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1 Derivations and further details of the model

1.1 Gibbs sampler step for (neff, µ, λ)

We justify that the sampling steps for the parameters (neff, µ, λ) used in the main text will produce a valid
Gibbs sampler that targets the correct posterior (in fact, a grid-based approximation of it because the psim

is computed in a grid). Suppose that we are sampling from the joint probability distribution p(a,b, c)
and a,b and c are random vectors. A standard (systematic scan) Gibbs sampler would repeat the
following steps: 1. sample a(i) ∼ p(a |b(i−1), c(i−1)), 2. sample b(i) ∼ p(b |a(i), c(i−1)), 3. sample c(i) ∼
p(c |a(i),b(i)). In the case of our model, we have a = (neff, µ),b = λ and c = (ω, z,η) (except that, in the
place of step 3, we in fact have additional Gibbs sampling steps from the components of c and everything
is conditioned on the data). Alternatively, we could include a and b to the same block of parameters
and replace steps 1 and 2 with: 1’. sample a(i) ∼ p(a | c(i−1)) =

∫
p(a,b | , c(i−1)) db, 2’. sample b(i) ∼

p(b |a(i), c(i−1)). This is equivalent to sampling directly from (a(i),b(i)) ∼ p(a,b | c(i−1)).
Consider now the case where we do not sample exactly from p(a | c) but use the Metropolis-Hastings

algorithm with proposal density q(a∗ |a) and then sample b∗ ∼ p(b |a∗, c), where a∗ is the proposed
value from q. The proposal distribution r for this joint sampling is

r((a∗,b∗) | (a,b)) = q(a∗ |a)p(b∗ |a∗, c), (1)

where (a∗,b∗) is the proposed point and (a,b) the point from the previous iteration. The acceptance
probability is then

ρ((a,b), (a∗,b∗)) = min

{
1,
p(a∗,b∗ | c)

p(a,b | c)

r((a,b) | (a∗,b∗))
r((a∗,b∗) | (a,b))

}
(2)

= min

{
1,
p(a∗,b∗ | c)

p(a,b | c)

q(a |a∗)p(b |a, c)

q(a∗ |a)p(b∗ |a∗, c)

}
(3)

= min

{
1,
p(a∗,b∗ | c)p(b |a, c)

p(a,b | c)p(b∗ |a∗, c)

p(a | c)p(a∗ | c)

p(a∗ | c)p(a | c)

q(a |a∗)
q(a∗ |a)

}
(4)

1



= min

{
1,
p(a∗ | c)

p(a | c)

q(a |a∗)
q(a∗ |a)

}
. (5)

This shows that the acceptance probability does not depend on realisation of b∗ (i.e. the sampled
λ) and that the sampling procedure of (neff, µ, λ) used in the main text is equivalent to performing one
blocked Metropolis-Hastings sampling with the proposal r in Eq 1. This ensures that the full algorithm
is a valid Gibbs sampler. (In fact, similar arguments are used to show that Gibbs sampling algorithm is
generally a special case of Metropolis-Hastings, see Theorem 10.13 in Monte Carlo Statistical Methods
by Robert and Casella 2004.)

Empirical experiments showed that this sampling approach produces chains with better mixing com-
pared to other possible approaches such as the straightforward implementation where (neff, µ) and λ are
sampled separately. The algorithm might be valid even if a new λ is sampled also when the proposed
(neff, µ) is rejected but we do not investigate this here.

