
Supplementary Text 

Implementation details 

BOFdat Step 1 

Generating stoichiometric coefficients from omic datasets and macromolecular weight 
fractions 
The implementation of BOFdat is modular meaning that each function can be operated             
individually depending on the availability of data. Each module of BOFdat Step 1 calculates the               
stoichiometric coefficients for a different category of macromolecule. DNA, RNA, proteins and            
lipids stoichiometric coefficients can be calculated. To obtain the coefficients BOFdat requires            
the input of the macromolecular weight fraction (MWF) of the intended category. The MWF              
represents the total weight of a category of macromolecule within the cell dry weight. For               
example if 5% of the cell is composed of DNA, the is 0.05 and stipulates that, in a           DNAMWF        
steady-state growth scenario, for 1g of cell produced 0.05g of DNA is produced. To obtain a                
growth rate prediction, flux-balance analysis (FBA) relies on the definition of a basis where the               
product of cell mass by time is equal to 1g of dry weight per hour ​[1]​. Using BOFdat and                   
ensuring that all MWF used through the process add up to one ensures that this basis is                 
respected and that the formulated growth rate prediction is valid. 

DNA 
The calculation of stoichiometric coefficients is made by counting the number of each bases in 
the provided fasta genome file such that: 
 

(1.1)  (A  T ) / (L )  RAT =  f +  f * 2  

(1.2)  (C  G ) / (L )  RCG =  f +  f * 2  

 
where and are the ratios of the bases A, T and C, G, ​L ​is the length of the genome,  RAT   RCG                   

are the number of A, T, C and G bases counted in the single-strand genome, T ,Af  f , GC f  f                 
sequence. Equation 2 is used to calculate the stoichiometric coefficient of each metabolite: 
 

(2) *1000DNA  / (m Pi )  msc = Rm *  MWF MW −  MW  
 
where is the stoichiometric coefficient of a given base ( ), is the ratio of the  msc         mol gDW  m *    Rm      
metabolite for which the coefficient is determined, let it be or , within its category,           RAT   RCG     
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is the MWF of DNA, is the molar weight of the metabolite, the molar weightDNAMWF       mMW         P iMW    
inorganic di-phosphate (removed in the polymerization reaction). 

RNA 
The calculation of stoichiometric coefficients is made by counting the number of each bases in 
every gene in the provided GenBank annotation file such that: 
 

 
(3) / l  rb = (∑

sL

si
 s b[ =  ])    

where is the ratio of base ​b in a gene of sequence length ​l​. The ratio for each gene is then  rb                       
normalized by the abundance of each gene provided in the transcriptomic file (2 column CSV               
file where the first column represents the gene identifier and the second is the relative               
abundance of the transcript). The RNA content of the cell is divided in the three main categories                 
present in the cell: rRNA, tRNA and mRNA. Since transcriptomic experiments usually deplete             
the rRNA and tRNA contents, the abundance of each rRNA or tRNA coding genes is considered                
equal to 1. Equation 4.1 allows to calculate the ratio of a given base in mRNA. Equation 4.2 is                   
the simplification of equation 4.1 for the ratio of a given base in rRNA and tRNA, assuming each                  
rRNA and tRNA have an abundance of 1.  

(4.1) 
 (r ) /Rm = ∑

 

g
g * ag ∑

 

g
ag  

(4.2) 
 /NRr = Rt = ∑

 

g
rg  

 
where are the total fraction of the base ​b ​in mRNA, rRNA and tRNA respectively, is, ,   Rm Rr Rt  rg  
the ratio of base ​b ​in gene ​g​ obtained in (3), is the abundance of gene ​g ​. The total fraction of ag  
each base is then calculated by adding the content in each RNA category: 
 

(5)  mRNA ) (tRNA ) (rRNA )Rb = (  
f * Rm +  f * Rt +  f * Rr  

 
where are the fraction of mRNA, tRNA and rRNA in the total RNA content,mRNA 

f ,tRNAf rRNAf  
of the cell. These values are set by default to = 0.9, = 0.05 and = 0.05. TherRNAf tRNAf mRNA 

f  
stoichiometric coefficient of a given base can then be determined: 

(6) *1000RNA  / (m Pi )  msc = Rb *  MWF MW −  MW  
 
where is the stoichiometric coefficient of a given base ( ), is the total ratio a  msc         mol gDW  m *    Rb      
given base in the entire RNA content of the cell obtained in (5), is the total MWF of              RNAMWF      
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RNA, is the molar weight of base ​b and is the molar weight of inorganic diphosphate  mMW          P iMW        
released as a product of the polymerization reaction.  

