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1. Uniformly spaced 3D Cartesian grid

The naïve approach to span the relevant reciprocal-space would be to use a cube with

a side of 2qmax from −qmax to qmax. However, because only values within a radius of

qmax are needed, the corners need not be allocated and calculated. The ratio between

the volumes of the sphere and its enclosing cube is:

4π
3 q

3
max

(2qmax)3
=
π

6
≈ 1

2

Thus, only the points that satisfy

|~q| ≤ qmax + 3∆q
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where ∆q is the spacing of the grid, should be used. The three extra layers ensure that

all points along the shell of radius qmax have calculated points around them for grid

interpolation.

2. Finding the rotation angles of an object

To save computations, we bin copies of an object together when their orientation is

identical. To find the final rotation angles of an object that has been rotated several

times, relative to its initial lab axes directions: (1, 0, 0), (0, 1, 0), and (0, 0, 1), we apply

the same rotation on the lab axes unit vector. In other words, we multiply the rotation

matrices and obtain the final rotation matrix:

XYZ =

x1 y1 z1
x2 y2 z2
x3 y3 z3

 (S1)

To find the α, β, and γ rotation angles (about the x, y, and z-axises, respectively), in

the range between −π and π, we compare the XYZ matrix with the rotation matrix:

A (α, β, γ) = cosβ cos γ − cosβ sin γ sinβ
cosα sin γ + cos γ sinα sinβ cosα cos γ − sinα sinβ sin γ − cosβ sinα
sinα sin γ − cosα cos γ sinβ cos γ sinα+ cosα sinβ sin γ cosα cosβ


and find the three angles.

To calculate the angles we use the function arctan(y, x) (the function ATAN2 in

C++), which gets the values of the cos (for y) and the sin (for x) of the relevant angle

and returns the angle (in radians) in its correct quadrant, based on the sign of the two

arguments. If both the cos and the sin are positive the angle is between 0 and π/2.

If the sin is positive and the cos is negative the angle is between π/2 and π. If both

are negative the angle is between −π and −π
2 , and if the sin is negative and the cos is

positive then the angle is between −π
2 and 0.
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We then proceed as follows (Heckbert, 1994).

α0 = arctan(z2, z3)

We define c2 ≡
√
x21 + y21.

If α0 > 0:

α0 = α0 − π

β0 = arctan(−z1,−c2)

else

β0 = arctan(−z1, c2)

We define:

s1 ≡ sin(α0)

ca1 ≡ cos(α0)

and then:

γ0 = arctan(s1 · x3 − ca1 · x2, ca1 · y2 − s1 · y3)

Finally we get that:

α = −α0, β = −β0, γ = −γ0.

3. PDBUnits: Accessory tool for identifying the rotation and translation
of repeating subunits in a PDB file

Complex and large structures often contain repeating subunits that differ from one

another in orientation and location. When structures can be represented by hierarchi-

cal data tree structures, D+ is using the Reciprocal Grid (RG) algorithm (Ginsburg

et al., 2016). In the data tree structures subunits are leaves and the manner by which

the subunits are organized is represented by assembly symmetry nodes (Fig. 1 ). In the

RG method the scattering amplitude of the assembly is calculated by computing the
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amplitudes of the basic subunits (leaves) on 3D reciprocal-space grids, moving up in

the hierarchy, calculating the grids of larger structures containing repeats of the sub-

units. By repeating this process for all the leaves and nodes of the tree the scattering

amplitude of the final complex structure is obtained. In this way, there is no need to

recalculate the scattering of each instance of a repeating subunit. Therefore, to reduce

the computation time when dealing with large supramolecular structures, it is best

to identify repeating subunits. D+ allows users to import Manual Symmetries, which

describe the manner by which repeating subunits are rotated and shifted in space.

To efficiently compute the scattering amplitude from a Protein Data Bank (PDB) file

of a complex structure made of many repeating subunits using the RG algorithm,

D+ requires a list of all the orientations and translations (or symmetries) of all the

instances of each repeating subunit. The PDBUnits tool, which will be described in

the following, can automatically export the symmetry of each type of subunit. The

input is the complete structure (represented by a PDB file), the structure of a subunit

(represented by a smaller PDB file) at a specific orientation (that we shall call the

“original” orientation), and the tolerance, given by the maximum root-mean-squared-

displacement (RMSD) value within which repeating subunits can be considered similar.

The program reads the complete structure and finds all the instances of the subunit.

For each instance, the rotation and translation with respect to the original subunit is

computed. To ensure consistency, the rotation and translations are applied to the orig-

inal subunit and the RMSD between the original subunit and the examined instance

of the subunit is computed. A comparison is made between the examined instance

and a duplicated subunit, obtained by applying the translation and rotation that best

fitted the examined subunit, to its original orientation. This process can be repeated

for every additional similar subunit that the complete structure contains. The results

are exported to D+ input format for immediate use.
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3.1. Implementation

The program gets the PDB file of the complete structure and the PDB of the

inspected subunit. It reads the files and converts them into arrays of atomic sym-

bols and their real-space location coordinates. The array of the complete structure is

called A and the array of the subunit is called S. Ai corresponds to the ith atom in

array A. The first condition for identifying a group of atoms in A as an instance of S

is having an identical atomic sequence to S. The program runs through array A and

identifies all the S atom sequences. Each sequence of atoms in A with atomic sequence

S in called P (as this set is a potential instance of S). Being identical to the atomic

sequence of S is a necessary but not a sufficient condition for P to be identified as an

instance of the subunit S.

To further explore the character of P we need to find its translation and rotation in

relation to S. To find the rotation of P with respect to S, we need to translate both

to the origin:

~Pi = ~BP i − ~Pcm

~Si = ~BSi − ~Scm

This operation is applied to each atom in P and S where ~Pi and ~Si are the ith atom

vectors after translation and, ~BP i and ~BSi are the ith atom vectors before translation

(i ∈ {1, . . . , Np}, where Np is the number of atoms in each array) and ~Pcm and ~Scm

are the centers of mass of each structure respectively.

The tool then creates two reference matrices from the first four atoms of P and S:

MP =

~P1 − ~P0

~P2 − ~P0

~P3 − ~P0

 ,
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MS =

~S1 − ~S0
~S2 − ~S0
~S3 − ~S0

 .
MP is the reference matrix for P and MS is the reference matrix for S. The aim is to

find the rotation matrix, R, that can rotate MS to MP :

MP = R ·MS .

By multiplying both sides by M−1S we get:

R = MP ·M−1S .

The program computes R. If P is an instance of the S, then each atom in P should

be obtained by rotating the corresponding atom in S by R. If any atom in P has a

different rotation with respect to S, then P is not an instance of S. In that case, P

and S have identical atomic sequence but different conformations. The tool rotates a

copy of S by R:

RS = R · S.

If RS is overlapping with P, then R describes the rotation of S to P. Because

PDBs are based on experimental data, and because of numerical artifacts, RS does

not always accurately overlap with P, even if P is indeed an instance of S. To take

this into account, the program calculates the RMSDrotation between RS and P:

RMSDrotation =
1

Np

Np∑
i=1

√(
~RSi − ~Pi

)2
If the RMSDrotation exceeds a given tolerance value, ε, the tool does not count P

as an instance of S and continues to search for other instances. If RMSDrotation ≤ ε,

then the tool continues to check the translation of P with respect to S.
IUCr macros version 2.1.10: 2016/01/28
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In the complete structure (A), an instance of the subunit (S) can be translated.

In order to find that translation-vector, S is rotated by the matrix R that was found

above, RS = R ·S. By rotating S to the orientation of P, the tool eliminates the effect

of the rotation on the coordinates and examines the translation alone:

~T = ~Pcm − ~RScm

~T is the translation vector, ~Pcm is the center of mass of P and ~RScm is the center of

mass of RS. If P is an instance of S, then ~T describes the translation relations of all

of the atoms of P with respect to RS. The tool then translates all the atoms of RS

by the vector ~T :

TS = RS + ~T

If P is an instance of S, TS should overlap with P to within an RMSDtranslation

smaller than ε, where:

RMSDtranslation =
1

Np

Np∑
i=1

√(
~TSi − ~Pi

)2
If RMSDtranslation ≤ ε, P is considered an instance of S, otherwise the tool does

not count P as an instance of S and continues to search for other instances. The

process that was described above is repeated for every group of atoms that their

atomic sequence is identical to S. In the end, the tool recognizes all of the instances

of subunit S in A.

3.1.1. Format and units Docking list (DOL) text file is the input format for manual

symmetries in D+, and is therefore, the output format of the tool. The tool writes

every instance of subunit, S, to a DOL file that can be later used by D+. To match

the format of the DOL file, the translation vector which is in PDB units (Å) is divided

by 10, to match the units of D+ (nanometers). The tool extracts the angles from the

rotation matrix by Tait-Bryan rotation angle convention used in D+ (in which the
IUCr macros version 2.1.10: 2016/01/28



8

rotation matrix is ordered as XYZ). The Tait-Bryan rotation angles are in radians.

D+ uses angles in degrees in the DOL file. The Tait-Bryan rotation angles are therefore

converted into degrees before writing them into the DOL file.

3.2. Test examples

A small CCl4 subunit in tetrahedron symmetry was created manually as a test case.

The subunit was placed in a PDB twice, in different orientations and translations. It

was placed along with random atoms and some atomic sequences that are similar but

not identical to the subunit. Two identical atomic sequences were also placed (C and

4Cl) but as separate atoms and not in a structure (to verify that the tool successfully

discards them). The tool loaded the PDB of CCl4 and of the complete structure. The

tool successfully recognized the two instances of CCl4 and discarded any other similar

but wrong cases. A DOL file was exported. D+ loaded the DOL file and the PDB of

the subunit, and a scattering curve was computed. A PDB containing the two CCl4

orientations only was created by removing the random atoms and misleading structures

and its scattering curve was computed by D+, using a Grid Size of 100 (Fig. S1A).

A second example, is the PDB 3J6F (Alushin et al., 2014), containing 9 tubulin

dimers from the microtubule (MT) structure. A PDB representation of a single tubulin

dimer subunit was extracted from 3J6F. The two PDB files were loaded to the tool.

The tool successfully recognized all the 9 tubulin dimers and exported the translations

and rotations into a DOL file. The DOL file was loaded to D+ along with the tubulin

dimer subunit PDB and the scattering signal was computed. The scattering curve of

3J6F PDB was also computed by D+, using a Grid Size of 200 (Fig. S1B).

