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Materials and Methods 

We quantified the fountain of flapping mathematically and in practice. We analyzed a 

flightless winged dinosaur (Caudipteryx) during running and evaluated how this theropod 

could sense flapping on its wings. Hence, we could obtain invaluable results in the process 

of beginning of learning flapping using the method of modal effective mass mathematically, 

FEM simulation and experiments on a reconstructed robot of Caudipteryx. 

Modal effective mass. To find which mode is most easily excited when the Caudipteryx 

ran on the ground, modal effective mass model was established and validated via finite 

element method. Modes with relatively high effective masses are readily excited by the 

running excitation. The Caudipteryx was divided into seven lumped mass points, including 

the main body, two wings, two legs, tail and neck. The seven degree-of-freedom of 

Caudipteryx mechanism based on the reconstruction from the fossil was then used to 

calculate and simulation with continuous Caudipteryx model at computer was 

accomplished. Both results demonstrated that rolling and flapping modes were easily 

exited when the Caudipteryx ran on the ground. 

Reconstruction of Caudipteryx. The measurements from Caudipteryx zoui BPM 0001 

have been used to appraise the whole body of Caudipteryx and characterize the appropriate 

relationship to use for the robot and the mathematical models of this dinosaur. Every part 

of the robot was fabricated with 3-D printer, guided by information from the fossil. 

Experiment and data analysis. First experiment via the reconstructed Caudipteryx robot 

on the testrig were executed and we could obtain the velocity related to the most obvious 

flapping mode. Second experiment with the reconstructed Caudipteryx wings were 

executed on the ostrich. We fabricated the Caudipteryx wings with different size and area. 

The accelerometer and force sensors were attached to the wings to measure the body and 

wings rolling angles and lift force during passive flapping. By collecting the data on the 

testrig and ostrich, we obtained the pure lifts from different wings. 

  



Vibration Theory 

The theory of vibration [1] deals with the oscillatory motions of bodies and the forces 

associated with them. All bodies possessing mass and elasticity are capable of vibration. 

Thus, most engineering machines and structures experience vibration to some degree, and 

their design generally requires consideration of their oscillatory behavior. Oscillatory 

systems can be broadly characterized as linear or nonlinear. For linear systems, the 

principle of superposition holds, and the mathematical techniques available for their 

treatment are well developed. In contrast, techniques for the analysis of nonlinear systems 

are less well known, and difficult to apply. However, some knowledge of nonlinear systems 

is desirable, because all systems tend to become nonlinear with increasing amplitude of 

oscillation. There are two general classes of vibrations, free and forced. Free vibration takes 

place when a system oscillates under the action of forces inherent in the system itself, and 

when external impressed forces are absent. The system under free vibration will vibrate at 

one or more of its natural frequencies, which are properties of the dynamical system 

established by its mass and stiffness distribution. Vibration that takes place under the 

excitation of external forces is called forced vibration. When the excitation is oscillatory, 

the system is forced to vibrate at the excitation frequency. If the frequency of excitation 

coincides with one of the natural frequencies of the system, a condition of resonance is 

encountered, and dangerously large oscillations may result. Thus, the calculation of the 

natural frequencies is of major importance in the study of vibrations. 

Vibrating systems are all subject to damping to some degree because energy is dissipated 

by friction and damping. If the damping is small, it has very little influence on the natural 

frequencies of the system, and hence the calculations for the natural frequencies are 

generally made on the basis of no damping. On the other hand, damping is of great 

importance in limiting the amplitude of oscillation at resonance. The number of 

independent coordinates required to describe the motion of a system is called degrees of 

freedom of the system. Thus, a free particle undergoing general motion in space will have 

three degrees of freedom, and a rigid body will have six degrees of freedom, i.e., three 

components of position and three angles defining its orientation. Furthermore, a continuous 

elastic body will require an infinite number of coordinates (three for each point on the body) 

to describe its motion; hence, its degrees of freedom must be infinite. However, in many 

cases, parts of such bodies may be assumed to be rigid, and the system may be considered 

to be dynamically equivalent to one having finite degrees of freedom. In fact, a surprisingly 

large number of vibration problems can be treated with sufficient accuracy by reducing the 

system to one having a few degrees of freedom. 

All systems possessing mass and elasticity are capable of free vibration, or vibration that 

takes place in the absence of external excitation. Of primary interest for such a system is 

its natural frequency of vibration. Our objectives here are to learn to write its equation of 

motion and evaluate its natural frequency, which is mainly a function of the mass and 

stiffness of the system. 

Damping in moderate amounts has little influence on the natural frequency and may be 

neglected in its calculation. The system can then be considered to be conservative, and the 

principle of conservation of energy offers another approach to the calculation of the natural 



frequency. The effect of damping is mainly evident in the diminishing of the vibration 

amplitude with time. 

The basic vibration model of a simple oscillatory system consists of a mass, a massless 

spring, and a damper. The mass is considered to be lumped and measured in the SI system 

as kilograms. The spring supporting the mass is assumed to be of negligible mass. Its force-

deflection relationship is considered to be linear, following Hooke's law, F kx , where 

the stiffness k is measured in newtons/meter and x  is the deformation measured in meters. 

The viscous damping, generally represented by a dashpot, is described by a force 

proportional to the velocity, or F cx  where x  represents the velocity. The damping 

coefficient c is measured in newtons/meter/second. 

Figure A (left) shows a simple undamped spring-mass system, which is assumed to move 

only along the vertical direction. It has 1 degree of freedom (DOF), because its motion is 

described by a single coordinate x. When placed into motion, oscillation will take place at 

the natural frequency n
f , which is a property of the system. We now examine some of the 

basic concepts associated with the free vibration of systems with one degree of freedom. 