Protein 
The calculation of stoichiometric coefficients for amino acids is based on the proteomic dataset 
and the MWF of proteins: 
 

(7) 
/ l  ra = (∑

sL

si
 s a[ =  ])    

 
where  is the ratio of amino acid ​a ​in a protein of sequence length ​l​. The ratio for each gene is ra  
then normalized by the abundance of each gene obtained by the proteomic dataset such that: 
 

(8) 
 (r ) /Ra = ∑

 

p
a * ap ∑

 

p
ap  

where  is the total fraction of the amino acid ​a​, is the ratio of amino acid ​a ​for protein ​p Ra  ra  
obtained in (6), is the abundance of gene ​g ​obtained via the proteomic data file (2 column ag  
CSV file where the first column represents the gene identifier and the second is the relative or 
absolute abundance of the transcribed protein). The total fraction of each amino acid can then 
be used to calculate their respective stoichiometric coefficient.  
 

(9) *1000PROT  / (m H O )  msc = Rm *  MWF MW −  2 MW  
 
where is the stoichiometric coefficient of a given amino acid ( ), is the total  msc          mol gDW  m *    Rb    
ratio a given amino acid in the entire protein content of the cell obtained in (8), is the                 PROTMWF   
total MWF of proteins, is the molar weight of amino acid ​a and is the molar weight     mMW           H O2 MW     
of water released as a product of the polymerization reaction.  

Lipids 
The organism’s lipid composition can be extracted through lipidomics experiments. Lipidomics           
allow to obtain the identity of the lipids that compose the cell membrane as well as their relative                  
abundances. Unlike DNA, RNA and proteins that are composed of standard metabolites, the             
lipids may vary from a species to another and the mapping of the identifiers provided in the                 
experimental data to model identifiers should be provided as a conversion file (2 column CSV               
file). The calculation of the lipid stoichiometric coefficients is then directly calculated from the              
relative abundances and the lipid MWF: 
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(10) * 1000LIP  / m  msc = Rm *  MWF MW  
 
where is the stoichiometric coefficient of a given lipid ( ), the relative msc mol gDW  m *   Rm  
abundance of a given lipid obtained from the lipidomic dataset, the lipid MWF and  LIPMWF  mMW
the molar weight of lipid ​m​. 

Growth and non-growth associated maintenance 
Maintenance costs represent the unspecified energy expenditure that are not directly part of the              
biomass precursor synthesis reactions. These costs lie outside of the scope of the metabolic              
network but are necessary to incorporate growth rate prediction in the model. The             
growth-associated maintenance (GAM) represents the ATP cost of generating another cell while            
the non-growth associated maintenance (NGAM) is associated with basal cellular processes. A            
standardized format for the organization of phenotypic data allows BOFdat to calculate GAM             
and NGAM (​https://bofdat.readthedocs.io/​).  
 
Phenotypic data is parsed by BOFdat to constrain the provided model with the experimental              
growth rate, substrate uptake rate and the secretion rate of metabolic wastes. For a given               
experiment, a bound is set to the biomass objective function to set the growth rate to the                 
experimental value. Similarly a flux is forced through the exchange reactions associated with             
either the uptake rate and the secretion rate(s). The model is then optimized for ATP production                
and the recorded flux through the ATP consumption is recorded. Going through all conditions              
allows to obtain a scatter plot where each growth rate is associated with an ATP cost. Linear                 
regression is then applied and the slope of the curve is the GAM while the y-intercept is the                  
NGAM. 
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BOFdat Step 2 