The last example is of tubulin ring comprising 13 tubulin dimers. The PDB of the

full ring structure and the PDB of a tubulin dimer were loaded to our tool. The tool

successfully identified the 13 repeating dimer subunits and exported a correct DOL
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file. D+ computed the scattering curves from the PDB of the full ring or from the

DOL file and the PDB of the dimer, using a Grid Size of 300 (Fig. S1C).
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Fig. S1. Modeled scattering intensity as a function of the magnitude of the scattering
vector, q. The scattering curves were computed by D+ using the subunit PDB file
and the DOL file obtained from our PDBUnits tool, using ε of 0.01Å (red curves),
or the PDB file of entire structure (black curves). A. CCl4 B. Nine tubulin dimers
from the MT structure. C. Tubulin ring comprising 13 dimers. In all cases, D+ used
a Convergence tolerance of 0.001.

IUCr macros version 2.1.10: 2016/01/28



11

Fig. S1 shows that scattering curves that were computed with the DOL that was

created by the tool, completely overlapped with the curves that were computed from

the PDB of the entire assembly. In addition, the PDB files that were exported fromD+

using the DOL files and the PDB of the subunit were identical to the original full PDB.

The computation time was about ten times shorter when DOL files were used owing to

the advantages of the RG algorithm (Ginsburg et al., 2016). Therefore, whenever there

are repeating subunits, especially in large assemblies, it is recommended to analyze the

structure with the tool and only then by D+.

4. Finding the principal axes of an atomic structure

Given a 3×n matrix containing the coordinates of n atoms in a PDB file (whose origin

is at the center of mass):

A =

x1 y1 z1
...

...
...

xn yn zn

,
the principal axes can be found (as in principle component analysis (Jolliffe, 2002)),

in the following manner. Matrix M is defined by:

M = ATA.

E is the eigenvector
(−→
Ei
)
matrix of M, sorted in descending order of the eigenvalues

(ei). If the object is more prolate, i.e. (e1 − e2) < (e2 − e3) then we align e3 with the

z-axis. The rotation axis is given by r̂a = ẑ×
−→
E3

‖
−→
E3‖

and the angle is:

θ = arccos

(
− ẑ ·

−→
E3

‖
−→
E3‖

)
.

The rotation matrix is:
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R = ra2x(1− cos θ) + cos θ raxray(1− cos θ)− raz sin θ raxraz(1− cos θ) + ray sin θ
raxray(1− cos θ) + raz sin θ ra2y(1− cos θ) + cos θ rayraz(1− cos θ)− rax sin θ

raxraz(1− cos θ)− ray sin θ rayraz(1− cos θ) + rax sin θ ra2z(1− cos θ) + cos θ


where rax, ray, and raz are the elements of r̂a. If the object is more oblate i.e.

(e1 − e2) > (e2 − e3),
−→
E1 is aligned to the z-axis using ẑ ×

−→
E1. Aligning the second

axis is done by setting A′ = R ·A and repeating the process using ŷ ×
−→
E2.

5. Supernatant subtraction from microtubule sample

Dynamic microtubule (MT) was assembled in the presence of 4mM GTP and no

stabilizing agent was added. The MT sample contained MTs as well as other smaller

tubulin aggregates. By centrifuging the sample (20, 800 g, at 36 ◦C for 30 min), the MT

were removed to a pellet and the remaining supernatant was measured and used as

background for the MT sample. The resulting subtracted curve has identifiable features

throughout the entire scattering range (Fig. S2).
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Fig. S2. Azimuthally integrated scattered intensity curves as a function of the magni-
tude of the scattering vector, q, from the dynamic microtubule (MT) sample in Fig.
6 , its supernatant, and the subtracted curve. A. The blue curve is the scattering
from the MT sample, containing MT, tubulin dimer, and small tubulin assemblies.
The red curve is the scattering from the supernatant after centrifuging the sample.
B. The black curve is the resulting subtracted signal (sample minus supernatant).
The insets show the high q-range data on an expanded scale.

IUCr macros version 2.1.10: 2016/01/28



14

6. Comparing D+ with CRYSOL

Fig. S3A compares the computed scattering curves from the atomic model of lysozyme

in water, based on PDB ID 1LYZ, where hydrogen atoms were implicitly taken into

account. The curves were computed by D+, DebyeCalculator, and CRYSOL. In Fig,

S3B, a similar comparison was done after hydrogen atoms were explicitly added to the

PDB file (using PyMol software (Schrödinger, 2015)). Fig. S3C, compares the compu-

tation results of the two programs when a solvation layer was added. We attribute the

differences in the results to the slightly different algorithms used by the two programs.

In Fig. S3A and B, the computations were also compared with DebyeCalculator, which

applies Debye formula, and is in good agreement with D+.
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Fig. S3. Computed scattered intensity curves as a function of q, from the atomic models
of lysozyme (PDB ID 1LYZ). The dashed black curve was computed by CRYSOL
(ATSAS 2.8.2) (Svergun et al., 1995), where the maximum order of harmonics was
50 and the order of Fibonacci grid was 18. The solid blue curves were computed by
D+. In both programs, the solvent density of water was set to 334 e · nm−3. A. The
PDB structure in water using implicit hydrogen atoms. B. Adding hydrogen atoms
to the PDB using PyMOL (Schrödinger, 2015) and computing the scattering in
water with explicit hydrogen atoms. C. The solvation layer was taken into account,
using the default parameters of both programs: solvent Probe Radius of 0.14 nm,
solvation layer thickness of 0.3 nm with an electron density contrast of 30 e · nm−3.
Intensity curves computed by DebyeCalculator gave similar results to those of D+
in A and B. Solvation shells cannot be added in DebyeCalculator.
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7. Performance Analysis

Figure S4 shows the number of spherical harmonics expansion terms, lm, in CRYSOL

(ATSAS 2.8.2) (Svergun et al., 1995) as a function of the number of tubulin dimers,

N , in the models. The reported lm is the minimum value need to obtain residuals

(Eq. S2) of 0.05 or less at each q point between CRYSOL (ATSAS 2.8.2) and D+ or

DebyeCalculator, which uses Debye formula (Debye, 1915). For N ≥ 43 the maximum

lm value of CRYSOL (99), was insufficient to meet accuracy criterion. Intensity curves

were computed, in both D+ and CRYSOL, between qmin = 0 and qmax = 5 nm−1.

Fig. S5 repeats the analysis of Fig. 7 using either Grids or the Hybrid methods.

When the number of dimers is below 140 (in most cases) Grids are faster than Hybrid.

When the structures contain more dimers, the Hybrid method is only possible solution.

Fig. S6 repeats the performance analysis of Fig. 7 and computes the contribution of

the solvation layer using a much smaller Solvent Voxel Size of 0.05 nm (instead

of 0.2 nm. The latter size is smaller than used by other programs (Grudinin et al.,

2017; Svergun et al., 1995)). Computations with Solvent Voxel Size of 0.05 nm are

slower but can be more accurate in some cases. Fig. S7 directly compares the effect

of Solvent Voxel Size within D+, showing that at low number of dimers the effect

is more pronounced. Fig. S8 show larger Grid Size extends the computation times,

when using MC or Vegas MC orientation average integration methods. In the case of

Gauss Kronrod the convergence was faster when the Grids were denser. Fig. S8 uses

grids in all the computations. Fig. S9 show a similar comparison when using the Hybrid

method. In the latter case, the effect of Grid Size is similar but much smaller.
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Fig. S4. The minimum number of spherical harmonics expansion terms, lm, in
CRYSOL (ATSAS 2.8.2) (Svergun et al., 1995), which were required to attain accu-
rate results in Fig. 7, as a function of the number of tubulin dimers, NDimers. The
level of accuracy was set to have a residual value (Eq. S2) of 0.05 or less, compared
with either DebyeCalculator or D+. Intensity curves were computed, in both D+
and CRYSOL, between qmin = 0 and qmax = 5 nm−1.
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Fig. S5. Comparing Grids with Hybrid. Repeating the analysis of Fig. 7 using Grids
up to 140 dimers. Grid Size as a function of the number of dimers was as in Fig.
7D Red symbols indicate GPU computations. Light blue symbols indicate CPU
computations. Black symbols corresponds to computations with the Hyrbid method,
using a Grid size of 40 when no solvation layers were computed (A and C), or 60
when solvation layers were taken into account (B and D).
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Fig. S6. Performance analysis as in Fig. 7, using a much smaller Solvent Voxel
Size of 0.05 nm (instead of 0.2 nm). For structures with more than one dimer, the
Hybrid method of D+ was used with a Grid size of 40 when no solvation layer was
computed (in A), and 60 when solvation layer was taken into account (in B).
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Fig. S7. Effect of Solvent Voxel Size in D+. Direct comparison of the computations
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with a Grid size of 60.

IUCr macros version 2.1.10: 2016/01/28



19

0 5 0 1 0 0 1 5 00

1 k

2 k

3 k

4 k

1 . 5
W i t h  H y d r a t i o n
G K
G r i d

F .

Co
mp

uta
tio

n t
im

e (
se

c)

N u m b e r  o f  d i m e r s

2

0 5 1 0
1 0 0
2 0 0
3 0 0

0 5 0 1 0 0 1 5 00

1 k

2 k

3 k

4 k

1 . 5

N o  H y d r a t i o n
G K
G r i d  

E .

Co
mp

uta
tio

n t
im

e (
se

c)

N u m b e r  o f  d i m e r s

2

0 5 1 0
1 0 0
2 0 0
3 0 0

0 5 0 1 0 0 1 5 0

2 0 0

4 0 0

6 0 0

1 . 5
W i t h  H y d r a t i o n
V e g a s  ( G P U )
G r i d

D .

Co
mp

uta
tio

n t
im

e (
se

c)

N u m b e r  o f  d i m e r s

2

0 5 1 0
5

1 0
1 5
2 0

0 5 0 1 0 0 1 5 00

2 0

4 0

6 0

8 0

1 . 5
N o  H y d r a t i o n
V e g a s  ( G P U )
G r i d

C .

Co
mp

uta
tio

n t
im

e (
se

c)

N u m b e r  o f  d i m e r s

2

0 5 1 0
5

1 0

0 5 0 1 0 0 1 5 00

1 k

1 . 5

W i t h  H y d r a t i o n
M C  ( G P U )
G r i d

B .

Co
mp

uta
tio

n t
im

e (
se

c)

N u m b e r  o f  d i m e r s

2

5 1 0

2 0

4 0

0 5 0 1 0 0 1 5 00

2 0

4 0

6 0

8 0

1 . 5

N o  H y d r a t i o n
M C  ( G P U )
G r i d

A .