1.2 Gibbs sampler step for ηi

We derive the conditional density for the parameter ηi, i = 1, . . . , N . First of all, neglecting all the terms
in the unnormalised posterior that do not depend on current ηi shows that

p(ηi |µ, zi, λ,D) ∝ (2ηi + µti)
zi2diηk−1

i e−(2zi2+λ/µ)ηi1ηi≥0, (6)

from which we further see that

p(ηi |µ, zi, λ,D)


= Gamma(ηi | k, λ), if zi2 = 0,
= Gamma(ηi | k, 2 + λ/µ), if zi2 = 1 and di = 0,

∝ (2ηi + µti)
diηk−1

i e−(2+λ/µ)ηi1ηi≥0, if zi2 = 1 and di > 0.
(7)

We show that the conditional density in the last case (zi2 = 1 and di > 0) is a finite Gamma mixture.
Because di is an integer, we use binomial formula and some algebra to obtain

p(ηi |µ, zi, λ,D) = c(2ηi + µti)
diηk−1

i e−(2+λ/µ)ηi1ηi≥0 (8)

= c

di∑
j=0

(
di
j

)
(2ηi)

j(µti)
di−jηk−1

i e−(2+λ/µ)ηi1ηi≥0 (9)

= cdi!

di∑
j=0

2j(µti)
di−jηk+j−1

i e−(2+λ/µ)ηi

j!(di − j)!
1ηi≥0 (10)

= cdi!

di∑
j=0

2j(µti)
di−jΓ(k + j)

j!(di − j)!(2 + λ/µ)k+j
Gamma(ηi | k + j, 2 + λ/µ), (11)

where c is a normalisation constant and Γ(·) is the Gamma function. The weights

wj =
cdi!2

j(µti)
di−jΓ(k + j)

(2 + λ/µ)k+jj!(di − j)!
, j = 0, 1, . . . , di, (12)

are clearly positive and must sum to 1 since the formula must be a valid pdf and thus c = (
∑di
j=0 w̃j)

−1,
where w̃j is an unnormalised weight that is obtained from Eq 12 when c = 1. The above weight formula
also clearly holds if di = 0 and then w0 = 1. There appears to be no simple formula for normalisation
constant c for general k, however, we do not actually need to normalise the weights at all if we proceed
as discussed in the following paragraph.

We now develop a convenient algorithm to sample from the conditional density of ηi. From Eq 12
we see that wj/wj−1 = (k + j − 1)(di − j + 1)/((µ + λ/2)jti) for j = 1, . . . , di. We can thus define
unnormalised log-weights, denoted by log(w̃j), which can be computed recursively using the formulas

log(w̃0) = log(1) = 0, (13)

log(w̃j) = log(w̃j−1) + log

(
(k + j − 1)(di − j + 1)

j

)
− log((µ+ λ/2)ti), j = 1, 2, . . . , di. (14)
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We then use the fact that if a1, . . . , an are logarithms of unnormalised bin probabilities of a Categorical
distribution, and if random variables g1, . . . , gn follow independently the standard Gumbel distribution
that has the cdf F (g) = exp(− exp(−g)), then arg maxj=1,...,n{gj + aj} has the Categorical distribution
with bin probabilities exp(aj)/

∑n
k=1 exp(ak), j = 1, . . . , n. We use this fact also to generate random

numbers from the conditional density of zi.
Sampling from the conditional density of ηi can be now done conveniently using the Algorithm 1,

where w̃j are the unnormalised weights. This algorithm is fast (unless di is large) as it does not require
numerical root finding, evaluating special mathematical functions or integration unlike standard methods
such as e.g. inverse transform sampling which could be alternatively used.

Algorithm 1 Sampling from the conditional density of ηi
if zi2 = 0 then

return a sample from Gamma(ηi | k, λ/µ)
else

sample u0, u1, . . . , udi ∼ U([0, 1])
compute gj = − log(− log(uj)) for j = 0, 1, . . . , di
compute l = arg maxj=0,...,di{gj + log(w̃j)}
return a sample from Gamma(l, 2 + λ/µ)

end if

1.3 Prior distribution for t0

We specified the prior density for t0 using hierarchical modelling to be able to learn about these values.
However, to select the prior hyperparameters k, α and β to reflect our prior knowledge about reasonable
values of t0i, we need to obtain the probability law for t0. The joint prior pdf of t0 can be obtained by
marginalising λ:

p(t0) =

∫ ∞
0

p(t0 | k, λ) p(λ) dλ (15)