Finding coenzymes 
The degree of each metabolite is assessed by obtaining the number of reactions to which each                
metabolite takes part. The degree distribution for all metabolites in the ​E. coli ​metabolic network               
is shown in Fig S1. The threshold was set as the mean + one standard deviation for this                  
distribution. Metabolites that were a result of BOFdat Step 1 and potentially included in the               
maintenance costs such as ATP, H+, ADP and PPi are removed from the list of potential                
metabolites to be added, but are still included in the calculation of statistic parameters of the                
distribution. One of the main reason to add this step is that metabolites with a high degree are                  
likely to be missed by the genetic algorithm as many paths may lead to their production.                
Network topology nevertheless clearly informs on the importance of those metabolites.  

Determining stoichiometric coefficients 
The calculation of the stoichiometric coefficients is simplified for BOFdat Step 2 and Step 3               
where the main focus is set on the qualitative choice of metabolites to add to the BOF. Hence,                  
the assumption is that all metabolites within this category (i.e.: coenzymes and inorganic ions)              
are in equal abundance within the cell. The ratio of a given metabolite  is therefore:Rm  
 

(11)  / N   Rm = 1  

where, is the number of metabolites within the category. The stoichiometric coefficient of N            msc   
a given metabolite is then, 
 

(12) * 1000CI  / m  msc = Rm *  MWF MW  

where is the molecular weight fraction of coenzymes and inorganic ions category and CIMWF             
is molar weight of the metabolite. mMW  
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BOFdat Step 3 

Generation of initial populations 
The initial population is generated by extracting the list of metabolites from the provided model               
in order to generate an index of metabolites for every individual in the population. If provided,                
the metabolites that belonged to the previous steps of BOFdat are removed from the list of all                 
metabolites contained in the model. Then, each metabolite is tested individually for solvability by              
removing the existing objective function in the model and applying a single objective on the               
production of that given metabolite. A stoichiometric coefficient of 0.1 is attributed to the              
metabolite, making it a reactant. The reaction is a sink and has no product. The model is then                  
optimized. A threshold for ​in silico growth rate value is set above the numerical error (1e-9) to                 
determine whether or not the metabolite can be produced by the model. BOFdat does not               
change the media conditions of the model. Hence, modellers should provide the model with the               
exchange reactions set as the media used for the generation of the experimental data. Once a                
list of solvable metabolites is generated, a pre-feature selection step is executed that selects the               
metabolites that are most likely to affect the measure of fitness in the machine learning               
approach. Much like the selection of solvable metabolites this step iteratively sets each             
metabolite as an objective function. The difference here is that the gene essentiality is tested for                
each individual metabolite, allowing to attribute a Matthews Correlation Coefficient (MCC) value            
to each metabolite. The MCC is obtained using the SciKit Learn method (http://scikit-learn.org/).             
The metabolites are thus ranked in order of MCC and a threshold of mean + one standard                 
deviation is set to determine those that should be used in the populations and the upcoming                
evolution (if a metabolite is absent from the initial population it will not be present in the                 
evolution). Each individual is then generated randomly. The individual size is set to 20 meaning               
that 20 metabolites are identified as present in the population. The size of the population is                
adapted to get a sufficient coverage, 

 

(13) C /I  P =  *M  

 
where ​P ​is the population size, ​C ​is the coverage (set to 10 by default), ​M is the length of the                     
index and ​I is the individual size. This adaptation of the population size to the number of                 
features in the metabolite index is intended to reduce the initial population bias.For each              
individual the list of 0 and 1 defining the presence or absence of a metabolite is converted into                  
an objective vector by applying a stoichiometric coefficient to the row of the stoichiometric matrix               
corresponding to a metabolite identified as present. 

