Receptor destroying enzyme (RDE) from *Vibrio cholerae* modulates IgE activity and reduces the initiation of anaphylaxis

Tatsuya Yamazaki¹, Masanori Inui¹, Keiko Hiemori², Susumu Tomono¹, Makoto Itoh¹, Isao Ichimonji¹, Akina Nakashima¹, Hidekazu Takagi¹, Mrityunjoy Biswas¹, Kumi Izawa^{3,4}, Jiro Kitaura^{3,4}, Teruko Imai⁵, Nobuo Sugiura⁶, Hiroaki Tateno², and Sachiko Akashi-Takamura^{1,*}

¹Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan, ²Biotechnology Research Institute for Drug Discovery National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, ³Atopy Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, ⁴Division of Cellular Therapy/Division of Stem Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan, ⁵Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan, ⁶Institute for Molecular Science of Medicine, Aichi Medical University, School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.

Running title: RDE modulates IgE to not induce anaphylaxis

*To whom correspondence should be addressed: Prof. Sachiko Akashi-Takamura, Department of Microbiology and Immunology, Aichi Medical University, School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan, Phone: +81-561-62-3311, Fax: +81-561-63-3645, E-mail: sachiko@aichi-med-u.ac.jp

List of materials

- Figure S1
- Figure S2
- Figure S3
- Figure S4
- Figure S5
- Figure S6
- Figure S7
- Figure S8
- Table S1

Figure S1.

Confirmation of the toxicity of RDE (II) for BMMCs by PI staining. BMMCs were incubated in untreated IgE (Vehicle) or RDE (II)-treated IgE for 2 h at 37°C. Dead cells were detected by propidium iodide (PI). Data are representative of at least two independent experiments.

Figure S2.

Trypsin also changes the structure of IgE and reduces its binding activity to anti-ε chain, but not that of IgG. (A and B) Fifty or twenty-five ng/ml of purified IgE (C38-2) or IgG (15H6) were incubated with 10 µg/ml of trypsin at 37°C overnight (12-20 h). The level of IgE (A) and IgG (B) were measured by quantitative ELISA. (C) Serially diluted purified IgG and IgE (390 ng~, 2-fold dilutions) were treated with 10 µg/ml trypsin at 37°C overnight (12-20 h). Then, they were blotted under non-reducing conditions. The specimens were analyzed with HRP-conjugated anti-mouse IgG and IgE. (D) Purified IgE were treated with serially diluted trypsin (630 µg/ml~, 3-fold dilutions) overnight (12-20 h). They were blotted under reducing conditions. The specimen was analyzed with HRP-conjugated anti-mouse IgE. Data are representative of at least two independent experiments and indicate the mean ± standard deviation. ***P<0.001 (Student's *t*-test).

Figure S3.

Protease inhibitors cannot inactivate RDE (II) to modulate IgE. (A and B) RDE (II) and trypsin were pre-treated with paraoxon as indicated, 1000 μ M BNPP (A), and 1000 μ M DFP (B) for 30 min. Purified IgE (C38-2) were treated with RDE (II) overnight (12-20 h). They were blotted under non-reducing conditions. (C-D) Purified IgE were treated with serially 3-fold diluted RDE (II) (C) or trypsin (630 μ g/ml~) (D) in presence of protease inhibitor (cOmplete) overnight (12-20h). They were blotted under non-reducing conditions. The specimens were analyzed with HRP-conjugated goat mouse anti-IgE. (E) Purified IgE were treated with RDE (II) in the presence of protease inhibitor (cOmplete) overnight (12-20h). They statistically and the specimens were analyzed with CBB staining. Data are representative of two independent experiments.

Figure S4.

NA (sialidase) cannot modulate IgE as does RDE (II). Purified IgE (C38-2) or IgG (15H6) were treated with serially diluted NA from *Arthobacter ureafaciens* (0.3 U~) in 50 mM sodium acetate buffer (pH 5.5). They were blotted under non-reducing conditions. Data are representative of two independent experiments.

Figure S5.