Newton's second law is the first basis for examining the motion of the system. As shown 

in Figure A (left) the deformation of the spring in the static equilibrium position is  , and 

the spring force k  is equal to the gravitational force w acting on mass m: 

k w mg           (S1) 

where g  is the gravitational coefficient on the earth. By measuring the displacement x 

from the static equilibrium position, the forces acting on m are ( )k x  , cx  and w 

shown in Figure A (right). With x chosen to be positive in the downward direction, all 

quantities, force, velocity, and acceleration, are also positive in the downward direction. 

We now apply Newton's second law of motion to the mass m: 

( )mx F w k x cx              (S2) 

and because k w  , we obtain 

mx kx cx            (S3) 

where c is the damping coefficient. 

 
Figure A. Spring, damper and mass system and free-body diagrams. 

 

Equation (S3) can be written as below when c is neglected: 



2 0
n

x x          (S4) 

where 
2

n

k

m
   and we conclude by comparison with equation 

2
x x   that the 

motion is harmonic. A homogeneous second-order linear differential equation (S4) has the 

following general solution: 

sin cosA t B t 
n n

x           (S5) 

where A and B are the two necessary constants that are evaluated from initial conditions 

(0)x  and (0)x . So equation (S5) can be reduced to 

(0)
sin (0)cost t n n

n

x
x x 


         (S6) 

The natural period of the oscillation is established from 2
n

   , or 

2
m

k
         (S7) 

and the natural frequency is 

1 1

2
n

k
f

m 
          (S8) 

These quantities can be expressed in terms of the static deflection   by observing 

equation (S1), k mg  . Thus, equation (S9) can be expressed in terms of the statical 

deflection   as 

1

2
n

g
f





       (S9) 

Note that  , n
f  and n

  depend only on the mass and stiffness of the system, which are 

properties of the system. Equation (S3) can be written as (S10) when the damping 

coefficient, c, is taken into account. From the free-body diagram (Figure A), the dynamics 

equation is 

( )mx kx cx F t          (S10) 

where ( )F t   is the external force. When ( ) 0F t    in equation (S10), we have the 

homogeneous differential equation whose solution corresponds physically to that of free-

damped vibration. When ( ) 0F t   , we obtain the particular solution that is due to the 

excitation irrespective of the homogeneous solution. 



With the homogeneous equation 

0mx cx kx           (S11) 

the traditional approach is to assume a solution of the form 

st
x e        (S12) 

where s is a constant. Upon substitution into the differential equation, we obtain 

2( ) 0st
ms cs k e          (S13) 

which is satisfied for all values of t when 

2 0
c k

s s
m m

           (S14) 

Equation (S14), which is known as the characteristic equation, has two roots, real or 

complex: 

2

1,2
2 2

c c k
s

m m m

 
    

 
      (S15) 

Hence, the general solution is given by the equation 

1 2s t s t
x Ae Be         (S16) 

where A and B are constants to be evaluated from the initial conditions (0)x  and (0)x . 

Substituting equation (S15) into (S16) gives 

   2 2( /2 ) / ( /2 ) /
( /2 )

c m k m t c m k m t
c m t

x e Ae Be
  

  
  

 
   (S17) 

The first term, ( /2 )c m t
e
 , is an exponentially decaying function of time. The behavior of 

the terms in the parentheses, however, depends on whether the numerical value within the 

radical is positive, zero, or negative. 

When the damping term  
2

/ 2c m  is larger than k/m, the exponents in the previous 

equation are real numbers and no oscillations are possible. We refer to this case as 

overdamped. 

When the damping term  
2

/ 2c m  is less than k/m, the exponent becomes an imaginary 

number,  2/ ( / 2 )i k m c m t  . Because 

 2
2 2

/ ( /2 )

cos sin
2 2

i k m c m t k c k c
e t i t

m m m m

     
      

   
   (S18) 

the terms of equation (S18) within the parentheses are oscillatory. We refer to this case as 

underdamped. 



In the limiting case between the oscillatory and nonoscillatory motion,  
2

/ 2 /c m k m , 

and the radical is zero. The damping corresponding to this case is called critical damping, 

c
c . 

2 2 2
c n

k
c m m km

m
                 (S19) 

Any damping can then be expressed in terms of the critical damping by a non-dimensional 

number,  , called the damping ratio: 

c

c

c
        (S20) 

where c
c  is the critical damping coefficient, and we can also express 1,2s  in terms of   

as follows: 

2 2

c
n
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m m
 
 

  
 

       (S21) 

Equation (S15) then becomes 

 2

1,2 1 ns                 (S22) 

The three cases of damping discussed here now depend on whether   is greater than, less 

than, or equal to unity. Furthermore, the differential equation of motion can now be 

expressed in terms of   and n
  as 

2 1
2 ( )n nx x x F t

m
          (S23) 

This form of the equation for single-DOF systems will be found to be helpful in identifying 

the natural frequency and the damping of the system. We will frequently encounter this 

equation in the modal summation for multi-DOF systems. 

Figure B shows equation (S22) plotted in a complex plane with   along the horizontal 

axis. When 0  , equation (S22) reduces to 1,2 /s i    so that the roots on the 

imaginary axis correspond to the undamped case. For 0 1  , equation (S22) can be 

rewritten as 

1,2 21
n

s
i 


           (S24) 



The roots 1s  and 2s  are then conjugate complex points on a circular that are converging 

at the point 1,2 / 1.0
n

s    . As   increases beyond unity, the roots separate along the 

horizontal axis and remain real numbers. With this diagram in mind, we are now ready to 

examine the solution given by equation (S17). 

