specific details about tasks and datasets prior to downloading. 91 

 92 

Based on these expected use cases, we created a publicly available web-interface for MLRepo 93 

hosted by GitHub Pages and available at: https://knights-lab.github.io/MLRepo. Tasks are 94 

organized by relevant response categories [Fig 2A]. Task pages contain descriptive details such 95 

as Sample Size and Response Type that are specific to the selected prediction task, as well as 96 

links for downloading OTU tables, taxa tables, and sample metadata [Fig 2B]. Dataset pages 97 

contain important details about the entire dataset, including links to the original research study, 98 

as well as original metadata files and quality filtered sequences [Fig 2C]. We also provide a 99 

single compressed file containing the entire set of available tasks (OTU tables, taxa tables, and 100 

relevant metadata) for download from the main home page. 101 

 102 
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 5 

Benefits of curated microbiome-based prediction tasks 103 

We expect MLRepo to be beneficial for both the machine-learning community as well as the 104 

microbiome research community. MLRepo will be a powerful complement to UCI’s machine 105 

learning repository, as it will allow for benchmarking curated classification tasks with high-106 

dimensional data, and hence enable the subsequent development of novel algorithms for these 107 

complex datasets. Our streamlined approach in generating OTU and taxa tables offers a rich set 108 

of 15 datasets that microbiome researchers can use directly for further comparison with their 109 

own studies, for teaching and learning purposes, or for large meta-analyses. We expect that our 110 

provided OTU and taxa tables will also be beneficial for researchers with limited access to high-111 

performance computing resources or bioinformatics skills necessary for processing raw 112 

sequencing data. In addition, we expect microbiome-specific methods development will also 113 

benefit from our repository prediction tasks. The subsetted samples found in each prediction 114 

task metadata file replaces the work of rigorously deciphering metadata and nuances from 115 

individual research studies. Hence, new methods, such as OTU-picking algorithms, can be 116 

evaluated not only on metrics such as speed and accuracy, but also based on overall impact to 117 

study findings. 118 

 119 

Comparison to similar databases 120 

Although a number of microbiome repositories exist, many are intended as data archival 121 

repositories [17,18] or function as resources for aggregating across studies [19]. Resources 122 

such as QIITA [11] offer an extensive collection of datasets, and mock-community-based 123 

Mockrobiota [20] is well-suited for benchmarking upstream methods, but neither offer support 124 

for the metadata interpretation necessary for predicting high-level phenotypes. MLRepo differs 125 

from all of these resources in that we provide well-defined tasks for predicting responses from 126 

manually curated metadata and standardized data from published microbiome research studies. 127 

 128 
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 6 

Case studies 129 

We compare the performance of three machine learning models: a random forest [21], and a 130 

support vector machine [22] (SVM) with either a radial or linear kernel. Sweeping through 131 

available tasks with binary responses, we compare our models by examining receiver operating 132 

curves (ROCs) and areas under the curve (AUC) [Fig 3]. Through comparison of ROCs, we can 133 

see that random forest outperforms or ties the other two models in 21 out of the 28 tasks. The 134 

choice of kernels for SVM appears to have limited impact on overall mean accuracy, yet a linear 135 

kernel can perfectly classify penicillin-treated and vancomycin-treated mouse cecal contents 136 

when the other models could not; further examination of the microbial features in these samples 137 

may be warranted to better understand the strengths of this kernel. We also performed pairwise 138 

comparisons of random forest against the other models across all tasks. When evaluated by 139 

AUC, considered the standard method for machine learning model evaluation [23,24], random 140 

forest performs significantly better than both SVM with a linear kernel (P=0.0014) and with a 141 

radial kernel (P=0.00032) [Fig 4A]. We found that random forest accuracy improvements were 142 

moderate when compared with SVM-Linear (P=0.083) and SVM-Radial (P=0.03) [Fig 4B]. Our 143 

results support the broad usage [4,5,8,25] and acceptance of random forest as a robust 144 

classifier [6] with high-dimensional microbiome data. 145 

 146 

To assess the impact of reference database choice on classification accuracies, we also used 147 

the classification tasks to compare random forest using OTUs picked with the Greengenes 97 148 

database or the NCBI RefSeq Targeted Loci Project 16s project. We find that there is limited 149 

impact of database choice to overall classification accuracies [Fig 4C, Fig 5]. This may be due 150 

to (1) large effect sizes that are driven mainly by several well-characterized bacterial taxa 151 

present in both databases (e.g. stool versus tongue samples), or (2) small effect sizes such that 152 

classification is difficult regardless of the database (e.g. male versus female stool). 153 

