# **Supplemental information**

Zebrafish Olfactory Receptors ORAs Differentially Detect Bile Acids and Bile Salts

# Xiaojing Cong,<sup>2,†</sup> Qian Zheng,<sup>1,†</sup> Wenwen Ren,<sup>5,†</sup> Jean-Baptiste Cheron,<sup>2</sup> Sébastien Fiorucci,<sup>2</sup> Tieqiao Wen,<sup>1</sup> Chunbo Zhang,<sup>6</sup> Hongmeng Yu,<sup>3</sup>\* Jérôme Golebiowski<sup>2,4</sup>\* and Yiqun Yu<sup>1,3</sup>\*

From the <sup>1</sup> School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China; <sup>2</sup> Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France; <sup>3</sup> Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, People's Republic of China; <sup>4</sup> Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea; <sup>5</sup> Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, People's Republic of China; and <sup>6</sup> Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA

<sup>†</sup>These authors contributed equally to this work.

\* To whom correspondence should be addressed: <u>hongmengyush@fudan.edu.cn</u>, <u>jerome.golebiowski@unice.fr</u> or <u>yiqun\_yu@shu.edu.cn</u>

#### Supplemental information including:

Table S1. Structures of the steroid compounds tested by *in vitro* screening.

- Table S2. Potency of the steroid compounds for zebrafish ORAs in Hana3A cells.
- Table S3. Zebrafish behavioral responses to ORA ligands.
- Table S4. ORA sequence identity and similarity.
- Table S5. Effect of point mutations on the ORAs' response to ligands.
- Fig. S1. Dose-response curves for the ORA ligands identified.
- Fig. S2. Rhodopsin tag influenced ORAs' response to the bile acids.
- Fig. S3. Sequence alignment of zebrafish ORAs with hAGTR1.
- Fig. S4. Surface expression of ORA5 and ORA6 wt and mutants.
- Fig. S5. Control mutations that have marginal effects on the receptors' response to LCA.
- Fig. S6. Predicted ChA binding mode in *wt* ORA5 and ORA6.

#### Table S1. Structures of the steroid compounds tested by in vitro screening.

Physical properties of the ORA ligands identified (the top nine) were calculated by Dragon 6 [1]: LogP, partition coefficient; Sv, sum of atomic van der Waals volumes (scaled on Carbon atom).







| logEC50 <sup>a</sup> | ORA1           | ORA2           | ORA3            | ORA4           | ORA5           | ORA6           |
|----------------------|----------------|----------------|-----------------|----------------|----------------|----------------|
| LCA                  | $-4.7 \pm 0.1$ | $-4.3\pm0.5$   | $-4.0 \pm 32.4$ | $-3.0\pm7.9$   | $-4.7\pm0.03$  | $-4.3\pm0.2$   |
| NLCA                 | $-4.8 \pm 0.1$ | $-5.0 \pm 7.4$ | $-4.9 \pm 0.1$  | $-4.0 \pm 0.3$ | $-4.5 \pm 1.0$ | $-4.3\pm0.1$   |
| 3-KLCA               | n.s.           | $-4.1 \pm 0.9$ | n.s.            | n.s.           | n.s.           | n.s.           |
| 7-KLCA               | n.s.           | n.s.           | $-2.9 \pm 53.7$ | n.s.           | n.s.           | n.s.           |
| 12-KLCA              | n.s.           | n.s.           | $-4.2 \pm 2.2$  | n.s.           | n.s.           | n.s.           |
| TLCA                 | $-4.7 \pm 0.4$ | $-3.6 \pm 3.6$ | $-4.5 \pm 0.5$  | $-3.5 \pm 1.4$ | $-4.3 \pm 0.3$ | n.s.           |
| MCA                  | $-4.3 \pm 0.3$ | $-4.4 \pm 0.4$ | n.s.            | n.s.           | n.s.           | n.s.           |
| GLCA                 | $-3.4 \pm 2.9$ | $-4.2 \pm 5.1$ | $-4.2 \pm 8.7$  | n.s.           | $-4.1 \pm 1.0$ | n.s.           |
| ChA                  | n.s.           | n.s.           | n.s.            | n.s.           | n.s.           | $-4.0 \pm 1.4$ |

Table S2. Potency of the steroid compounds for zebrafish ORAs in Hana3A cells.

<sup>*a*</sup> Mean  $\pm$  SEM, n = 3–9. (n.s.) non-significant response up to 100  $\mu$ M.

#### Table S3. Zebrafish behavioral responses to ORA ligands.

| Stimulue                      | 10 | Displacement <sup>a</sup> | n voluo <sup>b</sup> | Average velocity <sup>c</sup> | n voluo        |  |
|-------------------------------|----|---------------------------|----------------------|-------------------------------|----------------|--|
| Stillulus                     | п  | (% of tank length)        | <i>p</i> value       | (% of no stimulus)            | <i>p</i> value |  |
| No stimulus                   | -  | $-8.0 \pm 1.5$            | -                    | $100.0 \pm 33.2$              | -              |  |
| Tank water (negative control) | 5  | $-11.6 \pm 1.2$           | 0.5944               | n.a.                          | n.a.           |  |
| Food (positive control)       | 6  | $25.4\pm4.3$              | < 0.0001             | $92.9\pm36.2$                 | 0.7174         |  |
| LCA                           | 12 | $28.0\pm2.6$              | < 0.0001             | $61.9 \pm 41.1$               | 0.1315         |  |
| ChA                           | 11 | $9.0 \pm 4.6$             | 0.0110               | $68.1\pm26.2$                 | 0.1409         |  |

<sup>*a*</sup> Mean ± SEM, measured as average distance to initial fish position, expressed in percentage of tank length after stimulus addition.