=

∫ ∞
0

N∏
i=1

p(t0i | k, λ) p(λ) dλ (16)

=

∫ ∞
0

N∏
i=1

(
λktk−1

0i e−λt0i

Γ(k)

)
βα

Γ(α)
λα−1e−βλ dλ1t0≥0 (17)

=

∫ ∞
0

βα(
∏N
i=1 t0i)

k−1

Γ(α)(Γ(k))N
λNk+α−1e−(β+

∑N
i=1 t0i)λ dλ1t0≥0 (18)

=
βα(
∏N
i=1 t0i)

k−1

Γ(α)(Γ(k))N
Γ(Nk + α)

(β +
∑N
i=1 t0i)

Nk+α
1t0≥0 (19)

=
βα(
∏N
i=1 t0i)

k−1

B((α, k1N ))(β +
∑N
i=1 t0i)

Nk+α
1t0≥0, (20)

where 1N is an N -dimensional vector with all elements equal to 1 and B(·) denotes the multivariate Beta
function. Since

p(t0i) =

∫
RN−1

+

∫ ∞
0

N∏
j=1

p(t0j | k, λ) p(λ) dλ dtj:j 6=i (21)

=

∫ ∞
0

∫
RN−1

+

N∏
j=1

p(t0j | k, λ) dtj:j 6=i p(λ) dλ (22)

=

∫ ∞
0

p(t0i | k, λ) p(λ) dλ, (23)
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the marginals can be obtained from Eq 20 by setting N = 1 and it is seen that the marginals are
compound Gamma distributions. Specifically, the mean and the variance of t0i are obtained as

E(t0i) =
βk

α− 1
, (if α > 1), V(t0i) =

β2k(k + α− 1)

(α− 1)2(α− 2)
, (if α > 2). (24)

The covariance and correlation coefficient are obtained as follows. Consider t0i, t0j such that i 6= j. Then
we see that

E(t0it0j) =

∫ ∞
0

∫ ∞
0

t0it0jβ
αtk−1

0i tk−1
0j Γ(2k + α)

Γ(α)(Γ(k))2(β + t0i + t0j)2k+α
dt0i dt0j (25)

=
βαΓ(2k + α)

Γ(α)(Γ(k))2

∫ ∞
0

∫ ∞
0

tk0it
k
0jΓ(2k + α)

(β + t0i + t0j)2k+α
dt0i dt0j︸ ︷︷ ︸

= Γ(α−2)(Γ(k+1))2

βα−2Γ(2k+α)

(26)

=
k2β2

(α− 1)(α− 2)
, (if α > 2), (27)

where we have recognised the double integral on the second line as the unnormalised pdf in Eq 20 (but
with N = 2, k+ 1 in place of k and α− 2 in place of α which also implies that the above integral is finite
if α > 2) and used the fact that this density integrates to 1. It now follows that

cov(t0i, t0j) = E(t0it0j)− E(t0i)
2 =

β2k2

(α− 1)2(α− 2)
, (28)

corr(t0i, t0j) =
cov(t0i, t0j)

V(t0i)
=

1

k + α− 1
, (29)

which hold for α > 2.
If k ≥ 1, then the mode of this density is

mode(t0) =
β(k − 1)

α+ 1
1N . (30)

The derivation of this fact goes as follows. If k ∈ (0, 1), then the density is infinite at t0 = 0 and the
mode does not exist. If k = 1, then the mode is clearly t0 = 0 and it is unique. In the case k > 1 the
mode can be found by differentiating the logarithm of the density. We obtain

∂ log p(t0)

∂t0j
=
k − 1

t0j
− Nk + α

β +
∑N
i=1 t0i

, j = 1, . . . , N. (31)

Finding the zero of the gradient shows that for all j = 1, . . . , N

(Nk + α)t0j − (k − 1)

N∑
i=1

t0i = (k − 1)β. (32)