Implementation of the genetic algorithm 
The DEAP toolbox is used to implement a genetic algorithm that maximizes the MCC between               
in vitro ​and ​in silico gene essentiality data. The initial population generated by the previous               
function is imported. Each column of the initial population is a different individual. Before the first                
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generation each individual is evaluated and ranked by fitness value. The fitness is parametrized              
by both MCC value (weight of 1.0) and by the size of the individual (weight of -0.25), which is                   
the number of metabolites contained in the individual (Fig S4). This multi-parameter fitness             
function allows to select individuals with a minimal number of metabolites for a higher MCC               
value ensuring that selected metabolites are significant. The weights attributed to each            
parameter of the fitness function is one of the hyper-parameters that may be changed by the                
user. The individuals are selected with the tournament method (​http://deap.readthedocs.io/​).          
The mutation method applied is set to FlipBit (​http://deap.readthedocs.io/​) which is designed for             
binary individuals. The probability of selecting an individual to be mutated is set to 0.1 while the                 
probability of flipping a feature is set to 0.005. The cross-over method applied is one point                
(​http://deap.readthedocs.io/​). This method randomly selects a location on the chromosome and           
exchanges both branches of the 2 individuals selected to breed together. The probability of              
crossover is set to 0.5. A common problem with genetic algorithms is the premature              
convergence to a local optima. The Random Offspring Generation (ROG) method is applied to              
avoid it ​[2]​. Like other methods that avoid premature convergence, the ROG favors the              
generation of genetic diversity. To assess the loss of diversity, the offsprings produced by              
crossover are compared to their parents. If no difference is recorded between children and              
parents, identical twins were bred and the population did not gain diversity. One parent is then                
replaced by a completely new individual, generated in a random fashion as done for the initial                
population individuals and the crossover is re-applied. The algorithm selection, mutation and            
crossover process will run for a given number of generations as parametrized by the users.  

Clustering into metabolic end goals 
Each evolution generates a hall of fame (HOF) that contains the best individuals that were               
produced within it (​http://deap.readthedocs.io​). The default size of the HOF is 1000, meaning             
that the 1000 best individuals generated in an evolution are kept. To interpret the data               
generated by BOFdat over multiple evolutions, a spatial clustering method is implemented (Fig             
S6). The HOF of each evolutions are pooled together and an arbitrary threshold is applied to                
select the best individuals. By default, the 20% best are chosen. These selected individuals are               
then analyzed for their metabolite content. The frequency of apparition of each metabolite             
across all individuals is calculated and a threshold is set to keep only the most frequent, hereby                 
reducing noise in data. The threshold is set to the mean of the frequency distribution, in the                 
reconstruction of the ​E.coli biomass presented here (150 evolutions over 500 generations) the             
mean frequency was 0.00538. A distance matrix is generated using the Dijkstra algorithm             
finding the shortest path between nodes. Hubs are known to introduce bias in paths, greatly               
shortening paths between nodes that are not closely related. Therefore, nodes with more than              
15 connections are removed from network distance analysis. This number may vary from a              
metabolic network to another depending on the number and degree of each metabolite, hence              
the related threshold may be set by users as described in the documentation             
(https://bofdat.readthedocs.io/). The adjacency matrix obtained for the selected metabolites is          
clustered using the DBSCAN ​[3] algorithm from the SciKit Learn library (http://scikit-learn.org/).            
Unlike hierarchical clustering methods, DBSCAN does not require ​a priori definition of the             
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number of clusters but requires the minimum number of elements to include in a cluster,               
(suggested and default value of 0.5), and the maximum distance between elements to form a               
cluster, termed eps in the DBSCAN documentation. This second value greatly impacts the             
cluster formation as a greater eps would group all metabolites into a single cluster (i.e.: 30)                
whereas a shorter eps (i.e.: 1) separates every metabolite into a unique cluster. The impact of                
varying the eps is studied in Fig S9. As mentioned, when a low eps is given, the number of                   
clusters is maximized to a point where the number of clusters is equivalent to the number of                 
metabolites, providing no mechanistic explanation whereas a greater eps yields very few            
clusters, also making the interpretation difficult. For this study we have used eps values that               
yield a number of clusters at half the number of provided metabolites and have come with                
results that could be interpreted by a modeller with knowledge of the organism. 
 