 154 
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 7 

Future work 155 

We expect and hope that the broader microbiome research community will add new datasets 156 

and prediction tasks to MLRepo. We provide instructions on our GitHub repository to guide 157 

users to create a fork from our repository, add the appropriate data and files, and update the 158 

master task and dataset lists. Researchers can then submit a pull request for our review, and if 159 

properly formatted, will be accepted and merged into the repository. We expect that data 160 

submissions will come from either the original researchers or those well-acquainted with the 161 

datasets, and hence will expect that sample selection and subsetting will have undergone 162 

rigorous review for prediction tasks.  163 

 164 

Methods 165 

Pre-processing of sequencing reads 166 

When available, preprocessed FASTA files were downloaded from QIITA (or previously, the 167 

QIIME database). For all other datasets, raw FASTQ files were downloaded from sources listed 168 

in Supplemental Table 1. Sequences were trimmed and quality filtered using SHI7 [12] or QIIME 169 

[13]. OTUs were picked from processed FASTA files using BURST [26] with Greengenes [16] 170 

97 or the NCBI RefSeq Targeted Loci Project 16s project [15] (accessed on 17-07-04). Samples 171 

with sequencing depth lower than 1000 sequences per sample were dropped for all studies, 172 

except for five datasets [27–31], where the minimum threshold was 100 sequences per sample. 173 

 174 

Selection of classification tasks 175 

Classification tasks were selected based on reported study results, biologically relevant high-176 

level phenotypes, and sufficient sample sizes. Original metadata files and research methods 177 

were rigorously and manually curated in order to subset samples with minimal confounders. For 178 

confounders that were inherent to the study, we include an additional variable to control for in 179 
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 8 

the task metadata files. Presence of control variables can be found by examining “control_vars” 180 

in the Tasks table.  181 

 182 

Website generation 183 

Website templating was developed using Jinja2 [32] and custom Python scripts. Individual 184 

webpages were generated by iterating through items in the Tasks and Datasets tables, and 185 

dynamically populating templates in order to generate individual Markdown [33] pages. The 186 

resulting Markdown pages are hosted as GitHub Pages. 187 

 188 

Case Study Benchmarking 189 

Case study results were generated with custom R [34] scripts, which can be found in the 190 

/example folder in the MLRepo Github repository. To compare machine learning models, we 191 

iterated through tasks with binary responses. OTU counts were converted to relative 192 

abundances, filtered at a minimum of 10% prevalence across samples, and collapsed at a 193 

complete-linkage correlation of 95%. We then constructed a 5-fold cross-validation for tasks 194 

containing more than 100 samples, or a leave-one-out cross-validation for tasks with smaller 195 

sample sizes. For n-fold cross validation, samples were assigned to folds such that classes 196 

were equally balanced within each fold (e.g. if our task contained 40% healthy and 60% 197 

diseased samples, our folds would also be selected to represent this distribution). For tasks that 198 

contained control variables, we selected folds such that samples with the same control variable 199 

value were contained within the same fold. For example, for a task dataset containing matching 200 

stool and oral samples from subjects, the Subject Identifier would be listed as the control 201 

variable and we should assign samples to folds such that all samples from a specific subject 202 

were contained within a fold. This step is crucial to avoid biasing or overfitting the training 203 

model; test folds should contain not only new samples, but also samples that are independent 204 

from those in the training set. Models were constructed using the ‘caret’ package [35]. This 205 
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 9 

process was bootstrapped 100 times, and the mean class probabilities were used to calculate 206 

the resulting AUCs and ROCs. To compare classification accuracies using different reference 207 

databases, we used a similar procedure but held the model constant and predicted using 208 

different base OTU tables. This framework enables comparison of a myriad of machine learning 209 

models available in the ‘caret’ package, and can be easily expanded to compare different OTU-210 

picking algorithms, or normalization and filtering techniques. 211 

 212 

Availability of supporting source code and requirements 213 

 214 

Project name: Microbiome Learning Repo 215 

Project home page: https://knights-lab.github.io/MLRepo/ 216 

Operating system: Platform independent 217 

Programming language: Python, R 218 

License: MIT License 219 
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Tables 319 

Table 1. Microbiome datasets with available classification tasks in ML Repo. 320 
Project 
Name 

V 
Region 

Target 
size 

Num 
samples 

Num 
subjects 

Area Description Sequencing 
Technology 

Study 
Design 

Cho 2012 V3 177 95 47 Antibiotics Mouse fecal and 
cecal samples, 
Control vs. 4 kinds 
of antibiotics 

454 Cross-
Sectional 

Claesson 
2012 

V4 221 168 168 Age Elderly and young 
adults 

454 Cross-
Sectional 

David 2014 V4 282 235 11 Diet Plant-based vs. 
Animal-based diet, 
Cross-over study 

Illumina 
MiSeq 

Longitudinal 

Gevers 
2014 

V4 173 1321 668 IBD Biopsies from IBD 
patients prior to 
treatment 

Illumina 
MiSeq 

Cross-
Sectional 

HMP 2012 V35 527 6407 242 Body 
Habitat, 
Gender 

Up to 18 body sites 
across 242 healthy 
subjects at 1-2 time 
points 

454 Cross-
Sectional 

Kostic 2012 V35 569 190 95 Colorectal 
Cancer 

Adjacent Healthy vs. 
Tumor Colon Biopsy 
Tissues 

454 Paired 

Montassier 
2016 

V56 280 28 28 Bacteremia Patients prior to 
chemotherapy who 
did or did not 
develop bacteremia 

454 Cross-
Sectional 

Morgan 
2012 

V35 569 231 231 IBD Healthy, Crohn's 
Disease, or 
Ulcerative Colitis 
patients 

454 Cross-
Sectional 

Turnbaugh 
2009 

V2 230 281 154 Obesity Monozygotic or 
dizygotic twin pairs 
concordant for BMI 
class, and their 
mothers 

454 Cross-
Sectional 

Wu 2011 V12 244 95 10 Diet Controlled HighFat 
or LowFat feeding 
on 10 subjects over 
10 days 

454 Longitudinal 

Yatsunenko 
2012 

V4 282 531 531 Geography, 
Age, Gender 

Humans of varying 
ages from the USA, 
Malawi, and 
Venezuela 

Illumina 
MiSeq 

Cross-
Sectional 

Ravel 2011 V12 240 396 396 Bacterial 
Vaginosis 

Vaginal samples 
from four ethnic 
groups nugent 
scores for bacterial 
vaginosis 

454 Cross-
Sectional 

Karlsson 
2013 

NA NA 144 144 Diabetes Patients with 
normal, impaired, or 
type 2 diabetes 
glucose tolerance 
categories 

Illumina 
HiSeq  

Cross-
Sectional 

Qin 2012 NA NA 134 134 Diabetes Healthy vs type 2 
diabetes Chinese 
patients 

Illumina 
HiSeq  

Cross-
Sectional 

Qin 2014 NA NA 130 130 Cirrhosis Cirrhosis versus 
healthy 

Illumina 
HiSeq  

Cross-
Sectional 

ML Repo contains 33 classification and regression tasks from 15 publicly available human 321 
microbiome datasets shown here.  322 
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Figure Legends 323 

Figure 1. Data processing workflow and website generation. 324 

(A) Quality-filtered sequences were obtained from either the QIITA or from another public 325 

repository and trimmed and filtered using SHI7. Reference-based OTUs were picked 326 

using BURST with the NCBI RefSeq and Greengenes 97 databases.  327 

(B) Individual GitHub Markdown pages were generated from dataset and task lists with a 328 

custom Python script and Jinja2 template, then uploaded to GitHub to be hosted. 329 

Figure 2. Screenshots of ML Repo web interface. 330 

(A) Available classification and regression tasks are listed by high level phenotype 331 

categories for browsing. 332 

(B) Individual task webpages contain links to files for classifying a specific task, as well as 333 

relevant task-specific metadata. 334 

(C) Individual dataset webpages contain relevant metadata pertaining to the entire dataset, 335 

as well as links to raw metadata files and sequencing data. 336 

Figure 3. ROCs comparing random forest and SVM with different kernels. 337 

Sweeping across all binary classification tasks available in MLRepo (n=28), we compare ROCs 338 

of random forest, SVM with a radial kernel, and SVM with a linear kernel. AUCs are listed within 339 

plots and are colored respective to each model. 340 

Figure 4. Summary statistics of framework and database comparisons. 341 

(A) AUCs random forest (rf) to SVM-Linear (left) and random forest to SVM-Radial (right). 342 

Paired t-tests reveal that random forest results in significantly higher AUC than both 343 

SVM-Linear (P=0.0014) and SVM-Radial (P=0.00032).  344 

(B) Accuracies of random forest to SVM-Linear (left) and random forest to SVM-Radial 345 

(right). Paired t-tests reveal that random forest results in significantly better accuracy 346 

than SVM-Radial (P=0.03), but not SVM-Linear (P=0.083). 347 
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(C) AUCs (left) and accuracies (right) of random forest classifications of n=24 tasks using 348 

OTUs picked with NCBI RefSeq database or Greengenes database as predictors. 349 

Student’s t-test reveals that reference database choice has limited impact on 350 

classification AUC or accuracy. 351 

Lines are colored by the top model for each classification task. 352 

Figure 5. ROCs comparing NCBI RefSeq and Greengenes 97 databases. 353 

Sweeping across 16s-based binary classification tasks available in MLRepo (n=24), we 354 

compare ROCs of random forest with genus-level taxonomic summaries as predictors from 355 

OTU-picking strategies with the NCBI RefSeq prokaryote reference database and the 356 

Greengenes 97 reference database. AUCs are listed within plots and are colored respective to 357 

each database. 358 
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