Supplemental information for

Acylation derivatization based LC-MS analysis of vitamin D metabolites from finger-prick blood

Juan Le(乐娟)¹, Teng-Fei Yuan(袁腾飞)¹, Jia-Qing Geng(耿嘉庆)², Shao-Ting Wang(王少亭)¹*, Yan Li(李艳)¹*, Bing-Hong Zhang(张炳宏)²*

* These authors jointly supervised this work.
¹Renmin Hospital of Wuhan University, Department of Clinical Laboratory
²Renmin Hospital of Wuhan University, Pediatric Department
430060 Wuhan, China
Tel.: +86-27-88041911; fax: +86-27-88041911
E-mail address: shaotingw@163.com; liyanlcms@163.com; zbhong6288@163.com

RUNNING TITLE: Finger-Prick Analysis of Vitamin D by Acylation

DISCLOSURE STATEMENT: The authors have nothing to disclose.

Targets	Precursor ion (m/z)	Product ion (m/z)	DP (v)	CE (eV)
25(OH)D2 ^a	412.0	395.4	90	13
25(OH)D2 ^b	413.2	159.1	90	35
25(OH)D ₂ -d3 ^a	416.2	398.4	60	12
$25(OH)D_2$ -d3 ^b	416.3	358.5	60	13
25(OH)D ₃ ^a	401.2	265.2	100	15
epi-25(OH)D ₃ ^a	401.2	303.3	100	15
25(OH)D ₃ ^b	401.2	202.2	100	12
epi-25(OH)D ₃ ^b	401.2	303.3	100	15
25(OH)D ₃ -d6 ^a	407.2	371.3	90	14
$25(OH)D_3-d6^b$	407.2	389.4	90	13
24,25(OH) ₂ D ₂ ^a	420.4	393.4	90	12
24,25(OH) ₂ D ₂ ^b	429.4	411.7	90	11
24,25(OH) ₂ D ₃ ^a	<i>A</i> 17 <i>A</i>	381.4	120	17
24,25(OH) ₂ D ₃ ^b	417.4	399.5	120	18
1,25(OH) ₂ D ₂ ^a	420.2	411.4	60	9
1,25(OH) ₂ D ₂ ^b	429.5	393.4	60	15
1,25(OH) ₂ D ₃ ^a	A17 A	399.4	90	9
1,25(OH) ₂ D ₃ ^b	417.4	381.4	100	12
25(OH)D ₂ -INC ^a	518.2	124.0	90	65
25(OH)D ₂ -INC ^b	518.5	395.4	90	28
25(OH)D ₂ -d3-INC ^a	521 /	124.0	80	70
25(OH)D ₂ -d3-INC ^b	521.4	398.3	80	25
25(OH)D ₃ -INC ^a	506.2	124.0	90	70
25(OH)D ₃ -INC ^b	500.5	365.3	90	30
epi-25(OH)D ₃ -INC ^a	506 4	124.0	90	70
epi-25(OH)D ₃ -INC ^b		365.4	90	30
25(OH)D ₃ -d6-INC ^a	512.3	124.0	90	70
25(OH)D ₃ -d6-INC ^b	512.5	371.2	90	25
24,25(OH) ₂ D ₂ -INC ^a	524 4	124.0	60	66
24,25(OH) ₂ D ₂ -INC ^b	554.4	393.2	50	20
24,25(OH) ₂ D ₃ -INC ^a	522.5	124.0	60	62
24,25(OH) ₂ D ₃ -INC ^b	522.5	381.2	50	26
1,25(OH) ₂ D ₂ -INC ^a	524 4	124.0	80	70
1,25(OH) ₂ D ₂ -INC ^b		393.3	80	24
1,25(OH) ₂ D ₃ -INC ^a	577 5	124.0	80	70
1,25(OH) ₂ D ₃ -INC ^b	522.5	399.0	60	13

Supplemental Table S1. MRM parameters for original vitamin D metabolites and their INC derivatization products.

Abbreviation: MRM, Multiple Reaction Monitoring; DP, Decluttering Potential; CE, Collision Energy.

^a Quantifier ion.

^b Qualifier ion.

Supplemental Table S2. Schematic of INC derivatization of 25(OH)D and structure information of related targets.

^{*} During MRM detection, the isonicotinic fragment showed best intensity for all the 25(OH)D-INC species so that the protonized isonicotinic acid ion (m/z 124.0) was chosen as product ion for quantification.

Tanata*	Retention	Linear range	Calibration curves		rves	LLOQ
Targets."	time (min)	(ng/mL)	Slope	Intercept	R^2	(ng/mL)
25(OH)D ₂	10.65	1.0-100.0	0.0352	-0.0096	0.9980	1.0
25(OH)D ₃	10.55	1.0-100.0	0.0301	0.0390	0.9990	1.0
epi-25(OH)D ₃	10.70	1.0-100.0	0.0434	0.0372	0.9970	1.0

Supplemental Table S3. The calibration curves and sensitivity for the INC derivatization method.

* The targets were detected as the 25(OH)D-INC forms.