 

Figure B. Equation (S22) plotted in a complex plane with   along the horizontal axis. 

 

Oscillatory motion [ 1.0   (Underdamped Case)]. By substituting equation (S22) into 

(S17), the general solution becomes 

 2 21 1n nn i t i tt
x e Ae Be

      
       (S25) 

This equation can also be written in either of the following two forms: 

 2sin 1nt

nx Xe t
   

        (S26) 

 2 2

1 2sin 1 cos 1nt

n nx e C t C t
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        (S27) 

where the arbitrary constants ,X  , or 1 2,C C  are determined from initial conditions. 

With initial conditions (0)x  and (0)x , equation (S27) can be shown to reduce to 
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2
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  (S28) 



The equation indicates that the frequency of damped oscillation is equal to 

22
1d n

d


  


         (S29) 

Therefore, the natural frequency of the oscillation considering damping coefficient is a 

function of n
  (free natural frequency without considering damping in the system). As it 

is shown in the general nature of the oscillatory motion in Figure C, a system can vibrate 

by its natural frequency but using damper to decrease the amplitude of oscillation to fully 

damp the whole system. The damping ratio of a vibrating system is depending on the 

damping coefficient. Hence, small value of damping almost cannot effect on free natural 

vibration and it only reduces the amplitude of vibration in long term. 

 

Figure C. The general nature of oscillatory motion (Damped oscillation, 1.0  ). 

Natural Frequencies and Mode Shapes. To calculate the natural frequencies and mode 

shapes for multiple degree-of-freedom (DOF) rigid-body systems, we first linearize the 

equations of motion (EOM) and express them in the matrix form: 

[ ]{ } [ ]{ } [ ]{ } { }
 

  M C Kx x x F(t)      (S30) 

Here, [M], [C]and [K] represent the system mass, damping, and stiffness matrices, the 

vector {x} represents the changes in all the generalized coordinates from their equilibrium 

values, and the vector {F} represents all the forces acting on the system. Then, we set the 

damping matrix and force vector to zero to get free, undamped response. 

[ ]{ } [ ]{ } { }


 M K 0x x        (S31) 

Following the pattern for single DOF systems, we look for a solution to this equation of 

the form { } { }stex u  where s j . 



This equation describes a steady-state, undamped solution, with representing the mode 

shape of the oscillations. Substituting this into the differential EOM gives 

2([ ] [ ]){ } { }K M 0u         (S32) 

The problem now is to find 
2   and { }u  that satisfy this algebraic equation. This is 

called an eigenvalue problem. For this equation to have a non-zero solution for a nonzero 

vector { }u , we require the determinant of the coefficient matrix to be zero. 

2det([ ] [ ]) 0K M         (S33) 

If the matrices [M] and [K] are N×N matrices, the solution to this equation yields N values 

for 
2  , and hence N values for ω. These are N natural frequencies of the system. 

Associated with each of these frequencies is a mode shape { }u . The 
2  is called the 

eigenvalue of the system, and the vector { }u  is called the eigenvector of the system. 

  



Modal Effective Mass Theory 

One of the most important tasks in analysis and modal survey planning is the selection of 

target modes. The target modes are those mode shapes that are determined to be 

dynamically important using some definition. While there are many measures of dynamic 

importance [2-8], one of the measures that is of greatest interest to a structural dynamicist, 

is the contribution of each mode shape to the dynamic loads at an interface. The interface 

can represent a connection to ground, a connection of the substructure to the rest of a 

system, or locations where external forces are applied. Dynamically important modes 

contribute significantly to the interface loads and must be retained in any reduced analytical 

representation of the substructure. Therefore, these modes must be identified during a 

ground vibration. 

Modal participation factors have been widely used by the civil engineers to determine the 

modal response of buildings to ground motion from earthquakes, while structural 

dynamicists have extensively used Effective Mass [9] to determine dynamic importance. 

The advantage of Effective Mass is that it is an absolute measure of dynamic importance in 

contrast to other measures that only indicate the importance of one mode shape with respect 

to another. The advantage of an absolute measure is that the original modal representation 

of the FEM can be truncated such that a desired fraction of the total Effective Mass is 

retained, guaranteeing that the reduced representation of the substructure will be accurate. 

The usual dynamic analysis techniques express structure deformation in a new base of rigid 

modes and elastic modes. Each mode is characterized by a modal mass and effective 

masses associated with different directions. The normalization of these modes is arbitrary, 

this implies that they have no physical meaning when considered alone. On the other hand, 

the effective mass has a physical meaning and allows, in a lot of cases, simplification of 

the computation of deformations and stresses. They allow a trade-off of useful modes and 

simple computations on complex structures. Indeed, each mode can be interpreted as a 

mass-spring-damper system oriented in the rigid modes space along a specific direction. 

The mass in this case is the effective mass. When a force is applied on the internal degrees 

of freedom, each elastic mode will be excited by the projection of the force on this mode. 

Moreover, the reaction at the junction DOF implied by a mode will have a direction parallel 

to the mode specific direction [10-15]. 

The effective mass ,eff k
m  of mode k is the fraction of the total static mass that can be 

attributed to this mode (static inertia for rotation modes). The vectors define a set of 

directions in the rigid mode space (a 6-dimension space in general). Each effective mode 

can be represented by a mass-spring-dashpot system oriented along vector in the rigid mode 

space. The mass value is ,eff k
m , the spring constant is ,eff kk  and the damping coefficient 

is unchanged. The elastic behavior of the structure can be represented in the rigid mode 

space by this set of 1-D mass-spring-dashpot systems (Figure D) [10-15]. 