Co
mp

uta
tio

n t
im

e (
se

c)

N u m b e r  o f  d i m e r s

2

0 5 1 0
5

1 0
1 5

Fig. S8. Effect of Grid Size when using grids only. Repeating the computations in
Fig. 7 using the optimal Grid Size shown in Fig. 7D (red symbols), or 1.5 times the
optimal Grid Size (olive symbols) or twice the optimal Grid Size (blue symbols).
A. and B. Monte Carlo integration using GPU. C. and D. Vegas Monte Carlo
integration using GPU. E. and F. Gauss Kronrod integration, using GPU for the
grid computations and CPU for the orientation average. Solvent Voxel Size was
0.2 in B, D, and F.
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Fig. S9. Effect of Grid Size when using the Hybrid Method. Repeating the compu-
tations in Fig. S8 using the Hybrid method. The optimal Grid Size was 40 in A,
C, and E and 60 in B, D, and F (red symbols). Olive symbols indicate 1.5 times
the optimal Grid Size. Blue symbols indicate twice the optimal Grid Size. A. and
B. Monte Carlo integration using GPU. C. and D. Vegas Monte Carlo integration
using GPU. E. and F. Gauss Kronrod integration, using GPU for the grid compu-
tations and CPU for the orientation average. Solvent Voxel Size was 0.2 in B,
D, and F.
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8. Comparing experimental microtubule solution scattering data to
microtubule models with varying protofilament number

Fig. S10 compares the experimental dynamic MT scattering data with different atomic

MT models whose protofilament number vary between 12 and 15.

2 4 6

0 . 0 1

0 . 1

1
1 5

Int
en

sity
 [c

m-1 ]

q  [ n m - 1 ]

D .

1 2

0 . 0 1

0 . 1

1

2 4 6

0 . 0 1

0 . 1

1

C . 1 4

Int
en

sity
 [c

m-1 ]

q  [ n m - 1 ]

1 2

0 . 0 1

0 . 1

1

2 4 6

0 . 0 1

0 . 1

1
1 3

Int
en

sity
 [c

m-1 ]

q  [ n m - 1 ]

B .

1 2

0 . 0 1

0 . 1

1

2 4 6

0 . 0 1

0 . 1

1

Int
en

sity
 [c

m-1 ]

q  [ n m - 1 ]

1 2

1 2

0 . 0 1

0 . 1

1

A .

Fig. S10. Solution X-ray scattering data from dynamic microtubule (MT) and MT
models with varying number of protofilaments. Azimuthally integrated, background-
subtracted, experimental scattering intensity from dynamic MT (black curves),
taken from Fig. S2B. The blue solid curves were computed from atomic MT models
with 12 (A), 13 (B), 14 (C) or 15 (D) protofilaments, each containing 48 tubulin
dimers along the long MT axis. The dimers were arranged in a 3-start left-handed
helical lattice, whose radii were 10.2 11.05, 11.9, and 12.75 nm, corresponding to
12, 13, 14, and 15 protofilaments, respectively. The pitch in all the models was
12.214 nm, in agreement with PDB 3J6F (Alushin et al., 2014). A solvation layer
was added to the MT models, using a Probe Radius of 0.14 nm and the solvation
overlap correction method, described in §10.2. The layer thickness was 0.28 nm and
its electron density was 364 e·nm−3. The inset shows the low q-range on an expanded
scale. Intensity curves were computed in about half a minute on an NVIDIA Titan
GPU, using the Hybrid method.

IUCr macros version 2.1.10: 2016/01/28



22

9. Validation tests of D+

D+ has been extensively tested, using the hardware architecture described in §6.1.3,

in order to ensure that its computations are correct and consistent with other pro-

grams. In §9.1, geometric models were compared with X+ (Ben-Nun et al., 2010),

which uses analytical expressions when possible. In §9.2, atomic models were com-

pared with CRYSOL (ATSAS 2.8.2) (Svergun et al., 1995) or DebyeCalculator, which

uses Debye formula (Debye, 1915). Computations in CRYSOL were done using its

maximum accuracy settings, including 99 as the order of spherical harmonics terms

and 18 as the order of the Fibonacci grid (when relevant). In §9.3, the geometric

models were cross-validated using atomic structures that assumed the corresponding

geometric shapes.

In addition, various cross validation tests were designed to check that D+ is con-

sistent within itself by constructing the same structures using different options in D+

and comparing the results. We present several examples that demonstrate how D+ was

tested. The full set of tests is larger and provided as an additional supporting folder

that is part of the software package. In each test, we show comparable curves and a

zoom into a section where small deviations between curves can be observed. At each

q value, we also present the normalized residuals:

R (q) =
Itest (q)− Iref (q)

Itest (q)
. (S2)

Itest is the tested intensity, computed by D+. Iref is the reference curve, computed

by CRYSOL (ATSAS 2.8.2) (Svergun et al., 1995), or X+ (Ben-Nun et al., 2010), or

DebyeCalculator, or by D+ using an alternative way of computation. The differences

between the intensities are normalized to the magnitude of the intensity. Although

Itest is close to Iref , the analytical results of X+ may lead to values of Iref , which

can be very close to zero. We therefore normalized the residuals by Itest rather than

IUCr macros version 2.1.10: 2016/01/28



23

Iref . In those cases, we plotted the normalized absolute residuals, |R|, on logarithmic

scales, which are suitable to present a wide range of residual magnitudes. The wide

range was owing to the sharp minima in the scattering curves where the normalized

absolute residuals approached unity, whereas the other parts of the curves approached

zero. Some of the tests can be found in ./Example Files/ directory, where D+ is

installed.

9.1. Geometric models

9.1.1. Cylindrical models Fig. S11 compares between the scattering curve from a model

of a single 100 nm long rod with a radius of 1 nm, computed in X+, with a similar

model, computed in D+, using a Grid Size of 330. The same model was then con-

structed in D+ from 10 identical 10 nm long rods with the same radius, placed on top

of one another, using a space-filling 1D symmetry (see cartoon in Fig. S11). In the sec-

ond computation, the Grid Size of the small rod was only 50 and the Hybrid method

was used to compute the Space-Filling symmetry. The results were very similar up to

negligible small numerical errors.
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Fig. S11. Modeled X-ray scattering intensity curves from 100 nm long uniform rod
with a radius of 1 nm and electron density of 400 e/nm3, computed in X+ (solid
black curve) or in D+ using GPU, adaptive (VEGAS) Monte Carlo integration and
Grid Size of 330 (dashed red curve). The same structure was computed in D+
by computing the form-factor of 10 nm long rod and placing it in a Space-Filling
symmetry containing 10 identical units on top of one another (see cartoon). The
Grid Size of the short rod was 50 and the Space-Filling symmetry was computed
using the Hybrid method (dotted blue curve). The inset presents, on an expended
scale, a small part of the results where the deviation between the methods is large.
The top curve shows the normalized residuals, R, where the reference curve is the
intensity computed by X+ (Eq. S2).

Fig. S12 compares between models of uniform concentric cylinders of finite height

computed in X+, with those computed in D+. Within D+, the same models were

computed in several different ways. All the computations gave very similar results.
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Fig. S12. Solution X-ray scattering intensity from 10 nm long uniform rod surrounded
by two concentric hollow cylinders. The radius of the rod is 1 nm and its electron
density is 400 e/nm3. The second shell is 1 nm thick and its electron density is
500 e/nm3. The third shell is 1 nm thick and its electron density is 600 e/nm3. The
solid black curve was calculated with X+. The other broken curves were computed
by D+ using different options as follows. The model was constructed using a sin-
gle cylindrical geometry with three shells (as in X+) and was computed either on
the CPU (olive), using adaptive Gauss-Kronrod integration, or on the GPU (navy),
using adaptive (VEGAS) Monte Carlo integration. We then created the same struc-
ture using a rod and two separate concentric hollow cylinders with one shell each.
The three models (leafs in the data tree structure) were then positioned in a con-
centric symmetry using the Manual Symmetry option of D+. The models were then
calculated on CPU (pink) using the adaptive Gauss Kronrod integration method and
on the GPU (blue) using the adaptive (VEGAS) Monte Carlo integration option.
The same structure was constructed from two 5 nm long concentric cylinders that
were placed on top of one another using Manual Symmetry (CPU-violet and GPU -
red). The inset shows a small part of the curves on an expanded scale. The cartoon
shows a side-view and a top-view of the computed models. The top curves show the
normalized residuals, R, where the reference curve is the intensity computed by X+
(Eq. S2).
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9.1.2. Spherical models Fig. S13 compares between models of uniform concentric spheres

computed in X+ with those computed in D+. Within D+, the same models were com-

puted in several different ways. All the computations gave very similar results.
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Fig. S13. Modeled X-ray scattering intensity from a uniform sphere surrounded by
two concentric uniform hollow spherical shells. The radius of the core sphere is 1 nm
and its electron density is 400 e/nm3. The first spherical shell is 1 nm thick, its inner
radius is 1 nm, and its electron density is 500 e/nm3. The second spherical shell is
1 nm thick , its inner radius is 2 nm, and its electron density is 600 e/nm3. The solid
(black) curve was computed in X+. The other broken curves were computed by D+,
using different options as follows. The model was constructed using a single spherical
geometry with three layers (as in X+) and was computed either on the CPU (green)
and GPU (pink), using Monte Carlo integration. We then created the same structure
using a sphere and two separate concentric hollow spherical shells. The three models
(leafs in the data tree structure) were then positioned in a concentric symmetry using
the Manual Symmetry option of D+. The models were then computed using CPU
(blue) or GPU (red), using Monte Carlo integration. The inset shows a small part of
the curves on an expanded scale. The cartoons show a side view and a cut through
the computed structures. The top curves show the normalized absolute residuals,
|R|, where the reference curve is the intensity computed by X+ (Eq. S2).
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9.1.3. Slab models Fig. S14 compares between a model of an infinite multi-layered

slabs, computed by X+, with similar symmetric slab models computed by D+, using

finite size structures. A 100×100 nm2 multi-layered slab was computed by the Direct

method. Then, a 1, 000×1,000 nm2 multi-layered slabs was computed by constructing

each slab from 10,000 slabs of 10×10 nm2, using the scripted symmetry option of D+.

The deviations between the 3 models were small. The larger finite sized slabs were

somewhat closer to the finite model of X+. Fig. S15 shows an equivalent comparison,

using the asymmetric slab model of D+ instead of the symmetric slab model. Both

models adequately fit to the results of X+.
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Fig. S14. Modeled X-ray scattering intensity from layers of symmetric slabs. Each
slab has an inner layer that is 2 nm thick with an electron density of 280 e/nm3

that is sandwiched between two outer slabs that are each 1 nm thick and their elec-
tron density is 400 e/nm3. The solvent electron density is 334 e/nm3.(see cartoon).
The black solid curve was computed, using an infinite slab in X+. The broken red
curve was computed in D+, using 1, 000×1,000 nm2 slab that was constructed from
10,000 slabs of 10×10 nm2 using Scripted Symmetry and Grid Size of 100. Orienta-
tion average was calculated using adaptive (VEGAS) Monte Carlo integration. The
broking blue curve was computed on CPU with the Direct method in D+, using a
100×100 nm2 slab. Orientation average was calculated using adaptive Gauss Kron-
rod integration. The curves at the top show the normalized absolute residuals, |R|,
where the reference curve is the intensity computed by X+ (Eq. S2).
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Fig. S15. Modeled X-ray scattering intensity from layers of asymmetric slabs. Each
slab has an inner layer that is 2 nm thick with an electron density of 280 e/nm3,
which is sandwiched between two outer slabs, each 1 nm thick. One of the outer
slabs has an electron density of 400 e/nm3 and the other has an electron density of
450 e/nm3 (see cartoon). The black curve was computed, using an infinite slab in
X+. The broken blue curve was computed in D+, using 1, 000×1,000 nm2 slab that
was constructed from 10,000 slabs of 10×10 nm2 using Scripted Symmetry and Grid
Size of 100. Orientation average was calculated using adaptive (VEGAS) Monte
Carlo integration. The broking red curve was computed on CPU with the Direct
method in D+, using a 100×100 nm2 slab. Orientation average was calculated using
adaptive Gauss Kronrod integration. The top curve shows the normalized absolute
residual, |R|, where the reference curve is the intensity computed by X+ (Eq. S2).