Trypsin reduced the binding level of LEL, not PHA-L, to IgE. Purified IgE (C38-2) was treated with 10 µg/ml of trypsin overnight (12-20 h). They were blotted under non-reducing conditions. The specimens were analyzed with biotin-conjugated LEL (left panel) or PHA-L (middle panel), followed by incubation with HRP-conjugated streptavidin. Internal control was detected with HRP-conjugated anti-mouse IgE (right panel). The signal intensity of LEL and PHA-L was normalized by the internal control (bar graph). Data are representative of two independent experiments and indicate the mean ± standard deviation.

Figure S6.

RDE (II) is a potent enzyme and modulates IgE, compared with PNGase F and Endo H. (A) HEK293T cells were transfected with anti-HA IgG or anti-HA IgE either with or without tunicamycin. Forty hours later, the supernatants were obtained and blotted by western blotting under non-reducing conditions, followed by incubation with HRP-conjugated anti-mouse IgE and IgG. (B and C) Purified IgE (C38-2) under non-denaturing (B) or denaturing by 0.5% SDS and 40 mM DTT (C) were treated with RDE (II), 10 U Endo H, and 10 U PNGase F at 37°C overnight (12-20 h). They were blotted, followed by incubation with HRP-conjugated anti-mouse IgE and IgG. Data are representative of two independent experiments.

Figure S7. Full-length blots from the main figures. Some cropped areas used in the article are indicated in black boxes.

Fig. S6A

Figure S8. Full-length blots from the supplementary figures. Some cropped areas used in the article are indicated in black boxes.