 

Figure D. Representation of elastic modes in rigid modes space (X, Y, ϴz). (A general 

representation of a structure by a set of 1-D mass-spring-dashpot systems in the space of 

rigid modes). The effective masses distribution can easily characterize the relative 

contribution of the modes when the structure is excited along a direction with a given 

frequency [10]. 

 

For brevity, the modal effective mass provides a method for judging the “significance” of 

a vibration mode. Modes with relatively high effective masses can be readily excited by 

base excitation. On the other hand, modes with low effective masses cannot be readily 

excited in this manner. Consider a modal transient or frequency response function analysis 

via the finite element method. Also consider that the system is a multi-degree-of-freedom 

system. Only a limited number of modes should be included in the analysis. The number 

should be enough so that the total effective modal mass of the model is at least 90% of the 

actual mass (By Tom Irvine) [16-21]. 

The modal effective mass is a modal dynamic property of a structure associated with the 

modal characteristics; natural frequencies, mode shapes, generalized masses, and 

participation factors. The modal effective mass is a measure to classify the importance of 

a mode shape when a structure is excited by base acceleration (enforced acceleration). A 

high effective mass will lead to a high reaction force at the base, while mode shapes with 

low associated modal effective mass are barely excited by base acceleration and will give 

low reaction forces at the base. The effect of local modes is not well described with modal 

effective masses (Shunmugavel 1995, Witting 1996). The modal effective mass matrix is 

a 6×6 mass matrix. Within this matrix the coupling between translations and rotations, for 



a certain mode shape, can be traced. The summation over all modal effective masses will 

result in the mass matrix as a rigid-body [22-26]. 

A Single Degree of Freedom (SDOF) system with a discrete mass m, a damper element c 

and a spring element k is placed on a moving base that is accelerated with an acceleration 

( )u t . The resulting displacement of the mass is ( )x t , the natural (circular) frequency 

n

k

m
  , the critical damping constant 2critc km  and the damping ratio 

crit

c

c
   

are introduced. The amplification factor is defined as 
1

2
Q


 . 

 

Figure E. Enforced acceleration of a damped SDOF system [22]. 

 

A relative motion ( )z t  is introduced, which is the displacement of the mass with respect 

to the base. The relative displacement is ( ) ( ) ( )z t x t u t  . The equation for the relative 

motion is 
2( ) 2 ( ) ( ) ( )

n n
z t z t z t u t     . The enforced acceleration of the SDOF system 

is transformed into an external force. The absolute displacement ( )x t  can be calculated 

from 
2( ) ( ) ( ) 2 ( ) ( )

n n
x t z t u t z t z t       . The reaction force ( )

base
F t  , due to the 

enforced acceleration ( )u t  , is a summation of the spring force and the damping force 

( ) ( ) ( ) { ( ) ( )} ( )
base

F t kz t cz t m z t u t mx t       . Assuming harmonic vibration, we can 

write the enforced acceleration ( ) ( ) j t
u t U e

   and also the relative motion ( )z t



( ) ( ) j t
z t Z e

  , ( ) ( ) j t
z t j Z e

    and 2( ) ( ) 
j t

z t Z e
    . Therefore, the absolute 

acceleration of the SDOF dynamic system is 

2( ) ( ) ( )j t j t
x t X e X e

            (S34) 

Equation 
2( ) 2 ( ) ( ) ( )

n n
z t z t z t u t      can be transformed into the frequency domain 

2 2[ 2 ] ( ) ( )
n n

j Z U               (S35) 

We are able to express the relative displacement ( )z    in the enforced acceleration 

2( ) ( )U U    , 

2

( ) ( )
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Z H U
 

 
 

   
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
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
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
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  is the frequency 

response function. Using equation 
2( ) ( ) ( ) 2 ( ) ( )

n n
x t z t u t z t z t      , we can write 

the absolute acceleration ( )X   as 

2

2 2( ) [ ( ) ( )] 1 ( )
n n

X Z U H U
 
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 
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  (S35) 

or 
2

( ) 1 ( )
n n

X H U
 

 
 

    
      
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      (S36) 

With the aid of equation ( ) ( ) ( ) { ( ) ( )} ( )
base

F t kz t cz t m z t u t mx t       , the reaction 

force at the base ( )
base

F   now becomes 

2

( ) ( ) 1 ( )
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F mX m H U
 
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     

   (S37) 

In this frame the mass m is the effective mass effM m . The reaction force ( )
base

F   is 

proportional to the effective mass effM  and the base excitation ( )U   multiplied by the 

amplification 

2

1
n n

H
 

 

   
    
   

. Similar relations will be derived for multi-degrees of 

freedom (MDOF) dynamic systems. When the excitation frequency is equal to the natural 

frequency of the SDOF n
  , the reaction force becomes 



( )

1
1 ( ) ( )

2nbase n eff n
F m U M QU

j
  



 
   

 
    (S38) 

Equation 

2

( ) ( ) 1 ( )
base

n n

F mX m H U
 

  
 

    
       
     

  can then be written in a 

dimensionless form 
2

( )
1

( )

base

n n

F
H

mU

  

  

    
      
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     (S39) 

 

Modal Effective Masses of an MDOF System. The undamped (matrix) equations of 

motion for a free elastic body can be written as 

[ ]{ ( )} [ ]{ ( )} { ( )}M x t K x t F t       (S40) 

The external or boundary degrees of freedom are denoted with the index j and the internal 

degrees of freedom with the index i. The structure will be excited at the boundary DOFs; 

3 translations and 3 rotations. 