Fig. S16 compares between 100×100 nm2 symmetric slab models within D+, com-

puted in different ways. The Direct method was computed on the CPU and compared

with several GPU computations. The GPU computations were done with either a

single 100×100 nm2 slab model or with 100 identical units of 10×10 nm2 slabs. The
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Hybrid method with either Space-Filling symmetry, or Scripted Symmetry, or Manual

Symmetry were used to compute the 100 units. All the methods gave very similar

results.
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Fig. S16. Modeled X-ray scattering intensity from layers of symmetric slabs, which
are isotropically distributed in random orientations in solution. Each slab has an
inner layer that is 2 nm thick with an electron density of 280 e/nm3 that is sand-
wiched between two outer slabs that are each 1 nm thick and their electron density is
400 e/nm3. The solvent electron density is 334 e/nm3 (see cartoon). All curves where
computed in D+, using 100×100 nm2 slabs with different methods. Direct compu-
tation from Fig. S14 (black) is compared to a Direct computation on CPU using
the asymmetric slab model (red). Several computations where done using GPU as
follows. A single 100×100 nm2 slab was computed with a Grid Size of 460 and ori-
entation average was computed using adaptive (VEGAS) Monte Carlo integration
(magenta). Alternatively, the Hybrid method was used to compute the scattering of
the same structure from 100 copies of 10×10 nm2 slabs, for which a Grid Size of
100 was used. To create the large slab, Scripted Symmetry (purple), Space-Filling
Symmetry (yellow), and Manual Symmetry (blue) were used. The top curve shows
the normalized residual, R, where the reference curve is the intensity computed by
D+ on the CPU, using the Direct method (Eq. S2).
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Fig. S17 compares between a stack of 10 infinite multi-layered slabs, computed by

X+, with a model of a stack of 10 finite slabs (or rectangular boxes) models that formed

a similar stack of large uniform slabs, computed by D+. The results are adequately

similar, considering the fact that D+ computes finite size slabs and X+ computes

infinite size slabs.
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Fig. S17. Modeled X-ray scattering intensity from Multi-layered structure containing
10 layers of symmetric slabs, which are isotropically distributed in random orienta-
tions in solution. Each slab has an inner layer that is 2 nm thick with an electron
density of 280 e/nm3 that is sandwiched between two outer slabs that are each 1 nm
thick and their electron density is 400 e/nm3. Between adjacent layers there is a
6 nm water gap with an electron density of 334 e/nm3 (see cartoon). The solid black
curve was computed, using a stack of infinite slabs in X+. The broken (blue) curve
was computed in D+, using 1, 000×1,000 nm2 slabs. Each slab was constructed from
10,000 slabs of 10×10 nm2 using Scripted Symmetry and Grid Size of 100. Orienta-
tion average was calculated using adaptive (VEGAS) Monte Carlo integration. The
top curve shows the normalized absolute residual, |R|, where the reference curve is
the intensity computed by X+ (Eq. S2).
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9.2. Atomic models

We compared the scattering curves from atomic models of D+ with those of CRYSOL

(ATSAS 2.8.2) (Svergun et al., 1995), and DebyeCalculator. DebyeCalculator uses the

equations of D+ but instead of numerical orientation average it uses Debye formula

(Debye, 1915), which applies analytic orientation averaging. Debye formula is applica-

ble for sphero-symmetric objects like atoms.

MOLProbity (Chen et al., 2010) was used to add hydrogen atoms to PDB files.

PyMOL (Schrödinger, LLC, 2015) was used to add charges to residues that were

supposed to be charged but the PDB file did not include the charges. The atomic form

factor of ions, like O−, differ from the form-factor of the corresponding neutral atom

(O, in this example). Both D+ and DebyeCalculator take into account the atomic form

factor of the 209 atoms and ions listed in the International Tables for Crystallography,

using the five-Gaussian approximation (Hamilton, 1974; Marsh & Slagle, 1983). N+,

however, is not included in the International Tables for Crystallography and both

D+ and DebyeCalculator computes the form factor of an N atom instead. If both

hydrogen atoms and charges are added to an N+ group, an excess electron is obtained.

An approximation that might be used to better account for an N+ ion, is to manually

remove from the PDB file, one of the hydrogen atoms next to the N+ ion. This ensures

that the correct total number of electrons in the protein is preserved.

CRYSOL does not take the contribution from any ion into account. Hence, to prop-

erly compare between CRYSOL and D+ (or DebyeCalculator), charges were either not

added or removed from the PDB files. Computations in CRYSOL were done using the

parameters that provide maximum accuracy. Hence, 99 was the maximum order of

harmonics, and 18 was the order of Fibonacci grid.

In all the computations in D+, 0.0001 was the Convergence tolerance, the solvent

electron density was 334 e/nm3, and the type of solvent radius was Dummy Atoms. Unless
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otherwise is indicated, Monte Carlo (Mersenne Twister) was the orientation aver-

aging integration method.

9.2.1. Tubulin Dimer Tubulin heterodimer is made of α-tubulin and β-tubulin, which

are homologous and form the so called tubulin dimer. Depending on solution condi-

tions, tubulin dimer may assemble into MT and/or tubulin rings (Diaz et al., 1994).

Fig. S18 compares between the scattering curve from the central tubulin dimer in

PDB ID 3J6F (which contains nine dimers), by DebyeCalculator, CRYSOL, and D+.

H atoms were explicitly added to the PDB file (Chen et al., 2010). Fig. S19 shows a

similar comparison, however, H atoms were only implicitly taken into account. Figs.

S20 and S21 repeats the same comparison, but without removing the charges from the

PDB file.
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Fig. S18. Modeled X-ray scattering intensity from an atomic structure of tubulin dimer
(PDB ID 3J6F), shown as a ribbon diagram. The dimers were assumed to adopt
isotropic distributed in random orientations in solution. H atoms were explicitly
added to the PDB file (Chen et al., 2010). The solid black curve was computed
by DebyeCalculator. The red broken curve was computed by CRYSOL and the
broken pink and green curves were computed by D+ at low (L, pink broken curve)
and high (H, green broken curve) resolution. Grid Size of 100 and Convergence
tolerance of 10−4 were used for low resolution computations, and Grid Size of 250
and Convergence tolerance of 10−7 were used for high resolution. The inset shows
the same computations on an expanded scale. The top curve shows the normalized
residual, R, where the reference curve is the intensity computed by DebyeCalculator
(Eq. S2).
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Fig. S19. Modeled X-ray scattering intensity as in Fig. S18 but H atoms were implicitly
(rather than explicitly) taken into account.
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Fig. S20. Modeled X-ray scattering intensity as in Fig. S18 but charges (on charged
residues) were added using PyMOL (Schrödinger, LLC, 2015).
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Fig. S21. Modeled X-ray scattering intensity as in Fig. S19 but charges (on charged
residues) were added using PyMOL (Schrödinger, LLC, 2015).

Fig. S22 compares between different computation methods within D+. Tubulin

dimers, with explicitly added H atoms and after removing the charges, were computed

in different ways in D+. The computations are compared with DebyeCalculator, whose

results were comparable with the results of CRYSOL (Fig. S18). The computations of

D+ were either done on CPU or GPU, using the Direct method (implemented only

for CPU) and the reciprocal grid (RG) algorithm. When using the RG algorithm, dif-

ferent orientation average methods were used: Adaptive Gauss-Kronrod (using CPU),

adaptive (VEGAS) Monte Carlo (using GPU), or regular Monte Carlo (using CPU or

GPU).
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Fig. S22. Modeled X-ray scattering intensity from an atomic model of tubulin dimer
(PDB ID 3J6F), shown as a ribbon diagram. The dimers were assumed to adopt
isotropic distributed in random orientations in solution. H atoms were explicitly
added to the PDB file (Chen et al., 2010). The solid black curve was computed
by DebyeCalculator, which applies Debye formula (Debye, 1915). The broken green
curve was computed by D+ using the Direct method (on CPU). The other bro-
ken curves were computed by the reciprocal grid (RG) algorithm of D+, where
orientation average was computed by the following integration algorithms: Adap-
tive Gauss-Kronrod (magenta - using CPU only, purple - using GPU for computing
the grid and CPU for orientation average), adaptive (VEGAS) Monte Carlo (cyan,
using GPU), or Monte Carlo (blue, using CPU, red using GPU). The inset shows a
small part of the curve on an expanded scale. The top curves show the normalized
residual, R, where the reference curve is the intensity computed by DebyeCalculator
(Eq. S2).
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9.2.2. Tubulin ring Under certain experimental conditions (high tubulin concentration

and low temperature), tubulin dimers may assemble into rings (Diaz et al., 1994). To

get the ring structure the dimer subunit should be docked into an assembly symmetry,

which involves both rations and translations. To compute the scattering curve from a

tubulin ring, we used the same central tubulin dimer from PDB ID 3J6F and explicitly

added H atoms. We then rotated the dimer by γ = 180◦ (about the z-axis), α = 90◦

(about the x-axis), and β = 50◦ (about the y-axis). This rotation puts the dimer in a

parallel direction to the tangent of the ring. The ring itself was built from 13 dimers that

were rotated about the z axis by γ = 360◦

13 n (in the plane of the ring), and translated

by x = RRing sin
(
360◦

13 n
)

and y = RRing cos
(
360◦

13 n
)

(where n ∈ [0, 1, · · · , 12]). A

PDB file of the ring (containing all the 13 dimers) was then created and its scattering

curve was computed by CRYSOL and by DebyeCalculator. The results were compared

with the computations of D+ using the PDB file of the rotated dimer and the Hybrid

method to account for the assembly symmetry of the ring. Grid was computed only

for the dimer. The computations are compared in Fig. S23, using implicit H atoms,

and in Fig. S24, using explicit H atoms.
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Fig. S23. Modeled X-ray scattering intensity from an atomic structure of a tubulin ring,
shown as a ribbon diagram. The rings were assumed to adopt isotropic distributed in
random orientations in solution. H atoms were implicitly taken into account (PDB
ID 3J6F). The solid black curve was computed by DebyeCalculator, which applies
Debye formula (Debye, 1915). The broken red curve was computed by CRYSOL.
Both used a single PDB file for the entire ring. The broken blue curve was computed
by D+ on a GPU, using a Grid Size of 200 for the tubulin dimer, and the Hybrid
method for the ring symmetry. Orientation average was computed using Monte Carlo
integration with Convergence tolerance of 10−4. The inset shows a small part of the
curve on an expanded scale. The top curves show the normalized residuals, R, where
the reference curve is the intensity computed by DebyeCalculator (Eq. S2).
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Fig. S24. Modeled X-ray scattering intensity from an atomic structure of tubulin ring,
shown as a ribbon diagram. The rings were assumed to adopt isotropic distributed
in random orientations in solution. H atoms were explicitly added to the PDB file of
the dimer (Chen et al., 2010) (PDB ID 3J6F). The solid black curve was computed
by DebyeCalculator, which applies Debye formula (Debye, 1915). The broken red
curve was computed by CRYSOL. The broken blue curve was computed by D+ on
GPU, using a Grid Size of 200 for the tubulin dimer, and the Hybrid method for the
ring symmetry. Orientation average was computed using Monte Carlo integration
with Convergence tolerance of 10−4. The inset shows a small part of the curve on an
expanded scale. The top curves show the normalized residual, R, where the reference
curve is the intensity computed by DebyeCalculator (Eq. S2).

