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Model Calibration Details 1 

Supplement to “Empirical models for anatomical and physiological changes in a human mother and 2 

fetus during pregnancy and gestation” by Dustin F. Kapraun1, John F. Wambaugh, R. Woodrow Setzer, 3 

Richard S. Judson 4 

In considering any particular model and any given quantity of interest 𝑦 (e.g., a maternal body mass), we 5 

used data to identify the model parameters {𝜃0, 𝜃1, … } such that 𝑦 can be estimated as a function of an 6 

independent variable 𝑡 (e.g., gestational age or body mass) and said parameters. The parameters were 7 

identified using maximum likelihood estimation as described below. 8 

For each quantity of interest, we obtained a data set of the form 𝒟 = {(𝑡𝑖, 𝑦𝑖 , 𝜎𝑖, 𝑛𝑖)}𝑖=1
𝑚 , where 𝑦𝑖, 𝜎𝑖, 9 

and 𝑛𝑖 represent the mean, standard deviation, and number (or sample size) of the values observed for 10 

the quantity of interest at time 𝑡𝑖. The symbol 𝑚 represents the total number of time points. For some 11 

data sets, each observed mean value 𝑦𝑖  for the quantity of interest was paired with a corresponding 12 

mass 𝑥𝑖 (e.g., body mass) instead of a time 𝑡𝑖, but the model calibration proceeded in the same way in 13 

either scenario. Hereafter in this section, we let 𝑡𝑖 denote a time or a mass as appropriate for the data 14 

set in question. Also, for some data sets, only ordered pairs {(𝑡𝑖, 𝑦𝑖)}𝑖=1
𝑚  were available (i.e., standard 15 

deviations and samples sizes {𝜎𝑖, 𝑛𝑖}𝑖=1
𝑚  were not available). In these cases, we assumed 𝜎𝑖 = 0.2 ∙16 

(∑ 𝑦𝑖
𝑚
𝑖=1 )/𝑚 (i.e., 20% of the mean data value) and 𝑛𝑖 = 1 for all 𝑖 so that all ordered pairs in such data 17 

sets were weighted equally when calibrating. While the default value of 20% coefficient of variation was 18 

chosen somewhat arbitrarily, it should be noted that this choice does not affect the optimal parameters 19 

identified through maximum likelihood estimation; it does, however, effect the ultimate likelihood 20 

function values, and therefore impacts the selection of an optimal model. 21 

Model calibration involves finding a set of 𝑘 parameters given by 𝜃 = (𝜃0, 𝜃1, … , 𝜃𝑘−1) such that an 22 

algebraic model given by 𝑦(𝑡; 𝜃) (cf. Table 2 of main manuscript) achieves the “best” possible fit to the 23 



2 
 

data 𝒟; that is, the goal is to find 𝜃 such that 𝑦(𝑡𝑖; 𝜃) is “close” to 𝑦𝑖  for each data point 𝑖. We chose the 24 

best set of parameters for a given model and data set using maximum likelihood estimation (see, e.g., 25 

[1]); i.e., for each model we found the set of parameters that maximizes the value of a likelihood 26 

function. 27 

To construct a likelihood function, we assumed that the differences between model predictions and 28 

observed data are normally distributed. Thus, we make use of the probability density function for a 29 

normally distributed random variable 𝑋~𝑁(𝜇, 𝜎) in the discussion below. This density function is given 30 

by 31 

𝑓𝑋(𝑥; 𝜇, 𝜎) = (2𝜋𝜎2)−1/2 ∙ exp [
−(𝑥 − 𝜇)2

2𝜎2
], 32 

where 𝑥 denotes the observed value of the random variable 𝑋, and 𝜇 and 𝜎 denote the mean and 33 

standard deviation, respectively, of the normal distribution describing 𝑋. For our purposes, we assumed 34 

each 𝑦𝑖  to be a realization of a random variable 𝑌𝑖~𝑁(𝑦(𝑡𝑖; 𝜃), 𝜎𝑖). Maximum likelihood thus requires 35 

that 𝑦(𝑡𝑖; 𝜃) be closer to 𝑦𝑖  when 𝜎𝑖 is smaller (i.e., for those data points for which we have greater 36 

confidence or lower variability in the observed value of the quantity of interest). Based on the 37 

aforementioned assumption, our likelihood function is given by 38 

ℒ(𝜃; 𝒟) = ∏ ∏ 𝑓𝑌(𝑦𝑖; 𝑦(𝑡𝑖; 𝜃), 𝜎𝑖)

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 39 

= ∏ ∏(2𝜋𝜎𝑖
2)−1/2 ∙ exp [

−(𝑦𝑖 − 𝑦(𝑡𝑖; 𝜃))2

2𝜎𝑖
2 ]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

. 40 

In practice we work with the logarithm of the likelihood function, or log-likelihood function, which is 41 

given by 42 
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ℓ(𝜃; 𝒟) = ∑ 𝑛𝑖 [−
1

2
log(2𝜋) − log(𝜎𝑖) −

1

2

(𝑦𝑖 − 𝑦(𝑡𝑖; 𝜃))
2

𝜎𝑖
2 ]

𝑚

𝑖=1

 . 43 

 44 

Because the logarithm function is strictly increasing, the value of 𝜃 that maximizes the likelihood 45 

function also maximizes the log-likelihood function. This optimal value of 𝜃, which we denote 𝜃, is called 46 

the maximum likelihood estimate (MLE). It is worth noting that the MLE is equivalent to the weighted 47 

least squares estimate of 𝜃 (see, e.g., [2]) in which each data point (𝑡𝑖, 𝑦𝑖) is assigned a weight equal to 48 

𝑛𝑖 𝜎𝑖
2⁄ . 49 
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