  

Figure F. Enforced structure [22]. 

 

The number of boundary degrees of freedom is less than or equal to 6. The DOFs and forces 

are illustrated in Figure F. Equation (22) may be partitioned as follows 

ii ij i ii ij i i

ji jj j ji jj j j

         
         

         

M M K K

M M K K

x x F

x x F
    (S41) 

It is proposed by Craig to depict the displacement vector { ( )}tx  on a basis of 6-rigid-body 

modes [ ]r  with { } [ ]j x I  and elastic mode shapes [ ]p  with fixed external degrees 

of freedom { } [ ]j x 0   calculated from the eigenvalue problem 

([ ] [ ])[ ] [ ]ii p ii ii K M 0 . { }x  can be expressed as [27] 



{ } [ ]{ } [ ]{ } [ ]{ }
j

r j p p r p

p

 
      

 

x
x x X


         (S42) 

The static modes can be obtained, assuming zero inertia effects, and { } { }j F 0  , and 

prescribe successively a unit displacement for the 6 boundary DOFs, thus { } [ ]jx I  . 

Equation (S41) may be written as follows 

0

0

ii ij i i

ji jj j

K K x

K K x

     
    
    

         (S43) 

Enforced displacement { }jx  will not introduce reaction forces in boundary DOFs. From 

the first equation of (S43) we find for { }
i

x  

[ ]{ } [ ]{ } [0]
ii i ij j

K x K x        (S44) 

Hence 

1{ } [ ] [ ]{ }i ii ij jx K K x
         (S45) 

And therefore 

1 1[ ] [ ] [ ][ ] [ ] [ ]ij ii ij ii ijK K I K K
           (S46) 

The static transformation now becomes 

{ } { } [ ]{ }
i ij

j r j

j

x
x x x

x I

   
      

  
      (S47) 

Using equation (S43) it follows that 

[ ][ ] {0}
r

K           (S48) 

Assuming fixed external degrees of freedom { } {0}
j

x   and also assuming harmonic 

motions ( ) ( ) j t
x t X e

  the eigenvalue problem can be stated as 

, ,([ ] [ ]){ ( )} {0}
ii k p ii k p

K M X         (S49) 

or more generally as 

([ ] [ ]){ } {0}
ii k ii ip

K M          (S50) 

where k
  is the eigenvalue associated with the mode shape ,{ }, 1,2,... 

ip k
k j  . The 

internal degrees of freedom { }
i

x  will be projected on the set of orthogonal mode shapes 

(modal matrix) [ ]ip , thus 



{ } [ ]{ }i ip px          (S51) 

The modal transformation becomes 

{ } { } [ ]{ }
0

i ip

p p p

j

x
x

x
 

   
      

  
      (S52) 

The Craig–Bampton (CB) transformation matrix [ ]  is 

{ } [ ]{ }
j

r p

p

x
x X



 
       

 
      (S53) 

where [ ]
r

  the rigid body modes, [ ]p  the modal matrix, { }jx  the external or 

boundary degrees of freedom ( 6j  ) and { }p  the generalized coordinates. In general, 

the number of generalized coordinates P is much less than the total number of degrees of 

freedom ,  n i j p i  . 

The CB transformation equation (S53) will be substituted into equation (S40) by assuming 

equal potential and kinetic energies, hence 

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { ( )} { ( )}T T T
M x K x F t f t           (S54) 

further elaborated it is found 

0

T

rr jp j jp j ijj ij P

pj p p p p jpj

M M x K x FK

M m K FK I 
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  (S55) 

where 

[ ]
rr

M  the 6×6 rigid body mass matrix with respect to the boundary DOFs, 

[ ]jjK  the Guyan reduced stiffness matrix (j-set), 

pm   the diagonal matrix of generalized masses, [ ][ ][ ] p p pm M     , 

pK   the diagonal matrix of generalized stiffnesses, 

2[ ] [ ]      
T

p p p p p p pK K m m                , 

1[ ] [ ] [ ][ ] [ ][ ] ( [ ] [ ] [ ] [ ][ ]) [0]T T

ip ij ii p ji p ij ii ii ji pK K K K K K K
          , 

[ ] [ ] [0]T

pi ipK K  , 

[ ] [ ] [ ][ ] [0]T

jj r rK K    . 

Thus equation (S55) becomes 
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  (S56) 

where [ ] [ ] [ ][ ] [ ]T T

jp r pM M L     , [ ]T
L   is the matrix with the modal participation 

factors, , ,{ } [ ]{ }T

kl r k p lL M   , 1,2,...,6k   , 1,2,...,l p  . The matrix of modal 

participation factors couples the rigid-body modes [ ]
r

   with the elastic modes [ ]p  

and { } {0}
i

F  . No internal loads are applied. Introducing the modal damping ratios p  

equation (S56) can be written as follows 
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(S57) 

Equation (S57) can be divided into two equations 

[ ]{ } [ ] { } { }T

rr j p jM x L F        (S58) 

and 

[ ]{ } { } 2 { } { } {0} 
j p p p p p p p p p

L x m m m                  (S59) 

Equations (S58) and (S59), when transformed in the frequency domain, give 

[ ]{ } [ ] { } { }T

rr j p jM x L F         (S60) 

and 

[ ]{ } { } 2 { } { } {0} j p p p p p p p p pL X m m m                  (S61) 

where  

( ) j t
x t Xe

 , 
2

X X  , 

( ) j t
t e

   , j    and 
2    , 

ˆ( ) j t
F t Fe

 . 