We then compared different ways to compute the scattering from tubulin ring, within

D+. The results are shown in Fig. S25 (for explicit H atoms) and in Fig. S26 (for

implicit H atoms). Computations were done by using a single PDB file for the entire

ring by either D+ or DebyeCalculator, or in D+ using the grid of the dimer and the

Hybrid method for the ring symmetry, or using the grid for the entire ring symmetry,

or using the Direct method.
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Fig. S25. Modeled X-ray scattering intensity from an atomic structure of tubulin ring,
shown as a ribbon diagram. The rings were assumed to adopt isotropic distributed in
random orientations in solution. H atoms were explicitly added to the PDB file of the
dimer (PDB ID 3J6F) (Chen et al., 2010). Unless otherwise indicated, computations
were done on GPU. The solid black curve was computed by DebyeCalculator, which
applies Debye formula (Debye, 1915). The broken red curve was computed by D+
on the CPU, using the Direct method. The broken blue curve was computed by
D+ using a single PDB file for the entire ring (which was used for CRYSOL and
DebyeCalculator). The broken magenta curve was computed using a grid of tubulin
dimer (Grid Size of 200) in a Manual Symmetry that was computed using the
Hybrid method. The broken green curve was computed by the dimer in Manual
Symmetry using a Grid Size of 200 for both the tubulin and the ring. The broken
purple curve was computed using the grid of the dimer (Grid Size of 200) in a
Scripted Symmetry, which was computed by the Hybrid method. The inset shows a
small part of the curves on an expanded scale. The top curves show the normalized
residuals, R, where the reference curve is the intensity computed by DebyeCalculator
(Eq. S2).
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Fig. S26. Modeled X-ray scattering intensity from an atomic structure of tubulin ring,
shown as a ribbon diagram. The rings were assumed to adopt isotropic distributed
in random orientations in solution. H atoms were implicitly taken into account.
Unless otherwise indicated, computations were done on GPU. The solid black curve
was computed by DebyeCalculator, which applies Debye formula (Debye, 1915). The
broken red curve was computed by D+ on the CPU, using the Direct method. The
broken blue curve was computed by D+ using a single PDB file for the entire ring.
The broken magenta curve was computed from a grid of tubulin dimer (PDB ID
3J6F) in a Manual Symmetry, using the Hybrid method. The broken green curve
was computed from the dimer in a Manual Symmetry, using a grid for the ring.
The broken purple curve was computed from the grid of the dimer in a Scripted
Symmetry, using the Hybrid method. The size of the grid was fixed at 200. The
inset shows a small part of the curve on an expanded scale. The top curves show
the normalized residual, R, where the reference curve is the intensity computed by
DebyeCalculator (Eq. S2).
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9.2.3. Tubulin is a Space-Filling symmetry To test the option of Space-Filling symme-

try with atomic models, we used the same central tubulin dimer from PDB ID 3J6F.

No H atoms or charges were added to the PDB file. The dimer was docked into a

simple cubic Space-Filling symmetry (Fig. S27A). The scattering curve was computed

by D+, using different options for defining the assembly symmetry (Space-Filling,

Scripted, or Manual), using Grids for the entire structure or the Hybrid method where

a Grid was computed for the dimer, or by loading the precomputed scattering ampli-

tude from the dimer and putting it in the assembly symmetry. Each computation was

repeated with different orientation average integration method: Monte Carlo, adaptive

(VEGAS) Monte Carlo, or adaptive Gauss Kronrod. A PDB file of the entire cubic

structure (containing 18 dimers) was then created and its scattering curve was com-

puted by DebyeCalculator. Fig. S27A shows that all the computations of D+ resulted

in the same curve, which agreed with the curve obtained by DebyeCalculator. Fig. S27B

shows that DebyeCalculator is in good agreement with CRYSOL. When solvation layer

was added to the PDB file of the entire structure (Fig. S27C) or to the dimer (Fig.

S27D), all the symmetry generation and integration methods led to similar results.
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Fig. S27. Modeled X-ray scattering intensity from an atomic structure of tubulin
in a simple cubic Space-Filling symmetry, shown as a ribbon diagram. The cubic
lattices were assumed to adopt isotropic distributed in random orientations in solu-
tion. The central tubulin dimer from PDB ID 3J6F was rotated by γ = 180◦ (about
the z-axis), and α = 180◦ (about the x-axis). H atoms were implicitly taken into
account. The PDB was then docked into a simple cubic Space-Filling symmetry
with 3 subunits in the x direction with a repeat distance of 4 nm, 2 subunits in
the y direction with a repeat distance of 4 nm, and 3 subunits in the z direction
with a repeat distance of 8.13 nm. A. Scattering curves were computed in D+ using
different options to define the assembly symmetry (Space-Filling, Scripted Symme-
try, or Manual Symmetry), using Grids, or the Hybrid method (with a Grid for the
dimer), or by loading the precomputed scattering amplitude from the dimer. Each
computation was repeated using different orientation average integration methods:
Monte Carlo, adaptive (VEGAS) Monte Carlo, or Gauss Kronrod. A PDB file of
the entire structure (containing all the 18 dimers) was then created and its scatter-
ing curve was computed by DebyeCalculator. B. The curve that was computed by
DebyeCalculator in A (solid red curve) is compared with the curve computed by
CRYSOL for the same PDB (broken curve). C. The PDB of the entire structure
was computed with a solvation layer whose thickness was 3 nm and electron density
364 e·nm−1. The computation was done by computing Grids or by loading a pre-
computed scattering amplitude. Orientation average was done using Monte Carlo,
adaptive (VEGAS) Monte Carlo, or Gauss Kronrod integrations. D. The computa-
tion from A were repeated, using solvated tubulin dimer. The solvation layer was
3 nm thick and its electron density was 364 e·nm−1.
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9.3. Atomic vs. geometric models

We created PDB files in which oxygen atoms were randomly close packed into geo-

metric shapes. We used the PDB files to compare their scattering curve with the curves

of their corresponding geometric models. All the curves were computed in D+. The

PDB files where computed using the Solvent Only option in D+, where the solvent

method was Dummy Atoms Voxelized, which gave the voxels forming the enveloping

geometric shape (the Solvent Only option did not compute the form-factors of the

oxygen atoms).

Fig. S28 compares atomic with geometric spherical models. Fig. S29 compares a sol-

vated atomic spherical model with the equivalent geometric core-shell spherical model,

where the shell corresponds to the solvation layer. We then compare between atomic

and geometric models of a hollow sphere (Fig. S31) and then the corresponding sol-

vated hollow sphere models (Fig. S31), in which solvation layers are both internal

and external. The comparisons validate the solvation algorithm used in D+. We then

tested the cylindrical (Fig. S32) and the slab (Fig. S33) geometries. Within the tested