Name	P value	7 value	Rough specificity ²
PHAL	0.004292593	15.21382552	GlcNAcb1-6Man (Tetraantenna)
RCA120	0.006710645	-12.14572601	bGal Polylactoramine (ClcNAc)n
ACA	0.009448592	-10.21460928	Galb1-3GalNAc (T)
rCGL2	0.010664924	-9.60562312	GalNAca1-3Gal (A), PolyLacNAc
ASA	0.010806471	9.541481089	Galb1-4GlcNAcb1-2Man
STL	0.013035735	8.672686436	Polylactosamine, (GlcNAc)n
CSA	0.024121881	5.068135814	Rhamnose, Gala1-4Gal
rBanana	0.041390229	4.761392433	Mana1-2Mana1-3(6)Man
SBA	0.043098637	4.659785585	a,bGalNAc (A, Tn, LacDiNAc)
DBAI	0.044635839	4.573284989	High-man
rPPL MAI	0.049888162	4.30785636	a, BGainAc (A, Th, LacDiNAc) a2-3Sia
rGal9C	0.066443378	-3.68342103	PolyLacNAc, Branched LacNAc
AOL	0.069215478	3.600772094	a1-2Fuc (H), a1-3Fuc (Lex), a1-3Fuc (Lea)
MCA	0.073581797	3.479858593	
BPL	0.122407202	2.588831937	a bGalNAc (A Thi LacDiNAc)
GNA	0.134623911	2.442168276	Mana1-3Man, Mana1-6Man
VVA I	0.135176376	2.435977443	GalNAcb1-3(4)Gal
HHL	0.137744253	2.40765741	Mana1-3Man, Mana1-7Man
CCA	0.140204199	2.381207142	Galactosylated N-glycans up to triantenna
NPA	0.168641861	2.115601255	Mana1-3Man
SSA	0.177972501	-2.041490805	a2-6Sia
PTLI	0.179425875	2.030420999	aGalNAc (A, Tn)
rPTL	0.184949542	-1.989429308	a1-bruc Fuc a1-2Galb1-3GlcNAc (GalNAc)
WFA	0.211422499	1.813551519	Terminal GalNAc, LacDiNAc
rDiscoidin II	0.244081441	1.632940805	LacNAc, Galb1-3GalNAc (T), GalNAc (Tn)
AVV	0.25554222	-1.576861349	a,bGalNAc (A, Tn, LacDiNAc)
PHAE	0.259209119	1.559596265	bisecting GicNAc
rLSLN rCGI 3	0.26103168/	-1.402695041	LacDiNAc
HEA	0.291057767	-1.421584106	Galb1-3GalNAc (T)
GSLII	0.296997055	-1.397939483	GlcNAcb1-4Man
GSLIA4	0.313779867	1.334162658	aGalNAc (A, Tn)
rF1/AG ConA	0.348384729	-1.214848863	GICNAC M3. Mana1-2Mana1-3(Mana1-6)Man. GICNAcb1-2Mana1-3(Mana1-6)Man
TJAI	0.363480022	-1.167148479	a2-6Sia
rGal8N	0.384245748	-1.105172904	a2-3Sia
UEAI	0.392245605	1.082316328	a1-2Fuc
rRSIIL	0.397261466	-1.068253674	a1-2Fuc (H), a1-3Fuc (Lex), a1-3Fuc (Lea)
FLAG-EW29Ch	0.401643298	1.056131613	Gal
rMOA	0.401701184	-1.05597247	aGal (B)
MAH	0.404835483	-1.047393812	a2-3Sia
FFI	0.411044018	-1.030618029	aGal (B)
rOrysata	0.414625085	1.021069556	Mana1-3Man, Highman, biantenna
rGRFT	0.421769884	1.002288528	Man
rMalectin	0.422649731	1	Glca1-2Glc
PNA	0.4266081	-0.989768317	Gal01-3GalINAC (1) GicNAch1-6Man (Tetraantenna)
ACG	0.436244966	-0.965285662	a2-3Sia
HPA	0.43993936	-0.956055051	aGalNAc (A, Tn)
rGal3C	0.452603739	0.925032484	LacNAc, polylactosamine
GSLIB4	0.454454584	0.920576277	aGal (B)
rXCL	0.474716039	-0.873005207	Core1,3, agalacto N-glycan
MPA	0.480039208	-0.860857062	Galb1-3GalNAc (T), GalNAca (Tn)
rAOL	0.504451872	-0.806846227	a1-2Fuc (H), a1-3Fuc (Lex), a1-3Fuc (Lea)
LTL	0.510705102	0.793432956	Lex, Ley a1-2Fuc (H) a1-3Fuc (Lex) a1-2Fuc (Lex)
rAAL	0.526665237	0.759915591	a,bGal, aGalNAc (Tn)
rABA	0.534205258	-0.744421521	Galb1-3GalNAc (T), GlcNAc
LFA	0.559020537	0.694849238	Sia
ADA	0.56815811	-0.677107508	a2-6Sia, Forssman, A, B
PVI	0.589971196	0.635769908	Sia, GlcNAc
WGA	0.59409595	-0.7176112	(GlcNAc)n, polySia
TJAII	0.607655183	0.603227196	a1-2Fuc
SNA	0.613488685	-0.592669015	
rGU2 rC14	0.635018232	0.55544082	Branched LacNAc
VVAII	0.647175582	-0.533263493	Man, Agalacto
ABA	0.649261583	-0.529666927	Galb1-3GalNAc (T), GlcNAc
rGal9N	0.670483256	0.493573247	GalNAca1-4Gal (A), PolyLacNAc
FLAG-EW29Ch-E20K	0.729787659	-0.422833682 -0.396902428	o-suito-Gal Galb1-3GalNAc (T), GalNAca (Tn)
rBC2LA	0.743586074	-0.375166984	aMan, High-man
rHeltuba	0.744799863	0.373267019	Mana1-3Man
rGal7	0.749989698	-0.365164423	Type1 LacNAc, chondroitin polymer
rCalsepa	0.75933282	0.350661539	Biantenna with bisecting GlcNAc
I xLCI Heltuba	0.767676507	0.337797661	Mana1-3Man
AAL	0.794410584	0.297093757	a1-2Fuc (H), a1-3Fuc (Lex), a1-4Fuc (Lea)
ECA	0.832577671	-0.240160732	bGal
PWM	0.841900593	0.226434142	(GicNAc)n
rRSL PATTI	0.8549848974	-0.214/80569	aman, ai-zruc (H), a1-3ruc (Lex), a1-4ruc (Lea)
LCA	0.905171531	-0.134714782	a1-6Fuc up to biantenna
rPALa	0.96422696	0.05062312	Man5, biantenna
PSA	0.973181512	-0.037940716	a1-6Euc up to biantenna

Table S1. List of lectin probes used for evaluating the reduction in IgE binding levels by lectin micro array analysis.