With equation (S61) we express { }p  in { }jX  

2 2[ 2 ] [ ]{ } p p p p p p jm j L X               (S62) 

where ,[ ] { } [ ][ ]T

k p k rL M   is a 1×6 vector with modal participation factors and 

, ,{ } [ ]{ }T

kj p k r jL M   is a participation factor with 1,2,...,k p  and 1,2,...,6j   . 

Thus equation (S62) becomes 
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   (S63) 

Substituting equation (S63) into (S60) gives 
2
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, 1,2,...,k p   (S64) 
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We can prove that 
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[ ] [ ]
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because 
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Assuming the inverse of [ ]ip  exists, the modal effective mass ,[ ]
eff k

M  is defined as 

follows 

,

[ ] [ ]
[ ]

T

k k
eff k

k

L L
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m
         (S69) 

where ,[ ] { } [ ][ ]T

k p k rL M   and , ,{ } [ ]{ }T

k p k p km M  . The summation over all 

modal effective masses ,[ ]
eff k

M  will result in the rigid body mass matrix [ ]
rr

M  with 

respect to { }jx . Equation (S66) becomes 
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        (S70) 

Therefore, equation (S65) can be rewritten as 
2

,
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Equation (S71) can be decomposed into modal reaction forces ,{ }base kF  

,

1

ˆ{ } { }
p

base k j

k

F F


         (S72) 

where 
2

, ,{ } [ ] 1 { }
base k eff k k j
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F M H X
 

 
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    (S73) 

Equation (S73) is rather similar to equation (S37). 

  



Interval Analysis 

Basic theory of interval analysis. The design parameters in engineering are generally 

considered as deterministic, but there are many cases where some parameters are uncertain 

and therefore it is very difficult to roughly understand the product performance. These 

uncertain parameters come from either design tolerance, manufacture error, or even the 

error in assembling or working process [28-30]. When the ranges of uncertain parameters 

become large or the number of uncertain parameters has increased greatly, the deterministic 

method could not give a definite solution. To solve these problems, interval analysis [28-

32] is a good method to describe all of possible results with interval expressions. 

An uncertain real can be considered as a real set which contains all of the possible values 

within a real interval whose lower and upper bounds are all known. At the same time, a 

real set can be expressed as the real interval which contains the lower bound and upper 

bound of the real set. When the interval analysis method is utilized to solve the problems 

which consist of uncertain parameters, the cost will be reduced a lot. Furthermore, the 

interval method does not need to know the probabilistic distribution or membership 

function of uncertain parameters, so it can be used widely in engineering. 

Let us define a real interval [ ]x  as a connected nonempty subset of real set R. It can be 

expressed as [29-32] 

[ ] [ , ] { : }x x x x R x x x           (S56) 

where x  is the lower bound of interval [ ]x  which can also be noted as inf ([ ])x , the 

largest number on the left of [ ]x ; x  is the upper bound of interval [ ]x  which can be 

noted as sup ([ ])x , the smallest number on right of [ ]x . The set of all intervals over R is 

denoted by IR where 

{[ , ] : , : }IR x x x x R x x          (S57) 

The midpoint of [ ]x  can be expressed as 

1
([ ]) ( )

2
cx mid x x x           (S58) 

The radius of [ ]x  is 

1
([ ]) ( )

2
rad x x x         (S59) 

The width of [ ]x   can be denoted by ([ ]) 2 ([ ])w x rad x  . In addition, another real 

interval related with interval [ ]x  can be defined as 



[ ] [ ([ ]), ([ ])]x rad x rad x          (S60) 

The real interval [ ]x  can be transformed to the center form. 

[ ] [ ]
c

x x x          (S61) 

For example 

[ ] [2, 4] 3 [ 1,1]x      where 3, [ ] [ 1,1] 
c

x x            (S62) 

For further discussion, the mathematical operations are briefly introduced for the interval 

parameters. Interval arithmetic operations are defined on the real set R such that the interval 

expression covers all possible real results. Given the two real intervals [ ]x  and [ ]y , the 

operation below holds 

[ ] [ ] [ : [ ], [ ]} x y x y x x y y      for { , , , }        (S63) 

Then, the four elementary operations are defined by 
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    (S64) 

Particularly 

2 2

2

2 2 2 2
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                  if   

 max( )]   if   

x x x
x
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          (S65) 

In most cases, interval arithmetic will enlarge the width of result. For example, if 

[ ] [ 1,1]x   , then 

4[ ] 2[ ] [ 4,4] [ 2,2] [ 6,6]x x             (S66) 

But the accurate and narrow result can be obtained by altering the operation form, namely, 

4[ ] 2[ ] (4 2)[ ] 2 [ 1,1] [ 2,2]x x x                 (S67) 

The result will be narrower when the number of the occurrences of each interval variable 

is as little as possible [31]. 

Consider a function f from Rn to Rm. The interval function [ ]f  from IRn to IRm is an 

inclusion function for f if 

[ ] , ([ ]) [ ]([ ]) 
n

x IR f x f x         (S68) 



where [ ]x  indicates any interval [ ]x . 

One of the most important purposes of interval analysis is to provide, for a large class of 

functions f, inclusion functions [ ]f  that can be evaluated reasonably and quickly such 

that the result interval is not too wide to engineering applications. Natural inclusion 

function which just needs to replace each real variable by interval variable is the simplest 

method to get interval result of a function. Natural inclusion function can obtain the 

minimal interval result if each of the variables occurs once at most in the formal function 

of f and the function is continuous [32]. 