q−range (between 0 and 5 nm−1), all the atomic and their corresponding geometric

models were very similar (in other words, the residuals were very small).
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Fig. S28. Modeled X-ray scattering intensity of atomic and geometric spherical struc-
tures. The structures were assumed to adopt isotropic distributed in solution. The
solid black curve was computed from a PDB file, in which oxygen atoms were ran-
domly close packed into a sphere. The computation was done in D+ from the atomic
model using Solvent Only, Dummy Atoms Voxelized, solvent electron density of
1 e/nm3, and no solvation shell. The broken (red) curve was computed in D+, using
the corresponding geometric sphere model with a radius of 1.113 nm and an elec-
tron density of 1 e/nm3. The solvent electron density was set to 0, corresponding
to vacuum. The red curve at the top inset shows the normalized absolute residuals,
|R|, as a function of the magnitude of the scattering vector, q, where the reference
curve is the intensity of the atomic model (Eq. S2). The cartoon shows the closed
packed spherical atomic model in Red and the corresponding geometric model in
green.
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Fig. S29. Modeled X-ray scattering intensity of solvated atomic spherical model and
a geometric model of a spheres and a thin shell. The solid black curve was com-
puted from a PDB file, in which oxygen atoms were randomly close packed into
a sphere. The computation was done in D+ from the atomic model using Solvent
Only, Dummy Atoms Voxelized, solvent electron density 1 e/nm3, an outer solvent
electron density of −1 e/nm3, and solvation thickness of 0.30 nm. These parame-
ters produced a second shell with an electron density contrast of +1 to the core.
The broken (red) curve was computed in D+, using the corresponding geometric
core-shell spherical model, with a core radius of 1.113 nm and an electron density of
1 e/nm3, and an outer shell with a thickness of 0.30 nm and an electron density of
2 e/nm3. The top curve shows the normalized absolute residual, |R|, as a function of
q, where the reference curve is the intensity computed from the atomic model (Eq.
S2). The cartoon shows a cross section of the geometric model.
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Fig. S30. Computed X-ray scattering intensity of an atomic model of a hollow sphere
and a geometric model of a hollow sphere. The structures were assumed to adopt
isotropic distributed in solution. The solid black curve was computed from a PDB
file, in which oxygen atoms were randomly close packed into a hollow sphere. The
computation was done in D+ from the atomic model using Solvent Only, Dummy
Atoms Voxelized, solvent electron density 1 e/nm3 and no solvation shell. The broken
(red) curve was computed in D+, using the corresponding geometric hollow sphere
model with an inner radius of 0.868 nm and an outer radius of 1.130 nm, and an
electron density of 1 e/nm3. The solvent electron density was set to 0, corresponding
to vacuum. The top curve shows the normalized absolute residual, |R|, as a function
of q, where the reference curve is the intensity computed from the atomic model
(Eq. S2). The cartoon shows a cross section of the atomic model in red.
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Fig. S31. Computed X-ray scattering intensity from a solvated hollow sphere atomic
model and a geometric concentric multi layered spherical shell model. The solid
black curve was computed using the atomic model from Fig. S30 with Solvent
Only, Dummy Atoms Voxelized, solvent electron density 1 e/nm3, solvation thick-
ness 0.3 nm, and an outer solvent electron density of −1 e/nm3. The Fill Holes
check-box remained unchecked. The broken (red) curve was computed in D+, using
the corresponding concentric multi layered spherical shell model. The first spher-
ical shell is 0.301 nm thick, its inner radius is 0.575 nm, and its electron density
is 2 e/nm3. The second spherical shell is 0.256 nm thick, and its electron density
is 1 e/nm3.The third spherical shell is 0.295 nm thick, and its electron density is
2 e/nm3. The top curve shows the normalized absolute residual, |R|, as a function of
q, where the reference curve is the intensity computed from the atomic model (Eq.
S2). The cartoon shows a cross section of the geometric model.
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Fig. S32. Computed X-ray scattering intensity from an atomic rod model and a geo-
metric model of a uniform rod. The structures were assumed to adopt isotropic
distributed in random orientations in solution. The solid black curve was computed
from a PDB file, in which oxygen atoms were randomly close packed into a rod. The
computation was done in D+ from the atomic model with Solvent Only, Dummy
Atoms Voxelized, solvent electron density 1 e/nm3, and no solvation. The broken
(red) curve was computed in D+, using the corresponding rod model, with a rod
radius of 1.088 nm, rod hight of 2.121 nm, and an electron density of 1 e/nm3. The
solvent electron density was set to 0, corresponding to vacuum. The top curve shows
the normalized absolute residual, |R|, as a function of q, where the reference curve
is the intensity computed from the atomic model (Eq. S2). The cartoon shows that
atomic model in Red and the corresponding geometric model in green.
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Fig. S33. Computed X-ray scattering intensity from atomic and geometric models of a
uniform rectangular slab. The structures were assumed to adopt isotropic distributed
in random orientations in solution. The solid black curve was computed from a PDB
file, in which oxygen atoms were randomly close packed into a rectangular slab. The
computation was done in D+ from the atomic model with Solvent Only, Dummy
Atoms Voxelized, solvent electron density 1 e/nm3, and no solvation. The broken
(red) curve was computed in D+, using the corresponding uniform slab model with
an electron density of 1 e/nm3 and dimensions of 3.055 nm ×2.115 nm×4.108 nm.
The solvent electron density was set to 0, corresponding to vacuum. The top curve
shows the normalized residual, |R|, as a function of q, where the reference curve
is the intensity computed from the atomic model (Eq. S2). The cartoon shows the
atomic model in red and the geometric model in green.

9.4. Fitting algorithm tests

The fitting algorithm of D+ was tested against calculated (Figs. S34,S35,S36), and

experimental scattering curves of lipid membranes (Fig. S37), or protein solutions
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(Figs. S38 and S39). A scattering signal, with known parameters, served as the target

signal, to which D+ was trying to fit its computed curve. The mutable model param-

eters were described in the figure captions with the initial values (in parenthesis) and

the final fitted values (after the parenthesis). The figures show adequate fits.
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Fig. S34. Fitting to a modeled X-ray scattering intensity curve that was computed
from a structure of a uniform sphere surrounded by four concentric uniform hol-
low spherical shells. The structures were assumed to adopt isotropic distributed in
solution. The radius of the internal sphere is (0.15)0.1 nm and its electron density
is 400 e/nm3. The first spherical shell is (0.15)0.1 nm thick, and its electron density
is 500 e/nm3. The second spherical shell is (0.05)0.1 nm thick, and its electron den-
sity is 600 e/nm3. The third spherical shell is (0.08)0.1 nm thick, and its electron
density is 700 e/nm3. The forth spherical shell is (0.15)0.1 nm thick, and its elec-
tron density is 800 e/nm3. The solid black curve was computed in D+, and used as
the target signal for the fitting. The broken magenta curve was computed by D+,
using the initial parameters (given in the parenthesis, if mutable) and the broken
red curve is the result of the fit. Fitting was done using Levenberg-Marquardt algo-
rithm, Ratio Residuals, Trivial Loss, with 20 iterations. Step Size was 10−5,
the Convergence tolerance was 10−6, and the Der eps 10−6. Intensity computations
were done with a Grid Size of 30 and the Gauss Kronrod integration algorithm.
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Fig. S35. Fitting to a modeled X-ray scattering intensity curve from a model of a
uniform rod surrounded by two concentric uniform cylindrical shells. The structures
were assumed to adopt isotropic distributed in random orientations in solution. The
radius of the internal rod is (0.15)0.1 nm and its electron density is 400 e/nm3. The
first cylindrical shell is (0.2)0.1 nm thick, and its electron density is 600 e/nm3. The
second cylindrical shell is (0.15)0.1 nm thick, and its electron density is 800 e/nm3.
The solid black curve was computed in D+, and used as the target signal for the
fitting. The broken magenta curve was computed by D+, using the initial values
in parenthesis and the red broken curve is the result of the fit. Fitting was done
using Levenberg-Marquardt algorithm, Ratio Residuals, Trivial Loss, with 20
iterations. Step Size was 10−5, the Convergence tolerance was 10−6, and Der eps
was 10−6. Intensity computations were done with a Grid Size of 30 and the Gauss
Kronrod integration algorithm.
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Fig. S36.
Fitting to a modeled X-ray scattering intensity curve from asymmetric slab layers.
The structures were assumed to adopt isotropic distributed in random orientations in
solution. The slabs were 1×1 nm2 in x-y plane and in the z direction the inner slab
layer was 1 nm thick and electron density of (250)280 e/nm3. The layer was sandwiched
between two outer 0.5 nm thick slabs, one with an electron density of (300)400 e/nm3

and the other with an electron density of (600)450 e/nm3. The solid black curve was
computed in D+, and used as the target signal for the fitting. The broken magenta
curve was computed by D+, using the initial values in parenthesis and the broken red
curve is the result of the fit. Fitting was done using Levenberg-Marquardt method,
Ratio Residuals, Trivial Loss, with 50 iterations. The Step Size was 10−5, the
Convergence tolerance was 10−6, and Der eps 10−6. Intensity computations were done
with a Grid Size of 50 and the Gauss Kronrod integration algorithm.
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Fig. S37. Fitting of a modeled X-ray scattering intensity curve from symmetric slab
layers to experimental scattering data from a dispersion of 30mg/ml 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) lipid bilayers. The modeled structures were
assumed to adopt isotropic distributed in random orientations in solution. In the
model, the size of the slabs was 100 nm ×100 nm in the x-y plane and in the z
direction a (0.6)0.66 nm thick inner layer with an electron density of 139 e/nm3

was sandwiched between two outer slabs. Each outer slab had two layers, the first,
was (1.3)1.44 nm thick and had an electron density of 335 e/nm3, and the second
was (0.9)0.66 nm thick and had an electron density of 540 e/nm3. The solid black
curve was measured in our in-house rotating anode setup (Nadler et al., 2011), and
used as the signal for the fitting. The broken magenta curve was computed by D+,
using the initial values in parenthesis and the broken red curve is the result of
the fit. Fitting was done using Levenberg-Marquardt algorithm, Ratio Residuals,
Trivial Loss, and 5 iterations. Step Size was 0.1, the Convergence tolerance was
10−6, and Der eps 10−6. Intensity computations were done with a Grid Size of
200 and the adaptive (VEGAS) Monte Carlo integration algorithm.
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Fig. S38. Solution X-ray scattering data and models of Ubiqutin. Data taken from
SASDAQ2 in the SASBDB database (Valentini et al., 2014) are shown in black.
The computed scattering curves are based on PDB ID 1UBQ. Hydrogen atoms were
either implicitly taken into account or explicitly added to the PDB file by PyMol
(Schrödinger, 2015). The broken scattering curves were computed by CRYSOL
(ATSAS 2.8.2) (Svergun et al., 1995), where the maximum order of harmonics was
50 and the order of Fibonacci grid was 18. The solid curves were computed by D+.
In both D+ and CRYSOL the bulk water electron density was set to 334 e · nm−3
and the contribution of the solvation layer was taken into account. In D+, the
Grid Size was 80, orientation average was computed by Monte Carlo integration,
using Mersenne Twister algorithm. The solvent Voxel Size was 0.05 nm, the solvent
Probe Radius was 0.14 nm and Dummy Atoms were used to account for the solvent
excluded volume (see §5.5 in the main paper and Eq. 63 ). The fitting algorithm used
the Normal Residuals cost function and the Trivial Loss function, with 20 itera-
tions, Step Size of 0.01, Convergence tolerance of 0.01, and Der eps 0.1 (see §9.1
in the main paper ). In the implicit model, the solvation thickness was (0.3)0.294 nm
and its electron density was (364)336.6 e · nm−3. The excluded volume parameter,
c1, in Eq. 60 was (1)1.014, and R2 = 0.941. In the explicit model, c1 was (1)1.012,
the solvation thickness was (0.3)0.291 nm, its electron density was (364)335 e · nm−3,
and R2 = 0.943. In CRYSOL, in both models, the solvation thickness was 0.3 nm
and the electron density of the solvation shell was 347 e · nm−3. In the implicit model
χ2 = 8.1 and in the explicit model χ2 = 8.0.
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Fig. S39. Solution X-ray scattering data and models of RNase. Data taken from
SASDAR2 in the SASBDB database (Valentini et al., 2014) are shown in black.
The computed scattering curve are based on PDB ID 1C0B. Hydrogen atoms were
either implicitly taken into account or explicitly added to the PDB file by PyMol
(Schrödinger, 2015). The broken scattering curves were computed by CRYSOL
(ATSAS 2.8.2) (Svergun et al., 1995), where the maximum order of harmonics was
50 and the order of Fibonacci grid was 18. The solid curves were computed by D+.
In both D+ and CRYSOL the bulk water electron density was set to 334 e · nm−3
and the contribution of the solvation layer was taken into account. In D+, the
Grid Size was 80, orientation average was computed by Monte Carlo integration,
using Mersenne Twister algorithm. The solvent Voxel Size was 0.05 nm, the solvent
Probe Radius was 0.14 nm and Dummy Atoms were used to account for the solvent
excluded volume (see §5.5 in the main paper and Eq. 63 ). The fitting algorithm used
the Normal Residuals cost function and the Trivial Loss function, with 20 itera-
tions, Step Size of 0.01, Convergence tolerance of 0.01, and Der eps 0.1 (see §9.1)
in the main paper). In the implicit model, the solvation thickness was (0.3)0.292 nm
and its electron density was (364)363.8 e · nm−3. The excluded volume parameter,
c1, in Eq. 60 was (1)1.003, and R2 = 0.998. In the explicit model, c1 was (1)1.012,
the solvation thickness was (0.3)0.305 nm, its electron density was (364)352 e · nm−3,
and R2 = 0.997. In CRYSOL, in both models, the solvation thickness was 0.3 nm.
In the implicit model the electron density of the solvation shell was 374 e · nm−3,
and χ2 = 2.67. In the explicit model and the electron density of the solvation shell
was 371 e · nm−3, and χ2 = 2.65.
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10. Solvation layers of complexes

Solvation layers of large complexes can be computed in D+, in a scalable manner, based

on the solvation layers of each of the subunits. Corrections, however, have to included

if the solvation layers of the subunits overlap when docked into the complex structure

(Fig. S40). The errors can be corrected by subtracting the overlapping solvation parts.

We can demonstrate the approach with a simple case where three identical subunits

form a chain, with overlaps in their solvation layer (Fig. S40). The solvation shell

overlap of the central subunit is different than that of the subunits at the edges.

Fig. S40. A short chain containing three adjacent subunits. Each subunit is surrounded
by a solvation layer, assuming it was isolated. The numbers correspond to different
solvation amplitude scales. If the scale of the solvation layer is set to 1, then area 1
corresponds to a scale of 1, area 2 corresponds to a scale of 2, and area 3 corresponds
to a scale of 1. Area 3 also contains the contribution from the subunit amplitude.

In D+, we can compute the amplitude of a monomer subunit, surrounded by a solva-

tion layer (fSolvated Monomer). The Solvated subunit can then be placed in a symmetry

containing two repeats next to one another (Fig. S41). The scattering amplitude is

then fSolvated Monomer

(
ei~q·~r1 + ei~q·~r2

)
. We can also compute the solvation layer ampli-

tude, which is surrounding a single structure, containing the same two subunits next

to one another, fSolvated Dimer (Fig. S42). In the latter case there are no overlapping
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solvation layers.

Fig. S41. Two adjacent subunits, where each subunit is surrounded by its own solvation
layer (Eqs. S3 and S4). The numbers correspond to different types of overlapping
regions, as in Fig. S40.

Fig. S42. Solvated dimer. The solvation layer surrounds a single structure made of two
identical adjacent subunits. The scattering amplitude is fSolvated Dimer.

To construct the interface between two monomers, three amplitudes should be cal-

culated: one for each solvated monomer fSolvated Monomer, at its own position (Fig. S41

and Eqs. S3 and S4), and one for the solvated dimer, fSolvated Dimer (Fig. S42). The

two monomers have the same magnitude of scattering amplitude but different phases.
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If the position of the first monomer is at the origin, ~r1 = 0, and the second monomer

is at ~r2 = ~R, we get:

fSolvated Monomer 1 = fSolvated Monomer · ei~q·~r1 = fSolvated Monomer (S3)

fSolvated Monomer 2 = fSolvated Monomer · ei~q·~r2 = fSolvated Monomer · ei~q·
~R (S4)

The solvation correction amplitude is then given by:

FSolvation correction = fSolvated Dimer − (fSolvated Monomer 1 + fSolvated Monomer 2) (S5)

Fig. S43 shows the result of Eq. S5, when the scale of each amplitude is set to 1.

Fig. S43. The correction amplitude obtained from Eq. S5. If the scale of the solvation
layer is set to 1, then the scale of areas 2 and 3 is -1.

The solvated trimer is computed from three solvated monomers at ~r1 = 0, ~r2 = ~R,

and ~r3 = 2~R, and two Solvation corrections:

fSolvated Trimer = fSolvated Monomer

(
ei~q·~r1 + ei~q·~r2 + ei~q·~r3

)
+ FSolvation correction

(
ei~q·~r1 + ei~q·~r2

)
(S6)

= fSolvated Monomer

(
1 + ei~q·

~R + ei2~q·
~R
)

+ FSolvation correction

(
1 + ei~q·

~R
)

(S7)
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Fig. S44 shows the resulting solvated trimer computed in Eq. S7.

Fig. S44. The solvated trimer computed by Eq. S7.

To apply the correction in a symmetry, the repeating subunit should already include

the corrections at each one of the interfaces with its neighboring subunits. This prin-

ciple is demonstrated in Fig. S45 and in Eq. S8:

fCorrected Subunit = fSolvated Monomer +
1

2
× FCentered Solvation correction

(
e

−i~q·~R
2 + e

i~q·~R
2

)
(S8)

where FCentered Solvation correction, is FSolvation correction, which was placed at the origin:

FCentered Solvation correction = FSolvation correction · e
−i~q·~R

2

Fig. S45. Modified subunit to be used in a symmetry. The solvation correction ampli-
tude is added to the repeating subunit with a factor of 0.5, at each end of the
monomer, using Eq. S8). If the scale of the solvation layer is set to 1, then the
amplitude scale of area 1 and area 3 is 0.5, whereas the scale of area 2 is -0.5.
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Note that within a given assembly symmetry, the interfaces may vary in different

subunit locations. In this case, the symmetry may be decomposed into smaller sym-

metries where each has the original subunit with a different solvation correction.

Going back to our example, the modified subunit is then inserted into its assembly

symmetry. In the example in Fig. S46 we get:

fCorrected Subunit in Symmetry = fCorrected Subunit

(
1 + ei~q·

~R + ei2~q·
~R
)

(S9)

Fig. S46. Modified subunit in a symmetry. The cross product corresponds to convo-
lution of the subunit with a sum of three delta functions, whose centers are where
the dots are located. Inserting the corrected subunit from Fig. S45 to the trimer
symmetry results in a trimer, with corrections at each one of the chain edges.

The edges, whose interfaces are uncoupled to neighboring subunits at one of the two

ends, should be further corrected:

fSolvated Dimer = fCorrected Subunit in Symmetry − 0.5 · FCentered Solvation correction

(
e

−i~q·~R
2 + e

i5~q·~R
2

)
(S10)

Fig. S47 demonstrates this final correction.
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Fig. S47. Edge corrections. The structure in Fig. S46) is corrected to account for
subunits located at the edge of the symmetry.

10.1. Solvated tubulin ring

We applied the approach described in the earlier section, to compute the scattering

amplitude of the solvation layer of a tubulin ring, using the amplitude of a solvated

tubulin dimer in horizontal orientation and the relevant correction terms. According

to Eq. S5 a solvation correction amplitude was computed and added to the amplitude

of the solvated dimer (Fig. S48):

fCorrected Solvated Horizontal Dimer = fSolvated Horizonal Dimer + Fsolvation Horiznotal correction
(S11)

Fig. S48. Solvation correction for a tubulin dimer in horizontal orientation (as in a
tubulin ring).

To obtain the scattering amplitude of the solvated tubulin ring, the corrected sol-

vated tubulin dimer amplitude was inserted into the ring symmetry (Fig. S49):
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fCorrected Solvation Ring =
12∑
i=0

fCorrected Solvated Horizontal Dimer

(
A−1n ~q

)
ei~q·

~Rn (S12)

Fig. S49. Solvated tubulin dimer after solvation correction placed in the symmetry of
tubulin ring.

The ring rotation matrices, An, are defined as:

An =


cos

(
360
13 n

)
− sin

(
360
13 n

)
0

sin
(
360
13 n

)
cos

(
360
13 n

)
0

0 0 1

 (S13)

A−1n =


cos( 360

13
n)

cos2( 360
13
n)+sin2( 360

13
n)

sin( 360
13
n)

cos2( 360
13
n)+sin2( 360

13
n)

0

− sin( 360
13
n)

cos2( 360
13
n)+sin2( 360

13
n)

cos( 360
13
n)

cos2( 360
13
n)+sin2( 360

13
n)

0

0 0 1

 (S14)

The location vectors, Rn, are defined as:

~Rn =


R sin

(
360
13 n

)
R cos

(
360
13 n

)
0

 (S15)

where n ∈ [0, 1, · · · , 12]. As the ring structure ic circular, no edge correction are

required.

To test our approach, we compared the results of Eq. S12 with the intensity of

solvated tubulin ring that was computed from a single PDB file, containing the atoms

of the entire ring.
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Fig. S50 shows that both methods give similar scattering intensity curves for solvated

tubulin ring.
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Fig. S50. Computed X-ray scattering intensity from an atomic model of solvated tubu-
lin ring, shown as a ribbon diagram. The rings were assumed to adopt isotropic
distributed in random orientations in solution. H atoms were explicitly added to
the PDB file (Chen et al., 2010). The solid black curve was computed by D+, using
the PDB file of the entire ring. The broken red curve was computed by D+ from
the PDB file of the dimer (PDB ID 3J6F) with its solvation corrections and dock-
ing the result into the symmetry of the ring (see text). The solvation layers were
0.3 nm thick and their electron density contrasts (with respect to bulk water) were
30 e/nm3. Both values are often used for computing the scattering amplitude con-
tribution from solvation layers of proteins (Svergun et al., 1995). The inset shows a
small part of the curve on an expanded scale. The top curves show the normalized
residual, R, where the reference curve is the intensity computed from the PDB file
of the entire ring (Eq. S2).
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Fig. S51 compares the contribution of the solvation layer using the two methods and

further confirms that both computations yield very similar results.
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Fig. S51. The contribution of the solvation layers to the scattering curves in Fig. S50.
Black curve is based on the PDB file of the entire ring. Broken red curve is based on
the modified tubulin dimer (PDB ID 3J6F). The solvation layers were 0.3 nm thick
and their electron density contrasts (with respect to bulk water) were 30 e/nm3. The
inset shows a small part of the curve on an expanded scale. The top curves show
the normalized residual, R, where the reference curve is the intensity computed by
PDB file of the entire ring (Eq. S2).

10.2. Solvated microtubule

The approach that was used for computing the solvation layer of tubulin rings was

adopted and adjusted for computing the scattering from solvated MT (Fig. 6 ). A few
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solvation overlap corrections were created and docked at the relevant locations with

the MT lattice. The MT lattice symmetry is described using the following rotation

matrices and translation vectors:

AMT
n =


cos

(
360

NPF Number
n
)
− sin

(
360

NPF Number
n
)

0

sin
(

360
NPF Number

n
)

cos
(

360
NPF Number

n
)

0

0 0 1

 (S16)

~RMT
j,n =


R sin

(
360

NPF Number
n
)

R cos
(

360
NPF Number

n
)

Hj−1 + Pn

 (S17)

where n ∈ [1, · · · , NPF Number] and Hj = K · P · j for j ∈ [1, · · · , NLong]. NLong is the

number of longitudinal repeats of the subunit in the total helix. K is one over the

number of helix starts, which is 3 for the monomers (assuming there is no difference

between the α and β monomers) and 11
2 for the dimers. Pn = P

NPF Number
· n, where

NPF Number is the number of protofilaments in the MT (or the number of dimers per

pitch), P is the length of the pitch, defined as the axial rise along the ẑ direction per

NPF Number dimers. P = 0 corresponds to a ring.

Unlike tubulin ring, MT is not a fully closed structure and it has a seam. Therefore,

different corrections were added to dimers that were located at the center of the MT

lattice, or at one of its edges, or along the MT seam (see marked dimers in Fig. S52).

The center of mass of the tubulin dimer was first shifted to the origin by computing

ρ0 (~r) = ρ(~r − ~Rc.m.),

where ρ (~r) represents the electron density of the dimer (given by PDB ID 3J6F),

and ~Rc.m. is its center of mass. Solvation correction for the dimers that are located

side by side within the central part of the MT lattice, was constructed by placing the

dimer in the MT symmetry for subunits whose indexes are j = 1 and n ∈ [1, 2], giving

ρDimer Side
1,1 (~r) = ρ0

[(
AMT

1

)−1 (
~r − ~RMT

1,1

)]
and ρDimer Side

1,2 (~r) = ρ0

[(
AMT

2

)−1 (
~r − ~RMT

1,2

)]
,
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respectively. The electron density of the pair of dimers, ρDimer Pair Side
1,1 & 1,2 (~r) = ρDimer Side

1,1 (~r)+

ρDimer Side
1,2 (~r), was then aligned back to ρ0 (~r) (the initial dimer):

ρAligned Dimer Pair Side
1,1 & 1,2 (~r) = ρDimer Pair Side

1,1 & 1,2

[
AMT

1 ~r + ~RMT
1,1

]
=

ρDimer Side
1,1

[
AMT

1 ~r + ~RMT
1,1

]
+ ρDimer Side

1,2

[
AMT

1 ~r + ~RMT
1,1

]
≡ ρAligned Dimer Side

1,1 (~r) + ρAligned Dimer Side
1,2 (~r)

so the electron density (given as a PDB file) of the aligned ρDimer Side
1,1 (~r), which we

shall refer to as ρAligned Dimer Side
1,1 (~r), overlapped with ρ0 (~r). Therefore the side (or

lateral) solvation correction is:

fSide Solvation Correction = fSolvated Aligned Dimer Pair Side
1,1 & 1,2 −(

fSolvated Aligned Dimer Side
1,1 + fSolvated Aligned Dimer Side

1,2

)
where f is the scattering amplitude of the corresponding solvated structures defined

above.

To create the correction for dimers that are located on top of one another within

the central part of the MT lattice, the same process was repeated for two dimers with

indexes j ∈ [1, 2] and n = 1, giving ρDimer Top
1,1 (~r) = ρ0

[(
AMT

1

)−1 (
~r − ~RMT

1,1

)]
and

ρDimer Top
2,1 (~r) = ρ0

[(
AMT

1

)−1 (
~r − ~RMT

2,1

)]
, respectively. The electron density (given as

a PDB file) of the pair of dimers, ρDimer Pair Top
1,1 & 2,1 (~r) = ρDimer Top

1,1 (~r)+ρDimer Top
2,1 (~r), was

then aligned back to ρ0 (~r), the initial dimer: ρAligned Dimer Pair Top
1,1 & 2,1 (~r) = ρDimer Pair Top

1,1 & 2,1

[
AMT

1 ~r + ~RMT
1,1

]
so the electron density (given as a PDB file) of the aligned ρDimer Top

1,1 (~r), which we shall

refer to as ρAligned Dimer Top
1,1 (~r), overlapped with ρ0 (~r). Similarly, ρAligned Dimer Top

2,1 (~r) =

ρDimer Top
2,1

[
AMT

1 ~r + ~RMT
1,1

]
. Therefore the top (or vertical) solvation correction is:

fTop Solvation Correction = fSolvated Aligned Dimer Pair Top
1,1 & 2,1 −(

fSolvated Aligned Dimer Top
1,1 + fSolvated Aligned Dimer Top

2,1

)
where f is the scattering amplitude of the relevant solvated structures.
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Two additional corrections were required for the MT seam, in which α− and β−tubulin

are laterally located next to one another (instead of having α− next to α−tubulin and

β− next to β−tubulin, in the central MT lattice). The above correction process was

repeated for two monomers of the seam. Three dimers with indexes (j = 1, n = NPF Number),

(j = 2, n = 1) and (j = 3, n = 1), giving

ρDimer Seam
1,NPF Number

(~r) = ρ0

[(
AMT

NPF Number

)−1 (
~r − ~RMT

1,NPF Number

)]
,

ρDimer Seam
2,1 (~r) = ρ0

[(
AMT

1

)−1 (
~r − ~RMT

2,1

)]

and ρDimer Seam
3,1 (~r) = ρ0

[(
AMT

1

)−1 (
~r − ~RMT

3,1

)]
, respectively. From dimers ρDimer Seam

2,1 (~r)

and ρDimer Seam
3,1 (~r), two monomers were joined to form a new dimer (in reverse order) -

β-tubulin of dimer (j = 2, n = 1), ρDimer Seam
2,1,β (~r) and α-tubulin of dimer (j = 3, n = 1),

ρDimer Seam
3,1,α (~r).

The newly formed dimer, ρDimer Seam
2,1,β & 3,1,α (~r) was combined with (j = 1, n = NPF Number)

to form the PDB file that describes the electron density of the pair of dimers,

ρDimer Pair Seam
1,NPF Number& 2,1,β & 3,1,α (~r) = ρDimer Seam

1,NPF Number
(~r) + ρDimer Seam

2,1,β & 3,1,α (~r) .

The pair was then aligned back to ρ0 (~r) (the initial dimer):

ρAligned Dimer Pair Seam
1,NPF Number& 2,1,β & 3,1,α (~r) = ρDimer Pair Seam

1,NPF Number& 2,1,β & 3,1,α

[
AMT

NPF Number
~r + ~RMT

1,NPF Number

]
so the electron density (given as a PDB file) of the aligned ρDimer Seam

1,NPF Number
(~r), which we

shall refer to as ρAligned Dimer Seam
1,NPF Number

(~r), overlapped with ρ0 (~r). Similarly,

ρAligned Dimer Seam
2,1,β & 3,1,α (~r) = ρDimer Seam

2,1,β & 3,1,α

[
AMT

NPF Number
~r + ~RMT

1,NPF Number

]
.

From the electron density (given as a PDB file) of ρAligned Dimer Pair Seam
1,NPF Number& 2,1,β & 3,1,α (~r), two

electron densities (given by two PDB files) were extracted - the bottom α and β

monomers, ρAligned Bottom Monomer Pair Seam
1,NPF Number,α& 2,1,β (~r) and the top α and β monomers, ρAligned Top Monomer Pair Seam

1,NPF Number,β& 3,1,α (~r).
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Each one of the new PDB files was further separated into their corresponding α−

and the β− tubulin monomers, resulting in four PDB files describing the follow-

ing electron densities: ρAligned Bottom Monomer Seam
1,NPF Number,α

(~r), ρAligned Bottom Monomer Seam
2,1,β (~r),

ρAligned Top Monomer Seam
1,NPF Number,β

(~r), and ρAligned Top Monomer Seam
3,1,α (~r). Therefore the monomer

seam solvation corrections are:

fSolvation Correction Bottom Seam Monomer = fSolvated Aligned Bottom Monomer Pair Seam
1,NPF Numberα& 2,1β −(

fSolvated Aligned Bottom Monomer Seam
1,NPF Numberα

+ fSolvated Aligned Bottom Monomer Seam
2,1β

)

fSolvation Correction Top Seam Monomer = fSolvated Aligned Top Monomer Pair Seam
1,NPF Numberβ& 3,1α −(

fSolvated Aligned Top Monomer Seam
1,NPF Numberβ

+ fSolvated Aligned Top Monomer Seam
3,1α

)
where f is the scattering amplitude of the relevant solvated structures.

The entire solvated MT was computed by docking the amplitude of the solvated

tubulin dimer, fSolvated Tubulin Dimer, into the MT symmetry, with n ∈ [1, · · · , NPF Number]

and j ∈ [1, · · · , 48]. Solvation correction amplitudes were then docked into the MT

symmetry as follows. Side solvation correction amplitude, fSide Solvation Correction, was

docked into the MT symmetry with n ∈ [1, · · · , NPF Number − 1] and j ∈ [1, · · · , 48].

Top Solvation correction amplitude, fTop Solvation Correction, was docked into the MT

symmetry with n ∈ [1, · · · , NPF Number] and j ∈ [1, · · · , 47]. Bottom seam solvation

correction amplitude, fSolvation Correction Bottom Seam Monomer, was docked into the MT

symmetry with n = NPF Number and j ∈ [1, · · · , 47]. Top seam solvation correction

amplitude, fSolvation Correction Top Seam Monomer, was docked into the MT symmetry with

n = NPF Number and j ∈ [1, · · · , 46].
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The scattering amplitude of the solvated MT is then:

fSolvated MT =
NPF Number∑

n=1

48∑
j=1

fSolvated Tubulin Dimer

[(
AMT

n

)−1
~q

]
ei~q·

~RMT
j,n +

NPF Number−1∑
n=1

48∑
j=1

fSide Solvation Correction

[(
AMT

n

)−1
~q

]
ei~q·

~RMT
j,n +

NPF Number∑
n=1

47∑
j=1

fTop Solvation Correction

[(
AMT

n

)−1
~q

]
ei~q·

~RMT
j,n +

47∑
j=1

fSolvation Correction Bottom Seam Monomer

[(
AMT

NPF Number

)−1
~q

]
e
i~q·~RMT

NPF Number,j+

46∑
j=1

fSolvation Correction Top Seam Monomer

[(
AMT

NPF Number

)−1
~q

]
e
i~q·~RMT

NPF Number,j
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1
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3

4

Fig. S52. Ribbon diagram of a short MT, where α−tubulin is in green and β−tubulin is
in red. The numbers in the diagram refer to dimers with a different type of solvation
correction. Four solvation corrections types were applied: side (as in Fig. S43), top
(as in Fig. S48), bottom and top monomers of the MT seam. 4 dimers are marked:
(1) The first dimer in the minus end of the MT lattice, which is corrected for top
and side solvation overlap, as applied for most other dimers in the MT lattice. (2)
A dimer, which is part of the seam, which is corrected for the top solvation overlap
and in addition for the side of the top and bottom monomers solvation overlap. (3)
Three final monomers with n = NPF Number in the plus end of the MT lattice, which
do not need side solvation correction. The two top monomers also do not require
top solvation overlap correction. (4) The top dimer with n = 1, to which only side
solvation correction is applied.
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