	TSAR VII (2010)		TSAR V	TIII (2012)	TSAR I	X (2014)	Overall		
	N =	= 321	N =	= 332	N =	226	N = 879		
	N	%	Ν	%	Ν	%	Ν	%	
АМК	226	70.4	246	74.1	149	65.9	621	70.6	
AMS	168	52.3	206	62	106	46.9	480	54.6	
CAZ	251	78.2	269	81	169	74.8	689	78.4	
CIP	265	82.6	280	84.3	180	79.6	725	82.5	
FEP	161	50.2	211	63.6	89	39.4	461	52.4	
GEN	255	79.4	267	80.4	164	72.6	686	78	
IPM	210	65.4	254	76.5	148	65.5	612	69.6	
LEV	174	54.2	240	72.3	147	65	561	63.8	
MEM	211	65.7	254	76.5	149	65.9	614	69.9	
COL	0	0	0	0	2	0.9	2	0.2	
TG > 1	7	2.2	68	20.5	22	9.7	97	11	
TZP	225	70.1	268	80.7	156	69	649	73.8	

Supplementary Table S1. Antimicrobial resistance in A. baumannii from the 2010-2014 TSAR collection

^a AMK, amikacin; AMS, ampicillin/sulbactam; CAZ, ceftazidime; CIP, ciprofloxacin; FEP, cefepime; GEN, gentamicin; IPM,

imipenem; LEV, levofloxacin; MEM, meropenem; COL, colistin; TG > 1, tigecycline MIC > 1 mg/L; TZP, piperacillin/tazobactam

	TSAR VII (2010) N = 40		TSAR	VIII (2012)	TSAR	IX (2014)	Overall N = 162		
			Ν	N = 58	Ν	N = 64			
	N	%	Ν	%	Ν	%	Ν	%	
АМК	1	2.5	1	1.7	2	3.1	4	2.5	
AMS	1	2.5	1	1.7	4	6.3	6	3.7	
CAZ	1	2.5	0	0	2	3.1	3	1.9	
CIP	6	15	12	20.7	16	25	34	21	
FEP	2	5	2	3.4	6	9.4	10	6.2	
GEN	6	15	12	20.7	19	29.7	37	22.8	
IPM	3	7.5	9	15.5	14	21.9	26	16	
LEV	3	7.5	9	15.5	13	20.3	25	15.4	
MEM	3	7.5	8	13.8	14	21.9	25	15.4	
COL	0	0	0	0	1	1.6	1	0.6	
TG > 1	0	0	2	3.4	1	1.6	3	1.9	
TZP	2	5	7	12.1	16	25	25	15.4	

Supplementary Table S2. Antimicrobial resistance in A. nosocomialis and A. pittii from the 2010-2014 TSAR collection

^a AMK, amikacin; AMS, ampicillin/sulbactam; CAZ, ceftazidime; CIP, ciprofloxacin; FEP, cefepime; GEN, gentamicin; IPM,

imipenem; LEV, levofloxacin; MEM, meropenem; COL, colistin; TG > 1, tigecycline MIC > 1 mg/L; TZP, piperacillin/tazobactam

	A. bau	mannii	A. nosocomi	A. nosocomialis and A. pittii				
	N =	879	Ν	N = 162				
_	Ν	%	Ν	%	P-value ^a			
Hospital type								
Medical centers	364	41.4	94	58.0	< 0.001			
Region					< 0.001			
North	243	27.7	71	43.8				
Central	370	42.1	35	21.6				
South	184	20.9	43	26.5				
East	82	9.3	13	8.0				
Specimen type					< 0.001			
Respiratory	476	54.2	61	37.7				
Blood	131	14.9	68	42.0				
Urine	121	13.8	9	5.6				
Pus/discharge	99	11.3	15	9.3				
Others	52	5.9	9	5.6				
Age ^b					< 0.001			
< 18	24	2.7	9	5.6				
18-65	280	31.9	67	41.4				
> 65	571	65.0	86	53.1				
Patient location ^b					< 0.001			
OPD/ER	71	8.1	14	8.6				
Non-ICU	469	53.4	118	72.8				
ICU	337	38.3	30	18.5				

Supplementary Table S3. Comparison of patient characteristics of *A. baumannii* versus *A.*

nosocomialis and A. pittii from the 2010-2014 TSAR collection

^a Chi-squared test

^b Information regarding age and patient location was not available for some patients.