Symmetry suggests that the solution is the same for all elements j and, clearly, the point t0 = β(k −
1)/(α+ 1)1N satisfies these equations. To confirm that this is the only solution, we write the equations
as a linear system ((Nk+α)IN − (k− 1)IN )t0 = (k− 1)β1N , where IN is the N ×N identity matrix and
IN is a N ×N matrix with all elements equal to 1. Now, each row sum (with diagonal element excluded)
is (N −1)(k−1) < (N −1)k+α+1 = (Nk+α)− (k−1) so the coefficient matrix is diagonally dominant
and thus non-singular. If k > 1 then the density is clearly zero at the boundaries where t0i = 0 for some
i, and so the mode does not lie on the boundary of the support of the density. If k ≥ 1, the mode is thus
unique and is obtained from Eq 30.

1.4 Prior predictive distribution

We can analytically derive the mean and variance of the prior predictive distribution for a new distance
d̃ corresponding to time interval between the sequenced genomes t̃ under the different strain case. These
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facts are used to guide the selection of the prior hyperparameters. The full prior density can be visualised
using simulation.

Consider the prior µ ∼ U([aµ, bµ]) and the priors for t0 and λ as in the main text. The prior predictive
mean and variance are then given by

E(d̃) = l

(
2βk

α− 1
+ t̃

)
, (33)

V(d̃) = E(d̃) +

(
h

l2
− 1

)
E(d̃)2 +

4hβ2k(k + α− 1)

(α− 1)2(α− 2)
, (34)

where l = (aµ + bµ)/2 and h = (a2
µ + aµbµ + b2µ)/3. For Eq 33 we must have α > 1 and for Eq 34 α > 2.

The derivation of the above facts goes as follows. From Eq 5 of the main text we obtain E(d̃ |µ, t0i) =
µ(2t0i + t̃). Using the law of total expectation shows that E(g(d̃)) = E(E(g(d̃) |µ, t0i)). These two fact
now imply

E(d̃) = E(µ(2t0i + t̃)) = E(µ)(2E(t0i) + t̃) =
aµ + bµ

2

(
2βk

α− 1
+ t̃

)
. (35)

The derivation of the variance goes similarly. We use a property of Poisson distribution that tells us that
E(d̃(d̃ − 1) |µ, t0i) = µ2(2t0i + t̃)2. Now, using the law of total expectation (with g(d̃) = d̃(d̃ − 1)) and
the formulas for the mean and variance of t0i, we obtain

E(d̃(d̃− 1)) = E(µ2)E((2t0i + t̃)2) = E(µ2)(4(V(t0i) + E(t0i)
2 + t̃E(t0i)) + t̃2) (36)

=
a2
µ + aµbµ + b2µ

3

(
4

(
β2k(k + α− 1)

(α− 1)2(α− 2)
+

β2k2

(α− 1)2
+

βkt̃

α− 1

)
+ t̃2

)
. (37)

The final result now follows by using the fact V(d̃) = E(d̃(d̃−1))+E(d̃)−E(d̃)2 and further simplifications.

2 Additional results from ABC inference

In this short section we show results obtained with an alternative discrepancy function in ABC analysis
of the external data D0. The experiment details are the same as before except that we use the Euclidean
distance instead of the L1 distance in Eq 8 to compare the simulated and observed distributions. The
results are shown in Fig A. When the data from the patients A-M is neglected in panel B of Fig A, we
see that the resulting posterior is similar as before although with a slightly elevated mutation rate. In
the full data case in panel A, the mutation rate is estimated to be even larger, although the shape of the
density is still rather similar as before. We believe this happens because, compared to the discrepancy
based on L1 distance, the Euclidean distance gives substantially more weight to those single cases in the
data with relatively high values of the observed distances. In the fitting this is compensated by a larger
mutation rate. The L1-based discrepancy is less affected by such outliers. Consequently, we believe that
the robust results based on L1-based discrepancy are more reasonable and thus chose the corresponding
ABC posterior as the prior for the mixture model.