<sup>b</sup> Tested with one-way ANOVA and corrected with Holm-Sidak multiple comparison test. (n.a.) not available.

<sup>*c*</sup> Mean  $\pm$  SEM, fish track length summed over measurement time (30 frames/second during 5 minutes each phase).

### Table S4. ORA sequence identity and similarity.

Pair-wise percentage sequence identity (lower triangular) and similarity (upper triangular) of the predicted transmembrane domain among the ORAs and the template.

| (%)    | hAGTR1 | ORA1 | ORA2 | ORA3 | ORA4 | ORA5 | ORA6 |
|--------|--------|------|------|------|------|------|------|
| hAGTR1 | 100    | 32   | 32   | 37   | 37   | 30   | 39   |
| ORA1   | 16     | 100  | 56   | 36   | 37   | 37   | 39   |
| ORA2   | 13     | 38   | 100  | 42   | 38   | 40   | 47   |
| ORA3   | 19     | 19   | 24   | 100  | 44   | 35   | 38   |
| ORA4   | 16     | 20   | 22   | 27   | 100  | 31   | 33   |
| ORA5   | 16     | 17   | 19   | 18   | 16   | 100  | 43   |
| ORA6   | 22     | 16   | 23   | 15   | 17   | 25   | 100  |

Table S5. Effects of point mutations on the ORAs' response to ligands.

| ORA5-LCA               | Efficacy (% of wt) <sup>a</sup> | <i>p</i> value <sup><i>b</i></sup> | ORA6-LCA               | Efficacy (% of wt) | p value |
|------------------------|---------------------------------|------------------------------------|------------------------|--------------------|---------|
| R12 <sup>1.39</sup> A  | $125 \pm 22.2$                  | n.s.                               | R48 <sup>1.39</sup> A  | $55.6 \pm 14.6$    | 0.0288  |
| P62 <sup>2.60</sup> Y  | $44.2 \pm 23.3$                 | 0.0293                             | Y97 <sup>2.60</sup> A  | $60.8 \pm 12.9$    | 0.0288  |
| D87 <sup>3.33</sup> A  | $24.1\pm19.0$                   | 0.0022                             | V121 <sup>3.33</sup> D | $150 \pm 16.1$     | 0.0288  |
| Y177 <sup>5.42</sup> A | $24.2\pm19.0$                   | 0.0022                             | K215 <sup>5.39</sup> A | $55.2 \pm 14.6$    | 0.0288  |
| H252 <sup>6.51</sup> A | $53.2 \pm 19.0$                 | 0.0293                             | Y286 <sup>6.51</sup> H | $65.8 \pm 14.6$    | 0.0484  |
| R256 <sup>6.55</sup> H | $29.6 \pm 21.2$                 | 0.0064                             | F306 <sup>7.39</sup> A | $46.2 \pm 14.6$    | 0.0065  |
| K269 <sup>7.36</sup> A | $25.6\pm20.0$                   | 0.0033                             | T309 <sup>7.42</sup> A | 47.1 ± 16.1        | 0.0288  |
| N272 <sup>7.39</sup> A | $19.0 \pm 23.3$                 | 0.0055                             | ORA5-ChA               | Efficacy (% of wt) | p value |
| N272 <sup>7.39</sup> F | $238\pm21.2$                    | < 0.0001                           | P62 <sup>2.60</sup> Y  | $343 \pm 96.4$     | 0.0417  |
| ORA2-LCA               | Efficacy (% of wt)              | p value                            | E90 <sup>3.36</sup> A  | 395 ± 102          | 0.0291  |
| R61 <sup>2.57</sup> A  | 33.8 ± 16.2                     | 0.0355                             | Y177 <sup>5.42</sup> F | $450 \pm 110$      | 0.0218  |
|                        |                                 |                                    | N272 <sup>7.39</sup> F | $344\pm96.4$       | 0.0417  |

<sup>*a*</sup> Mean  $\pm$  SEM at 100  $\mu$ M concentration, n = 3–8. <sup>*b*</sup> Tested with one-way ANOVA and corrected with Holm-Sidak multiple comparison test.



Fig. S1 Dose-response curves for the ORA ligands identified.



Fig. S2 Rhodopsin tag facilitated surface expression of zebrafish ORAs in Hana3A cells. (A, B) Cells were transfected with Rho-tagged ORAs and green fluorescent protein (GFP, green) and underwent live cell immunostaining with Rho-antibody (red). The square areas in the Rho staining images are magnified in (A'), showing the surface localization of the Rho-tagged receptors. (C-H) Responses of Rho-tagged and untagged ORAs to the compounds at  $30 \mu$ M concentration.



Fig. S3 Sequence alignment of zebrafish ORAs with hAGTR1. The TM domains are boxed. The most conserved position in each TM helix is labeled with the Ballesteros-Weinstein number.



Fig. S4 Surface expression of ORA5 and ORA6 *wt* and mutants verified by fluorescence activated cell sorting (FACS). The ratio of red (Rho<sup>+</sup>)/green (GFP<sup>+</sup>) fluorescence intensity (normalized to that in *wt* ORA5 or ORA6) was used to evaluate the surface expression level of the mutants. Scale bar: 20  $\mu$ m.



Fig. S5 Control mutations that have marginal effects on the receptors' response to LCA. The mutation sites are in magenta sticks.



Fig. S6 Predicted ChA binding mode in *wt* ORA5 and ORA6.

## Supplementary reference

1. Todeschini R, Consonni V (2009) Molecular Descriptors for Chemoinformatics, vol I/II. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany