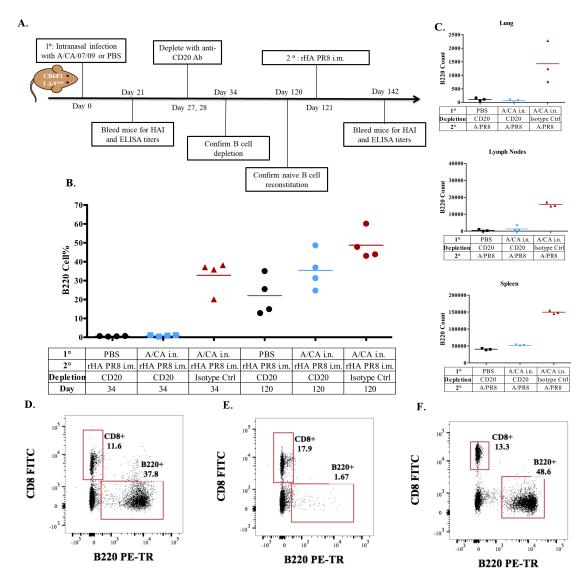

Supplementary Figure 1: Flow Cytometry gating strategy and representative flow plots of $CD4^{+}T$ cell reactivity and IFN- γ ELISPOT. C57BL/6 (n=5 per group) or CB6F1 mice were intranasally infected with either A/PR8 or A/CA. Day 14 post infection spleens were harvested and stimulated with pooled peptides (1-10) of A/CA HA. Cells were then stained for analysis by flow cytometry and CD4⁺CD44^{hi}IFN γ^{+} cells frequency of parent percentage (FoP %) were quantified in Figure 2. Representative flow plots and gating strategy are shown in panel (A). C57BL/6 mice (n=10 per group) mice were infected with A/CA or immunized with A/CA rHA (1 μ g) then 14 days later splenocytes were isolated, resuspended and stimulated with 10 μ g/mL of individiual 15-mer peptides from A/CA HA, media alone or PMA to measure IFN- γ production by ELISPOT in panel (B). Data show results from one of two experiments (n = 10).


Supplementary Figure 2: Increased Germinal Center A/PR8-specific B and T follicular helper cells in response to drifted immunization in previously exposed mice but not unexposed mice. Representative flow plots show increased A/PR8-specific GC cells (B220⁺ CD95⁺ GL7⁺ CD38⁻ PR8-Tet⁺ CD138⁻) in previously exposed CB6F1 mice immunized with rHA A/PR8 or rHA X-31, as a negative control, in panel (A). Representative flow plots show increased GC cells (B220⁺ GL7⁺ CD38⁻) in previously exposed in panel (B) and these GC B cells express higher levels of activation-induced cytidine deaminase (AID) in panel (B). Representative flow plots show increased Tfh cells (CD4⁺ CD154⁺ CD44⁺ CXCR5⁻ PD1⁻) in previously exposed CB6F1 mice immunized with PR8 rHA (1 µg) in panel (C).

Supplementary Figure 3: Depletion of memory $CD4^{+}T$ cells and reconstitution of naïve $CD4^{+}T$ cells in blood and tissues of CB6F1 mice. Experimental outline in panel (A) : CB6F1 mice were i.n. exposed to A/CA (500 pfu/mouse) or PBS and then depleted of $CD4^{+}T$ cells in between primary and secondary immunization using 500 µg Ab GK 1.5 given i.p., then allowed to reconstitute their naïve $CD4^{+}T$ cell population prior to secondary drifted immunization to A/PR8 rHA (1 µg). $CD4^{+}T$ cells (n=10 per group) were quantified in blood in panel (B) post depletion with anti- $CD4^{+}Ab$ and isotype control and upon reconstitution using Flow Cytometry. Penetration of tissue $CD4^{+}T$ cell depletion (n=5 per group) shown in lungs, axial and brachial lymph nodes and spleen in panel (C). Flow Cytometry plots to confirm $CD4^{+}T$ cell depletion with anti-CD4 Ab in panel (D) and isotype control in panel (E) and reconstitution in blood in panel (F).

Supplementary Figure 4: Preexposure with adjuvanted A/CA HA protein enhanced hAb responses to A/PR8 HA immunization and enhancement is $CD4^+$ T cell dependent. CB6F1 mice (n=5 per group) are intranasally exposed to A/CA (500 pfu/mouse) or PBS or rHA CA (1 µg/mouse) with and without adjuvant (SLA-SE) and then depleted of $CD4^+$ T cells in between primary and secondary exposure using 500 µg Ab GK 1.5 given i.p., then allowed to reconstitute their naïve CD4⁺ T cell population prior to secondary intramuscular immunization to rHA PR8 (1 µg/mouse). A/PR8 HAI titer in panel (A) and endpoint titer ± SD (Log₁₀) in panel (B) at day 21 post-secondary rHA PR8 immunization in CB6F1 mice. (**p<0.01, ****p<0.0001, One-way ANOVA). Data show results from one of two experiments with similar results (n = 5 mice).

Supplementary Figure 5: Experimental determination of memory B cell necessity in CB6F1 mouse model. Experimental model timeline: CB6F1 mice are intranasally exposed to A/CA (500 pfu/mouse) or PBS and then depleted of B cells in between primary and secondary immunization using 500 μ g anti-CD20 antibody given i.p., then allowed to reconstitute their naïve B cell population prior to secondary intranasal or intramuscular exposure to A/PR8 rHA (1 μ g/mouse) as shown in panel (A). B cells were quantified in blood post depletion and upon reconstitution using Flow Cytometry in panel (B). Penetration of tissue B cell depletion (n=3 per group) shown in lungs, axial and brachial lymph nodes and spleen in panel (C). Flow Cytometry plots to confirm B cell depletion in panel (D), isotype control in panel (E) and reconstitution in blood in panel (F). Data show results from one of two experiments with similar results (n = 4 mice).