Isolate No.	Plasmid	Upstream	Accession No. of the Plasm		lasmid Carbapenemase gene in		Similarity	
Accession No.	size	insertion	best matched plasmid,	size	the best matched			
		sequences	host species		plasmid			
2010S01-197	02 K	IS1006-	No comparative					
CP033563	92 K	ISAba3	plasmid	-	-	-	-	
2012C01-137	01 V			110 K		0.60/	000/	
CP033558	91 K	1515DI- 15A0a5	СР020080.1, А. рітні	112 K	Dla _{OXA-58} -like	90%	9970	
2014N23-120	70 V		CD0260961 4	110 V	1.1	0.90/	000/	
CP033547	/9 K	1515DI- 15Abas	CP020086.1, A. pittii	112 K	<i>Dla</i> _{OXA-58-like}	98%	99%	
2012N21-164	72 V	IS1008-	LN833432.1, A.	05 V	1.1	(70)	090/	
CP033537	/3 K	ISAba3	baumannii	85 K	<i>bla</i> _{NDM-1}	0/%	98%	
2014S07-126	294 V	15 <i>Ah</i> = 2	CP010351.1, A.	200 K	Not detected	970/	000/	
CP033531	284 K	15AD03	johnsonii	399 K		8/%	99%	

Supplementary Table S4. Comparison of plasmids carrying $bla_{OXA-58-like}$ in this study and in the NCBI database

Target	Primers	Sequences	Size (bp)	Reference
bla _{OXA-58-like}	OXA-58-like-F	OXA-58-like-F CGATCAGAATGTTCAAGCGC		Poirel et al ^a
Order 56 line	OXA-58-like-R	CCCCTCTGCGCTCTACATAC	525	Woodford et al ^b
ISAba3- blaox A-58-like	ISAba3-2F	TATACTATCACTGAGGCAGGTT	772	This study
OAT 50 like	OXA-58-like-R	CCCCTCTGCGCTCTACATAC	115	Woodford et al ^b
	Hybrid-P _{C2}	TTGCAACAGTG <u>CC</u> ATTTT		This study
Hybrid	Hybrid-P _{C3}	TTGCAACAGTG <u>CCC</u> ATTTT	795	This study
promoters- <i>bla</i> _{OXA-58-like}	OXA-58-like-R	CCCCTCTGCGCTCTACATAC		Woodford et al ^b
IS15DI-bla _{OXA-58-like}	IS15DI-F	TACAGATACGCCCAGCGG	1124	This study
	OXA-58-like-R	CCCCTCTGCGCTCTACATAC		Woodford et al ^b
IS1006-bla _{OXA-58-like}	IS1006-F	GGAAGGTAAATGTCCACCAGACC	1084	This study
	OXA-58-like-R	CCCCTCTGCGCTCTACATAC		Woodford et al ^b
IS 1008-black A 58 like	IS1008-F	08-F CCTACAGATTTACATTCATGGC		This study
101000 DraQXA-58-like	OXA-58-like-R	CCCCTCTGCGCTCTACATAC		Woodford et al ^b

Supplementary Table S5. Primers used to detect for *bla*_{OXA-58-like} and its upstream regions, pAB-NCGM253, and *bla*_{OXA-213/272-like}

Exclusively	AP-OXA272-F	CCATTGGTACGATGT	265	This study	
bla _{OXA-272-like}	AP-OXA272-R	TGTTGCTTTATGATGC		This study	
bla _{OXA-213-like} not	AC-OXA213-F	CGCCCTCTAGAATGAGTATTCAAC	150	This study	
including <i>bla</i> _{OXA-272-like}	AC-OXA213-R	GTGAAGGATCCTTACCAATGCTTAAT		This study	
pAB-NCGM253	OXA24-NCGM1-F	TATGTACTCATGATTGTACA	1980 ^c	This study	
	OXA24-NCGM1-R	GCTTAATATGACTTTAGCAT		This study	
	OXA24-NCGM2-F CATATTCTGTGTGAGATAGC		1990 ^c	This study	
	OXA24-NCGM2-R	ATTAAAGTTTTACAGAATAA		This study	
	OXA24-NCGM3-F	CGAATAGAACCAGACATTCC	1373 ^c	This study	
	OXA24-NCGM3-R	AACCATGCTCATATTTGTTTCG		This study	
	OXA24-NCGM4-F	TCTAAAATTAACATAATACG	2180 ^c	This study	
	OXA24-NCGM4-R	GTCACGCCAGTATTAACCAA		This study	
	OXA24-NCGM5-F CGCCCATAAATTACACCTCT		1241 ^d	This study	
	OXA24-NCGM5-R	AGGCATTGTCCTTTACAACT		This study	

OXA24-NCGM6-F	AAATCATCCGAATCATTAGTGCA	889 ^e	This study
OXA24-NCGM6-R	GACTTAGCTAAACTTGGTTCAAC		This study

^a Poirel L, Marqué S, Héritier C et al. OXA-58, A Novel Class D β-Lactamase Involved in Resistance to Carbapenems in

Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49: 202–208.

^b Woodford N, Ellington MJ, Coelho JM et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter

spp. Int J Antimicrob Agents 2006; 27: 351-3.

^c 30 cycles of denaturation at 94 °C for 30 s, annealing at 53 °C for 30s and elongation at 72 °C for 2.5 min.

^d 30 cycles of denaturation at 94 °C for 30 s, annealing at 58 °C for 30s and elongation at 72 °C for 1.5 min.

^e 30 cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 30s and elongation at 72 °C for 1 min.

	A. baumar	<i>nnii</i> (n = 20)	A. nosocom	A. nosocomialis (n = 20)			
	CR	CS	CR	CS	CS		
	(n = 10)	(n = 10)	(n = 10)	(n = 10)	(n = 20)		
No. of isolates from each hospital ^a	1/2/5/2	0/7/1/2	3/4/2/1	3/3/1/3	14/0/0/6		
Year	2010-2013	2004-2013	2003-2015	2004-2013	2012-2014		
Imipenem MIC range	8-128	0.25-2	8-64	0.125-2	0.25-1		
Meropenem MIC range	8-64	0.25-2	8-128	0.25-2	0.25-0.5		
Carbapenemase genes ^b							
bla _{OXA-23-like}	8	0	1	0	0		
bla _{OXA-24-like}	2	0	5	0	0		
ISAba1- bla _{OXA-51-like}	2	0	0	0	0		
Hybrid promoter-bla _{OXA-58-like}	1	0	4	0	0		
bla _{OXA-272-like}	0	0	0	0	20		
$bla_{\rm IMP}$	0	0	0	0	0		
$bla_{ m VIM}$	0	0	0	0	0		

Supplementary Table S6. Detection of *bla*_{OXA-272-like} in *Acinetobacter* spp. by PCR

CR, carbapenem-resistant; CS, carbapenem-susceptible

^a Hospitals included Tri-Service General Hospital, Taipei Veterans General Hospital, Mackay Memorial Hospital, and Changhua

Christian Hospital.

^b An isolate may contain multiple carbapenemase genes.

Supplementary Figure S1. Dendrogram of amino acid sequences of carbapenem-hydrolyzing class D β-lactamases (CHDL) in *A*. *calcoaceticus-baumannii* complex isolates and intrinsic CHDLs in other *Acinetobacter* species (a) and comparison of the amino acid sequences of OXA-272-like and OXA-213-like (b). (a) Amino acid sequences of our isolates and amino acid sequences from NCBI were compared. Accession no. (or isolate no. from this study), and CHDL type are indicated. The CHDL in *A. pittii* belonged to OXA-272-like and those in *A. calcoaceticus* belonged to OXA-213-like. The species was identified based on the sequence of *gyr*B. (b) Multiple amino acid sequence alignment was generated using default settings of CLUSTALW at

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_server.html.