 

Interval analysis of dynamic stiffness. For the sake of simplicity, the masses of 

Caudipteryx’s parts are regarded as a percentage of whole body mass and so do the 

stiffnesses of Caudipteryx’s parts attached to the main body which are considered a 

percentage of K1 that is supposed for the stiffness between Caudipteryx and Ground (Table 

A). The parameter M with the unit of Kg and K1 with the unit of N/mm are considered as 

intervals. 
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    (S69) 

Table A. Percentages of masses and stiffnesses of Caudipteryx’s parts 

Mass Percentage  Stiffness Percentage 

m1 48%M   

m2 10% M K2 20%K1 

m3 10% M K3 20%K1 

m4 4% M K4 65%K1 

m5 4% M K5 65%K1 

m6 10% M K6 80%K1 

m7 14% M K7 80%K1 

M=5Kg  K1=1000N/mm  

 

The discrete dynamic system is governed by (Fig. 1) 
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 M Kx x F       (S70) 
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  which is a 7 7  -mass matrix, 
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

K =

k k k k k k k k k k k k

k k

k k

k k k

k k k

k k

k k

           
 


 
 
 

  
  
 

 
  

  which is a 

7 7  -stiffness matrix, 1 2 3 4 5 6 7

T

x
  
   

x x x x x x x   which is the acceleration 

vector,  1 2 3 4 5 6 7

T
x = x x x x x x x  which is the displacement vector and F  

is the base excitation function. The answers for the homogeneous equation (S70) would be 

earned in terms of eigenvalues (natural frequencies) and eigenvectors (mode shapes). 

Therefore, matrices M and K should be rewritten as 

0.48[ ] 0 0 0 0 0 0

0 0.1[ ] 0 0 0 0 0

0 0 0.1[ ] 0 0 0 0

0 0 0 0.04[ ] 0 0 0

0 0 0 0 0.04[ ] 0 0

0 0 0 0 0 0.1[ ] 0

0 0 0 0 0 0 0.14[ ]

M =

M

M

M

M

M

M

M

 
 
 
 
 
 
 
 
 
 
 

  (S71) 

and 

1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1

1 1 1

1 1 1

0.2[ ] 0.2[ ] 0.65[ ] 0.65[ ] 0.8[ ] 0.8[ ] 0.2[ ] 0.2[ ] 0.65[ ] 0.65[ ] 0.8[ ] 0.8[ ]

0.2[ ] 0.2[ ] 0 0 0 0 0

0.2[ ] 0 0.2[ ] 0 0 0 0

0.65[ ] 0 0 [ ] 0.65[ ] 0 0 0

0.65[ ] 0 0 0 [ ] 0.65[ ] 0 0

0.8[

K =

k k k k k k k k k k k k

k k

k k

k k k

k k k

          





 

 

 1 1

1 1

] 0 0 0 0 0.8[ ] 0

0.8[ ] 0 0 0 0 0 0.8[ ]

k k

k k

 
 
 
 
 
 
 
 
 
 

 

 (S72) 

Therefore, the eigenvalues in rad/sec can be found with 



 2det 0ω K M         (S73) 

where 

[1.44,3.36] 0 0 0 0 0 0

0 [0.3,0.7] 0 0 0 0 0

0 0 [0.3,0.7] 0 0 0 0

0 0 0 [0.12,0.28] 0 0 0

0 0 0 0 [0.12,0.28] 0 0

0 0 0 0 0 [0.3,0.7] 0

0 0 0 0 0 0 [0.42,0.98]

M =

 
 
 
 
 
 
 
 
 
 
 

 (S74) 

and 

[1650,4950] [100,300] [100,300] [325,975] [325,975] [400,1200] [400,1200]

[100,300] [100,300] 0 0 0 0 0

[100,300] 0 [100,300] 0 0 0 0

[325,975] 0 0 [825,2475] 0 0 0

[325,975] 0 0 0 [825,2475] 0 0

[400,1200] 0 0 0 0 [400,1200] 0

K =

     











[400,1200] 0 0 0 0 0 [400,1200]

 
 
 
 
 
 
 
 
 
 
 

 (S75) 

The eigenvalues in rad/sec are expressed in interval vector form below  

1 1 1 1

7.22418 11.0351 12.5127 19.1134

11.9523 18.2574 20.702 31.6228

13.7778 21.046 23.8639 36.4527

21.7618 33.2418 37.6926 57.5764

28.4249 43.4197 49.2334

, ,

75.2052

54.281

,

82.91

,

5

                                

=

M K M K M K M K



6 94.0175 143.614

55.1034 84.1718 95.4418 145.79

 
 
 
 
 
 
 
 
 
 
 

     (S76) 

Then frequencies in Hz are shown in interval form 

1 1 1 1

1.14976 1.75629 1.99145 3.04199

1.90227 2.90576 3.29482 5.03292

2.19281 3.34957 3.79806 5.80163

3.46351 5.29059 5.99897 9.16357

4.52396 6.91047 7.835

, ,

73 11.9693

8.63

,

909 13

,

.