BOFdat provides a way to automatically select metabolites from the formed clusters. The cluster              
frequency is calculated by adding metabolite frequency: 

 
(14) CF = ∑

i

mi
m 
F  

 
The z-score of each cluster is than calculated: 

(15)  Cz = SC
C − xF C  

 
where is the z-score of a cluster, the average of all cluster frequencies, the standard  Cz       xC       SC   
deviation of all cluster frequencies and the individual cluster frequency obtained from (1).      CF        
Each cluster is then weighted according to its z-score: 
 

(16)  , , w  Cz ≥ 1  C = 3  

 , 0, w  1 > Cz ≥   C = 2  

 .0, w  Cz <   C = 1  

 
The weight of each cluster determines the number of metabolites that should be added to the                
final BOF suggested by BOFdat. If the weight is superior to the number of metabolites in the                 
cluster, the number of metabolites added is equal to the size of the cluster. The stoichiometric                
coefficients of each metabolite added in BOFdat Step 3 are determined in a similar way as for                 
BOFdat Step 2 where the ratio of each metabolite is by default distributed equally across all                
metabolites present in that step (Eq. 11 and 12).  
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Methods 

Using omic datasets to calculate stoichiometric coefficients 
BOFdat uses both omic datasets and macromolecular weight fractions (MWF) to calculate            
stoichiometric coefficients. The omic datasets allow to get the relative abundance of transcribed             
proteins or RNA transcripts. To evaluate the importance of these parameters, we calculated             
stoichiometric coefficients for amino acids under 18 different experimental conditions. A           
high-quality proteomic dataset for ​E.coli ​was generated by Heinemann and colleagues ​[4] under             
multiple experimental conditions. Along with the precise quantity of each protein present in the              
cell, the protein weight fractions were also measured for every growth conditions making the              
data perfectly suitable for our study. Using equation 17, stoichiometric coefficients for all growth              
conditions were compared to the data obtained on glucose minimal media (Fig S7): 
 

(17) 00ea = ga
n −g| a a| * 1  

 
where is the percentage difference between the reference coefficient and the new coefficient  ea             
for a given amino acid, ​is the new coefficient in the given experimental condition, ​is the     na           ga    
original coefficient on glucose minimal media. When using condition-specific protein weight           
fractions, the mean difference from glucose was between 4.1% (Acetate) and 24.2% (Stationary             
phase 1 day). The weight fraction differences correlated with the average percent difference for              
each condition (Pearson ​r = ​0.984, ​p-value ​= 3.610e-14) indicating that the weight fraction is the                
most prevailing parameter to determine stoichiometric coefficients. The use of appropriate           
weight fractions has a greater impact on the stoichiometric coefficients generated and should be              
considered as the most significant experimental measurement in the biomass composition of            
GEMs. 

Required number of evolutions 
To provide a recommendation for the number of evolutions that should be performed by a user                
of BOFdat we generated the MCC values and the number of shared clusters with ​i​ML1515               
wild-type BOF for a number of evolutions pooled together ranging from 10 to 150 pooled               
evolutions (Fig S8). 20 random samples were formed for each number of pooled evolutions. For               
each sample the evolutions were randomly selected from 187 individual evolutions. A selection             
of metabolites was operated as described above for each sample generated. The metabolite             
selection was then used to evaluate the MCC value of the given solution (Fig S8A). Similarly, for                 
each sample, the selected metabolites were pooled with the metabolites from the original             
i​ML1515 BOF and clustered using the method described above (eps = 8, min_sample = 0.5)               
(Fig S8B). The maximum MCC value obtained was 0.779 and was observed as the median for                
more than 40 evolutions pooled together. For users with fewer computational resources, we             
note that pooling 20 evolutions had a median MCC higher than the baseline established by               
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i​ML1515 at 0.775. The percent shared clusters with ​i​ML1515 steadily increased between 10             
evolutions (26.61%) and 150 evolutions (31.19%), meaning that the accuracy of the metabolites             
found by BOFdat is dependent to the number of evolutions generated. 