(a)

	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
	1	1	1	1	1	1	1	1	1	100	1	120	150	1	150	100	1	100
OVA 500 4 nittii	· · · · · · · · · · · · · · · · · · ·	E				v												
OXA-500, A.puuu OXA-778 A pittii		E				IV								N		N		
OXA-778, A.puuu		F		ĸ		н и			V				R			N		V
UAA-///, A.puun		F				ту			••••••						c	^		
WP_003098095.1, A.puul			·····			·····										т		
OXA-642, A.putti	••••••		2															
OXA-506, A.pittu	••••••	······Q	2			•••••			•••••	•••••				•••••		••••••••		
OXA-564, A.pittii	••••••F	VGMFQ	2			•••••			•••••	•••••	• • • • • • • • • • • •	• • • • • • • • • • •	•••••		•••••	•••••		
OXA-268, A. calcoaceticus	.YIVTTSIL	S.S.K	(H.M.A.	E	T	K		A.I		T		N	• • • • • • • • • • •			NN.		. T
WP_080026926.1, A. calcoaceticu	S .YIV.TCIL	S.M.K	(HA.	E	T			Α	•••••	T						NN.		T
OXA-267, A. calcoaceticus	.YIA.TSIL	SK	нА.	E	M			A		T						N		TL.
OXA-269, A. calcoaceticus	.YV.IV.TT.L	SKK	снА.	QE	т		s	I		V.T			Qк		v	RN.		E.
	* **.*: : :*:	. : *:	****:*:*:*	:**::****	***** ***	***:*: **:	******:**	*:*****:	*********	* ******	*******	******:**	******	******:**	*****:.**	**:*** .*:*	*******	**. *
	MTKKALFFAIGTMFL	SACSFNTV2	OHOIOSISTN	KNSEKIKSLF	DOAOTEGVL	VIKRGQTEEI	YGNDLKRAST	EYVPASTFKM	LNALIGLEHHK	ATPTEVFKW	DGQKRLFPDW	EKDMTLGDAM	KASAIPVYQE	LARRIGLDLM	SKEVKRIGFG	NADIGSKVDDF	WLVGPLKITPO	DOEAOF
											0							
	190	200	210	220	230	240	250	260	270									
	1	I	1	1	1	1	1	1	1									
OT		· · · ·				т		'										
OXA-500, A.pittii	V N					T												
OXA-778, A.pittii																		
OXA-777, A.pittii					· · · · · · · · · · · · · · · · · · ·		••••••											
WP_063098693.1, A.pittii		•••••				•••••			•••••									
OXA-642, A.pittii	·····M	1		••••••	D F			T										
OXA-506, A.pittii		•••••				к												
OXA-564, A.pittii			Q															
OXA-268, A. calcoaceticus	QD.	V.						т										
WP_080026926.1, A. calcoaceticu	sQQD.	V.																
OXA-267, A. calcoaceticus	QQD.	v.				s		т										
OXA-269. A. calcoaceticus	-																	
		LV.		AL.IC				тт										

AYELAHKTLPFSKNVQEQVQSMLFIEEKNGRKIYAKSGWGWDVEPQVGWLTGWVVQPQGEIVAFSLNLEMKKGIPSSIRKEIAYKGLEQLGIL

(b)

Supplementary Figure S2. Scheme to identify the genetic background of bla_{OXA-58} (a) and validation of the mixture of forward primers in step 3 (b). The number of cytosines in hybrid promoter regions, which are underlined in (a), differed in our isolates and ranged from one to three in isolates C₂ (2012N21-164), C₃ (2014N23-120), and C₄ (2010S01-197), respectively. Sequences deposited in NCBI also showed this variation (accession no. CP026086.1, JQ241789, and GU327621.1). Therefore, three sets of forward primers (Hybrid-P_{C2}, -P_{C3}, and -P_{C4}) were designed. PCR with the mixture of Hybrid-P_{C2} and Hybrid -P_{C3} primers yielded the best results. M, marker; NC negative control.

 $\frac{P_{C2}}{M} = \frac{P_{C3}}{C_2 C_3 C_4 NC} = \frac{P_{C3}}{C_2 C_3 C_4 NC} = \frac{P_{C2} + P_{C3}}{C_2 C_3 C_4 NC}$

(b)