                                

=

M K M K M K M K

f

1964 14.9633 22.8569

8.76997 13.3964 15.19 23.2032

 
 
 
 
 
 
 
 
 
 
 

     (S77) 



The eigenvector matrices are 

1,

0.33219 0.21615 0.12331 0.33911 0 0.1017

0.52341 0.845154 0.6574 0.0533 0.0728 0 0.00502

0.52341 0.84515 0.6574 0.0533 0.0728 0 0.00502

0.13322 0 0.09101 0.05788 0.18406 1.33631 1.31242

0.13322 0 0.09101 0.05

0

788 0.1

=
M K



  

   



8406 1.336306 1.31242

0.36558 0 0.32367 0.72008 0.8192 0 0.02358

0.3809 0 0.40408 0.7694 0.3462 0 0.0158

 
 
 
 
 





 
 
 
 
  

 

1,

0.33219 0 0.21615 0.12331 0.33911 0 0.1017

0.52341 0.84515 0.6574 0.0533 0.0728 0 0.00502

0.52341 0.845154 0.6574 0.0533 0.0728 0 0.00502

0.13322 0 0.09101 0.05788 0.18406 1.33631 1.31242

0.13322 0 0.09101 0.05788 0.1

=
M K



   

  



8406 1.336306 1.31242

0.36558 0 0.32367 0.72008 0.8192 0 0.02358

0.3809 0 0.40408 0.7694 0.3462 0 0.0158

 
 
 
 
 





 
 
 
 
  

 

1,

0.50744 0 0.33017 0.18835 0.518 0 0.1554

0.79952 1.291 1.0042 0.0814 0.1113 0 0.00767

0.79952 1.29099 1.0042 0.0814 0.1113 0 0.00767

0.2035 0 0.13903 0.08841 0.28116 2.04124 2.00476

0.2035 0 0.13903 0.08841 0.28116 2.0

=
M K



   

  



41241 2.00476

0.55844 0 0.49442 1.09994 1.2513 0 0.03602

0.58183 0 0.61724 1.1752 0.5288 0 0.02413

 
 
 
 
 
 





 
 
   



 

1,

0.50744 0 0.33017 0.18835 0.518 0 0.1554

0.79952 1.291 1.0042 0.0814 0.1113 0 0.00767

0.79952 1.29099 1.0042 0.0814 0.1113 0 0.00767

0.2035 0 0.13903 0.08841 0.28116 2.04124 2.00476

0.2035 0 0.13903 0.08841 0.28116 2.0

=
M K



   

  





412 2.00476

0.55844 0 0.49442 1.09994 1.2513 0 0.03602

0.58183 0 0.61724 1.1752 0.5288 0 0.02413

 
 
 
 
 
 





 
 
   



 

(S78) 

Hence, the modal participation vectors are shown in interval form 



1 1 1 1

2.552737 1.6711588 2.552737 1.6711588

0 0 0 0

0.479452 0.313875 0.479452 0.313875

0.122213 0.080007 0.122213 0.080007

0.227808 0.149136 0.227808 0.149136

,

0

, , ,                                               M K M K M K M K



0 0 0

0.4322327 0.2829627 0.4322327 0.2829627

 
 
 
 
 
 
 
 
 
 
 

    (S79) 

Both coefficient vector L  and modal participation vector   could be identical because 

of the generalized mass matrix. The modal effective masses ,eff im  (where 

2

,

i

eff i

ii

L

m


m  

for mode i) are shown in Table B. 

Table B. Effective masses of seven-degree-of-freedom system of simplified Caudipteryx 

Effective 

Mass 1,M K  1,M K  
1,M K  1,M K  

meff,1 6.51647 2.79277 6.51647 2.79277 

meff,2 0 0 0 0 

meff,3 0.22987 0.09852 0.22987 0.09852 

meff,4 0.01494 0.0064 0.01494 0.0064 

meff,5 0.0519 0.02224 0.0519 0.02224 

meff,6 0 0 0 0 

meff,7 0.18683 0.08007 0.18683 0.08007 

Total in Kg 7 3 7 3 

 

 



Figure G. Interval analysis of modal effective mass parameters. A, the eigenvalues in 

rad/sec are expressed in interval vector form. B, the frequencies in Hertzs are deduced in 

interval form. C, participation vectors are drawn in interval form and D, effective mass in 

interval form are given. In all cases, lower bound is in 1,M K  and upper one is in 
1,M K . 

  



Caudipteryx velocity 

When Caudipteryx ran at a constant velocity V and frequency f for a certain distance L 

with footsteps Nf in a time period T, the running frequency can be calculated as 

/
f

f N T . The running velocity is /V L T  and the step length is / (2 )
s f

L L N  , 

Therefore the velocity can be deduced 2
s

V L f   . 

 

Figure H. Schematic motion of Caudipteryx. 

 

By measuring the fossil, we estimate that the step length of Caudipteryx is about 50 cm. It 

means that if the running frequency of Caudipteryx was 2 Hz, the velocity might be 2 m/s. 

Therefore, we can calculate the speed of Caudipteryx in any modes and especially in 

effective modes. 

According to interval analysis method, if we define lower and upper limit for the step length 

with the unit of centimeter: 

[ , ] [30,70]
s s s

L L L        (S80) 

Then the interval velocities of Caudipteryx at the first fourth modes according to the 

Table E in S1 Table are given in Table C. 

 

Table C. Interval velocities of Caudipteryx at the first fourth modes 

Mode 

Number 

Frequency 

(Hertz) 

Effective Mass (gram) 

in Y-Axis 

Interval Velocity 

[ , ]V V V  (m/s) 

1 1.9894 1.29E-06 [1.2,2.78]  

2 2.5851 1623.33 [1.5,3.62]  

3 5.7887 1554.2 [3.4,8.1]  

4 5.8629 377.657 [3.51,8.2]  

Let us take the second mode in Table C as an example. The interval velocity [1.5, 3.62] 

means that the flapping motion of the wings of a Caudipteryx was easily exited when it ran 

at the speed from 1.5m/s to 3.62m/s even if the variations of step length were considered.  
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