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Supplementary Figure 1. Crystal structure of free DotN and intersubunit interactions of

DotL(590-783) with IcmSW and DotN

(a) Structure of free DotN. (Left) Two perpendicular views are shown with the two monomers in

different colors and the bound Zn2+ ions shown as gray spheres. Two antiparallel α-helices (α6, α7)

of one monomer are stacked onto the equivalent α-helices of the other monomer, as if they form a

four-helical bundle. The 62-residue segment structurally similar to the HNH superfamily nucleases

is indicated by red color. (Right, Top) Two views of the zinc cage. Shown are a ribbon drawing with

the four Zn2+-coordinating cysteines in sticks and a cut-away view demonstrating the complete

burial of Zn2+. (Right, Bottom) Molecular mass analysis of free DotN by size-exclusion

chromatography coupled with multi-angle light scattering analysis.

(b) Detailed intersubunit interactions. Residue-residue contacts are shown for the five interfaces

marked in Figure 1a,b. Hydrogen bonds are indicated by dashed lines.
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Supplementary Figure 2. Highlighted hydrophobic interactions between LvgA and IcmSW

Intersubunit residue-residue contacts are shown. Hydrogen bonds are indicated by dashed lines.
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Supplementary Figure 3. SAXS analysis of DotL(590-783)‒DotN‒IcmSW‒LvgA

(a) Molecular mass analysis of the complex by AF4-MALS.

(b) The SAXS curves showing the experimental and the calculated X-ray scattering. The plot

shows the scattering intensity I(q) as a function of q (q = 4πsinθ/λ, where 2θ is the scattering angle

and λ is the wavelength). The scattering data were extrapolated to zero concentration and

normalized by zero angle scattering intensity I(0). The experimental scattering intensities are the

average of six successive frames of 5 to 10 s exposure, indicating no sign of radiation damage.

(c) The P(r) functions showing the experimental and the calculated distance distributions.

Distribution of inter-atomic distances, P(r), is plotted as a function of distance (r).
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Supplementary Figure 4. Protein binding assays

(a-b) Interaction of IcmSW and IcmS‒LvgA with effector proteins. The four indicated effector

proteins (6 µM) were incubated with IcmSW or IcmS‒LvgA at 1:1 molar ratio, and the mixtures

were analyzed by native PAGE. (a) The migration of the four effectors did not change upon addition

of IcmSW. (b) Tailing of the VpdB or SetA protein band was observed upon addition of IcmS‒LvgA.

(c) Native PAGE analysis for PieA and SidH(1830-2225). The two proteins (6 µM) were incubated

with the indicated subcomplexes at 1:1 molar ratio. The effector proteins are indicated by ‘-’.

Triangles indicate newly formed protein bands, which are smeared for both effectors. The reason

for this migration behavior is unknown. PieA exhibits smeared bands probably due to its basic

property (theoretical pI= 8.57).

(d) (His)10 pull-down assay for PieA and SidH(1830-2225). Each protein (200 µM) was incubated

with the indicated subcomplex (100 µM) at room temperature for 30 min and mixed with 70 µL of

Co2+ resin. The resin was washed two times with a buffer solution containing 20 mM Tris-HCl (pH

7.5) and 100 mM NaCl, and then two times with the same buffer containing additional 10 mM

imidazole. Input proteins (I) and Co2+ resin-bound proteins (R) were visualized on a denaturing gel.

RalF and SetA served as a negative and a positive control, respectively.

(e) Native PAGE analysis for VpdB(11-485). VpdB(11-485) (6 µM) was incubated with DotL(590-

783)–DotN–IcmSW‒LvgA at 1:1 molar ratio. Newly formed protein bands are indicated by

triangles. Lines are drawn to distinguish the new protein band from VpdB(11-485) bands.

(f) Native PAGE analysis for RalF. RalF (6 µM) was incubated with DotL(590-783)–DotN–

IcmSW‒LvgA at 1:1 molar ratio. No detectable interaction is observable.

Throughout the figures, a representative image from more than three replicate experiments are

shown.
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Supplementary Figure 5. Crystal structure of DotM(161-371)

Two perpendicular views are shown. A schematic drawing of the construct is shown at the top.

Crystallographic data statistics are summarized in Supplementary Table 1.
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Supplementary Figure 6. Genetic organizations

Shown are the genetic organizations of T4ASS and T4BSS associated with the T4CPs listed in

Figure 6. The open-reading frames were identified and annotated by using the RAST server67.

Homologous genes are color-coded (pink: components of the secretion channel, orange: coupling

proteins). The shown references identify between the two subtypes of T4SS. Accession numbers

are E.c.: Escherichia coli (R388 plasmid) (BR000038.1), S.f.: Shigella flexneri 4c (1205p3 plasmid)

(CP012143.1), P.s.: Pseudomonas syringae (NCPPB880-40 plasmid) (JQ418534.1), E.f.:

Enterococcus faecalis (CF10 plasmid) (AY855841.2), N.u.: Nitrosomonas ureae

(FNUX01000024.1), E.c.: Escherichia coli (IncP-alpha RP4 plasmid) (X54459.1), B.h.: Bartonella

henselae (JQ701698.1), A.t.: Agrobacterium tumefaciens (Ti plasmid) (J03320.1), E.c.: Escherichia

coli (O157_Sal plasmid) (CP001927.1), E.c.: Escherichia coli (F plasmid) (AP001918.1), A.p.:

Anaplasma phagocytophilum (NZ_APHI01000002.1), L.p.: Legionella pneumophila

(NZ_CP013742.1), P.s.: Piscirickettsia salmonis (CP012413.1), R.g.: Rickettsiella grylli

(NZ_AAQJ02000001.1), C.b.: Coxiella burnetii (CP018150.1), P.p.: Pseudomonas putida

(CP003589.1), B.v.: Burkholderia vietnamiensis (LPCP01000001.1), X.c.: Xanthomonas campestris

pv. vesicatoria str. 85-10 (AM039951.1), M.a.: Micavibrio aeruginosavorus (CP002382.1), A. :

Acidovorax sp. Root70 (LMHQ01000001.1), Y.p.: Yersinia pseudotuberculosis (CP000719.1), X.c.:

Xanthomonas citri (CCXZ01000025.1).
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Supplementary Table 1. X-ray data collection and structure refinement statistics. 

Data Collection DotL(656-783)‒IcmSW 
(SelMet) 

DotN DotL(590-659)‒DotN 
DotL(656-783)‒
IcmSW‒LvgA 

DotM(161-371)
(SelMet) 

Space group P212121 P6522 P212121 P32 P21 

Unit cell dimensions      

a, b, c (Å) 67.597, 75.803, 150.637
155.357, 155.357, 
527.711 

50.683, 72.220, 170.435
152.325, 152.325, 
74.475 

50.529, 72.021, 65.691 

α, β, γ (°) 90, 90, 90 90, 90, 120 90, 90, 90 90, 90, 120 90, 102.154, 90 

Wavelength (Å) 0.9796 1.2828 1.2828 1.0000 0.9796 

Resolution (Å) 50-2.0 50-3.0 50-1.8 50-2.8 50-1.8 

Rsym 10(28.9)a 10.4(31.7)a 6.4(27.2)a 8.1(37)a 7.9(17.9)a 

I/σ(I) 28.6(4) 18.8(2.86) 42.2(2.85) 18.8(1.56) 21.3(3.89) 

Completeness (%) 92(85.5) 85.4(60.9) 97(91.2) 97.9(90.4) 91(72) 

Redundancy 5.4(3.1) 12(1.8) 8.8(3.4) 4.2(2.5) 4.3(2.6) 

Refinement      

Resolution (Å) 50-2.0 50-3.0 50-1.8 50-2.8 50-1.8 

No. of reflections 86494 109241 104008 46584 70306 

Rwork / Rfree (%) 22.1/26.9 25.6/29.7 21.0/25.9 25.0/29.0 17.6/19.8 

R.m.s deviations      

bond (Å) / angle (º) 0.008/0.966 0.002/0.408 0.008/0.84 0.01/1.185 0.007/0.83 

Average B-values (Å2) 16.37 55.68 26.31 64.94 14.69 

Ramachandran plot (%)      

Favored / Additional 
allowed 

94.7/5.0 86.3/13.5 92.4/7.6 87.3/12.4 91.5/8.3 

Generously allowed 0.2 0.1 0 0.3 0.3 

aThe numbers in parentheses are the statistics from the highest resolution shell. 
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