Multiple correspondence analysis 
Multiple correspondence analysis (MCA) was used to compare feature selected by different            
evolutions ​[5]​. The presence or absence of a metabolite in an individual is defined as a nominal                 
variable with two levels (present = 1, absent = 0) and the total number of nominal variables ​K ​is                   
the number of unique metabolites in all selected individuals (119 metabolites). The number of              
observations ​I is defined as the total number of individuals compared to each other. We               
selected 35 individuals with fitness values ranging from the lowest to the highest recorded in the                
150 evolutions used in this study. The 35 individuals were extracted from 10 different HOFs.               
The ​X ​matrix of size ​K ​feature columns by ​I ​observations rows was processed following the                
usage guide from the Python MCA package (​https://pypi.org/project/mca/​).  

Biomass objective function from SEED 
The SEED platform for automated reconstruction of genome-scale models of metabolism allows            
for the selection of pre-defined biomass objective function that is based on knowledge (File S1).               
The default gram-negative bacteria BOF was chosen when reconstructing the model for            
Escherichia coli ​MG1655 on the SEED platform. The objective function was extracted from the              
model and the SEED metabolite identifiers were converted to BiGG identifiers using MetaNetX             
[6]​. The remaining unconverted metabolites were converted manually to the best matching            
BiGG identifier.  

Using BOSS on a genome scale 
We used the BOSS (Biological Objective Solution Search) method ​[7] to generate a biomass              
objective reaction from fluxomics data. We used ​13​C metabolic flux analysis data for ​E. coli               
grown on glucose minimal medium ​[8]​. To solve BOSS for the genome-scale model ​[9]​, we used                
a recent algorithmic extension of BOSS, which solves the nonconvex optimization problem of             
BOSS using a distributed optimization method called ADMM (alternating direction method of            
multipliers) ​[10]​. We made three additional modifications to the extended BOSS for this study.              
First, we constrained BOSS to keep the biomass coefficients from BOFdat Step 2, to facilitate               
the comparison between BOFdat Step 3 vs. BOSS. Second, because ADMM can require many              
iterations to reach a high-precision solution, we implemented a solution "polishing” step. The             
polishing step enables taking a medium-precision solution from ADMM (e.g., feasibility tolerance            
~ 10​-6​) and subsequently solving one optimization problem to obtain a high-precision solution             
(e.g., feasibility tolerance ~ 10​-9​). The polishing step solves the following quadratic program             
(QP):  

 

10 

https://paperpile.com/c/okygn9/tKvx
https://pypi.org/project/mca/
https://paperpile.com/c/okygn9/q3fn
https://paperpile.com/c/okygn9/HA4J
https://paperpile.com/c/okygn9/dl9a
https://paperpile.com/c/okygn9/HNX3
https://paperpile.com/c/okygn9/yJLj


(18) subject to |y ||min
v,y

| − yB 2
2 v yz , l  S +  B = 0  ≤ v ≤ u  

 
where ​v is the vector of fluxes, ​y is the vector of stoichiometric coefficients for the generated                 
objective, ​y​B is the stoichiometric vector from the BOSS solution, ​z​B is the flux through the BOSS                 
objective reaction, ​S ​is the stoichiometric matrix for the metabolic reconstruction, and ​l ​and ​u are                
lower and upper flux bounds, respectively. The solution to this problem provides the objective              
reaction that most closely matches the BOSS solution that still satisfies the FBA constraints to a                
higher precision. Third, we generated a sparse objective using both an L1-norm regularization             
during the BOSS computation, and also a post-processing step. For post-processing, we            
sparsified the vector, ​y​B​, in the polishing step (QP) above by only keeping the largest 200                
coefficients ordered by magnitude and zeroing out the rest of the coefficients. Therefore, the              
solution to the polishing step generated a sparsified objective that still satisfies FBA constraints. 

Levenshtein distance calculation 
The Levenshtein distance allows to compute distance between strings of different lengths. The             
BOF generated by all three steps of BOFdat, SEED, BOSS and the biomass of a completely                
different organism (yeast, ​i​MM904) were compared to the original ​i​ML1515 wild-type biomass            
using this distance metric. The list of metabolites from the reference (original ​i​ML1515) and the               
compared biomass are converted to strings where each letter corresponds to the presence or              
absence of a metabolite in the reference. The reference as a presence indicator for each               
metabolite whereas the compared biomass as both presence or absence. In that case, the              
Levenshtein distance is equivalent to the number of absence indicators.  
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