	Theoretical value (ng/mL)	Intraday	y (n=6)	Interday (n = 30)		
Targets		Measured concentration (ng/mL) ±SD	Recoveries% (CV%)	Measured concentration (ng/mL) ±SD	Recoveries% (CV%)	
25(OH)D ₂						
LLOQ-level	1.0	0.9 ± 0.2	93.5 (16.8)	0.9 ± 0.2	90.6 (17.9)	
low-level	10.0	$9.1\ \pm 0.8$	90.6 (9.2)	$9.2\ \pm 0.8$	91.1 (9.3)	
medium-level	30.0	$28.5\ \pm 2.5$	95.1 (8.8)	$28.2~{\pm}2.6$	94.1 (9.1)	
high-level	100.0	97.1 ± 6.3	97.1 (6.5)	$96.5~\pm7.8$	96.5 (8.1)	
25(OH)D ₃						
LLOQ-level	1.0	0.9 ± 0.1	88.8 (14.1)	0.9 ± 0.1	87.4 (14.8)	
low-level	10.0	9.2 ± 0.6	92.3 (6.2)	9.0 ± 0.7	89.9 (8.1)	
medium-level	30.0	27.6 ± 2.0	92.1 (7.1)	$28.0~{\pm}2.3$	93.2 (8.3)	
high-level	100.0	100.7 ± 5.4	100.7 (5.4)	95.5 ± 7.1	95.5 (7.4)	
epi-25(OH)D ₃						
LLOQ-level	1.0	0.9 ± 0.1	86.5 (12.1)	1.0 ± 0.1	102.5 (11.5)	
low-level	10.0	$9.7\ \pm 0.7$	97.2 (6.8)	9.6 ± 0.8	96.4 (8.7)	
medium-level	30.0	31.1 ± 1.9	103.6 (6.1)	$28.7\ \pm 2.8$	95.6 (9.6)	
high-level	100.0	95.4 ± 6.1	95.4 (6.4)	$93.6\pm\!6.5$	93.6 (6.9)	

Supplemental Table S4. Intra- and inter-assay accuracy and imprecision of the the INC derivatization method.

SPM	Targets	Certified value	Measured value	$\mathbf{P}_{\mathbf{A}}(\mathbf{W})$	CV (%)
SINI		(ng/mL)	(n=5, ng/mL)	Recoveries (%)	
	25(OH)D ₂				
927a	level 1	0.5^{b}	_c	-	-
	level 2	0.8^{a}	_c	-	-
	level 3	13.3 ^a	12.5 ± 0.9	94.2	7.5
	level 4	0.6^{b}	_c	-	-
	25(OH)D ₃				
	level 1	28.8^{a}	27.5 ± 2.0	95.6	7.3
	level 2	18.1 ^a	16.9 ± 1.1	93.5	6.4
	level 3	19.8 ^a	18.6 ± 1.5	94.1	8.1
	level 4	29.4 ^a	$27.8~{\pm}1.9$	94.4	7.0
	epi-25(OH)D ₃				
	level 1	1.8^{a}	1.6 ± 0.2	90.5	10.1
	level 2	1.3 ^a	1.1 ± 0.1	86.3	12.5
	level 3	1.2 ^b	1.0 ± 0.1	84.1	10.2
	level 4	26.0 ^a	24.9 ± 1.8	95.6	7.1

Supplemental Table S5. Certified and measured concentrations of $25(OH)D_2$, $25(OH)D_3$ and epi-25(OH)D_3 from the reference material SRM927a.

^a Certified value.

^b Reference value.

^c Lower than LLOQ.

Supplemental Figure S1. The typical LC-MS/MS chromatograms of 24,25(OH)₂D₂, 24,25(OH)₂D₃, 1,25(OH)₂D₂ and 1,25(OH)₂D₃ before (A1, B1, C1 and D1, 10 ng/mL) and after (A2, B2, C2 and D2, 1 ng/mL) INC derivatization.

Supplemental Figure S2. The typical LC-MS/MS chromatograms of 25(OH)D-INC in spiked plasma sample on LLOQ-level, (A) $25(OH)D_2$ -INC; (B) $25(OH)D_3$ -INC and epi- $25(OH)D_3$ -INC.

Supplemental Figure S3. Comparison of vitamin D values measured by newly established method and previous method in 30 samples (plasma). (A) Passing-Bablok regress analysis for newly established method and previous method. (B) Bland-Altman plot showed the bias between the newly established method and previous method.

Investigation of reaction yields

Plasma (100 μ L) from high-level of QC samples was transferred into a polypropylene conical centrifuge tube. After mixing with ACN (200 μ L), dichloromethane (900 μ L) was added, vortexed (1 min) and centrifuged (3000 g, 30 s) for liquid-liquid extraction (LLE). The resulted subnatant (900 μ L) was then transferred into a new polypropylene conical centrifuge tube, dried under nitrogen gas and redissolved in a mixture (200 μ L) of ethyl acetate and dichloromethane (1/3, v/v). Such mixture was then divided into two parts (each 100 μ L). For Part-I, INC solution (10 μ L) was added for derivatization. For Part-II, ACN (10 μ L) was added for control. The final mixture was then dried under nitrogen gas again and reconstituted with initial mobile phase (100 μ L) for LC-MS/MS analysis of 25(OH)D species. The reaction yields could be evaluated by comparing the results from Part-I to Part-II.