3 Details on computing the acquisition and clearance rates

We first describe how to obtain the uncertainty estimates for Table 2 of the main text. We denote the
same strain probability in case 1) with s ∈ [0, 1]. The amount of cases in 1) is n and the indicator variable
of whether the data point i is of the same strain is xi ∈ {0, 1} for i = 1, . . . , n. Because the different ST’s
can be distinguished from each other, n is considered known and fixed. The number of same strain cases
l =

∑n
i=1 xi is assumed to follow Binomial distribution so that l ∼ Bin(l | s, n). Using the uninformative

prior s ∼ U([0, 1]), we then obtain the posterior p(s | l) = Beta(s | l + 1, n − l + 1) which follows from a
standard result of Bayesian modelling.

However, we do not know exactly if each data point is of the same strain but only have the posterior
probabilities (obtained from the MCMC samples of p(z |D,D0)) which complicates the analysis. However,
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Figure A: ABC posterior distribution for (neff, µ) with an alternative discrepancy. Panel A
shows the result with the full data and panel B the corresponding result with only a subset of the data.

we see that

p(s |D,D0) =

n∑
l=0

p(l, s |D,D0) =

n∑
l=0

p(s | l)p(l |D,D0), (38)

which shows that the posterior of s is a Beta mixture density where the weights p(l |D,D0) are the
posterior probabilities for the potential amounts of same strain cases which can be computed from the
existing MCMC chain of the mixture model. We immediately obtain E(s |D,D0) =

∑n
l=0

l+1
n+2p(l |D,D0)

and the credible interval can be computed numerically by inverting the cumulative distribution function
corresponding to Eq 38. The above computations similarly apply to the other cases as 1).

As a final part of this section, we describe in detail how the acquisition and clearance rates and their
uncertainty estimates in Table 3 of the main text are computed. If the samples are consecutive and not
negative, then the definitions A-C of Table 3 are used directly. If negative samples are involved, then
we must deal with potential “false negatives”. Because we cannot know for sure if each negative sample
is false negative (or, generally, what is exactly happening between any pair of samples) and to keep
our analysis here simple enough, we need to make some strict assumptions. Table A contains related
rules that are used to determine the acquisition and clearance events in the cases that involve negative
samples. For example, the first line of Table A shows the case where the last sample is negative while
the preceding sample is not. We assume that in this case we always have one clearance event (i.e. D in
Table 3) although it would be also possible that this is false negative and the patient was in fact still
colonised. Additionally, for the events on lines 3-6 and depending on the posterior probability of the same
strain corresponding to each case, we assume either that the strain is not decolonised (i.e. each negative
sample is false negative) or that there has been one clearance and one acquisition event.

To take into account the posterior uncertainty in the same and different strain classifications, we com-
pute the quantities A-E for each parameter sampled from the posterior and then compute the acquisition
and clearance rates for each of these values. (In fact, unlike other values, C is not random since ST’s
can be determined for sure.) Finally, the mean and the 95% quantile are computed numerically from the
resulting set of samples of acquisition and clearance rate values.
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Table A: Definition of cases with negative sample(s) involved.

ST A, str X → ∅ (END) one clearance D
ST A, str X → ∅ → ... → ∅ (END) one clearance D

ST A, str X → ∅ → ST A, str X two events A (prob)
ST A, str X → ∅ → ST A, str Y one D + one E (prob)
ST A, str X → ∅ → ... → ∅ → ST A, str X multiple events A (prob)
ST A, str X → ∅ → ... → ∅ → ST A, str Y one D + one E (prob)

ST A → ∅ → ST B one D + one E
ST A → ∅ → ... → ∅ → ST B one D + one E

(END) illustrates the final visit to hospital (i.e. visit V4) and (prob) emphasises that the posterior
probability of the same strain is used for determining whether clearance or other event could have
happened.
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