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In this supplementary material we describe the hy-
perparameters and training of the deep neural networks
(DNNs). In general, we used 90 percent of the data for
training and the rest was equally split between valida-
tion and test sets. The networks were trained by com-
puting the gradients of the parameters with respect to
the root mean squared error between DNN outputs and
corresponding reference values. In the neural network
literature, this procedure is usually referred to as back-
propagation. The Adam [1] update scheme was used to
update the parameters of each DNN. The initial learn-
ing rate for the Adam algorithm was also optimized and
is listed in the corresponding sections below. We imple-
mented our DNNs with the Lasagne [2] library, built on
top of the Theano [3] deep learning framework. Unless
otherwise stated, we use the default hyperparameter val-
ues from these libraries.

OPTIMIZED HYPERPARAMETERS

Each DNN has certain inherent hyperparameters such
as the number of hidden layers and neurons within each
layer. To obtain the best prediction accuracy, we opti-
mized the hyperparameters of each DNN with Bayesian
optimization (BO). This resulted in different hyperpa-
rameter combinations for each network (MLP, CNN and
DTNN) and dataset size (6k , 132k). In the following
sections, we list the hyperparameters used.

MLP

Our MLPs were build with the code from Ref. 4 and
have two hidden layers and an output layer. Additionally,
since the MLP accepts a fixed length vector as input,
we binarized the randomized Coulomb matrices [5] to
obtain such a fixed length vector for each molecule. The
optimized MLP for energy level prediction of the 6K
dataset had 250 units in each of the two hidden layers,
and the sigmoid activation function was used in each of
these layers. The best training mini-batch size was found
(by BO) to be 30.

CNN

The CNNs have three convolutional layers followed by
a max pooling layer. This combination is repeated three
times. Then output of the last max pooling layer is
passed into a fully-connected layer to generate the final
output. The filters in the convolutional layers have a
3 × 3 size and a rectified linear unit or ReLU [6] activa-
tion function. Each max pooling layer has a pool-size of
2. The input Coulomb matrices were randomized follow-
ing the scheme in appendix A of Ref. 7. Additionally, we
set the maximum number of training epochs (one epoch
is a complete pass through the training data) to 10,000
and stopped the training, if the validation error did not
decrease for 100 epochs.

For energy level prediction with the 6K dataset
the initial learning rate of the Adam algorithm and the
training mini-batch size were found to be 1e-4 and 90, re-
spectively. The optimum number of convolutional filters
in each of the three consecutive convolutional layers were
22, 47 and 42, respectively. The same number of filters
(22, 47, 42) were used in each of the subsequent sets of
convolutional layers.

For spectra prediction with the 6K dataset the best
initial learning rate (for Adam) and optimum mini-batch
size were found to be 1e-5 and 105 samples, respectively.
The optimum number of convolutional filters in each of
the three consecutive convolutional layers were 37, 32 and
47, respectively.

The optimum hyperparameters for energy level pre-
diction with the 132K dataset were 1e-2 and 90 for
Adam’s initial learning rate and training mini-batch size,
respectively. The optimum number of convolutional fil-
ters were found to be 22, 47 and 42.

Finally, for spectra prediction with the 132K
dataset we did not run the BO algorithm, because of
very long training times. Instead we followed the set-
tings for 132K energy level prediction. We set Adam op-
timizer’s initial learning rate to 1e-4, training mini-batch
size as 90 and convolutional filters in each of the three
consecutive convolutional layers to 22, 47 and 42.
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DTNN

Our DTNN implementation is similar to that of Ref. 8,
but used three fully connected layers after the interaction
passes to predict contributions from each atomic coeffi-
cient vector. Note that the number of units in the final
hidden layer depends on the output dimensions, so we
specify only the number of units in the first two hidden
layers. In the first two hidden layers we used a hyper-
bolic tangent activation and in the final hidden layer a
linear activation function. We set the number of interac-
tion passes to two, i.e. encoded interactions up to angles.
We also added noise to the distance matrix input to the
DTNN during training. The noise was sampled from a
normal distribution with zero mean and 0.1 standard de-
viation. The number of distance basis functions, over
which the elements of the input distance matrix were ex-
panded, was set to 40. The number of latent nodes in
the tensor layer was 60. While training the network we
set the maximum number of epochs to 10,000 and again
stopped the training, if the validation error did not de-
crease for 100 epochs. The interested reader is refered
to Section 3.3 of Ref. 9 for further details of the DTNN
algorithm.

The optimum hyperparameter values for energy level
prediction with the 6K dataset were as follows: The
length of the atom coefficient vector (vector c in Ref. 8)
was found to be 40, Adam’s initial learning rate, training
mini-batch size and the number of hidden units in the
two hidden layers (described above) were found to be
1e-2, 190, 500 and 600 respectively.
As per the BO algorithm, spectra prediction with the
6K dataset was found to give the best results with an
atom coefficient vector of length 37. With Adam opti-
mizer’s initial learning rate and training mini-batch sizes
as 1e-3, 45 the number of neurons in the two hidden lay-
ers was 300 and 550.

For energy level prediction with the 132K dataset
we obtained the best results with an atom coefficient vec-
tor of length 36 and 1e-4 as Adam’s initial learning rate.
The optimum mini-batch size and number of units in the
two hidden layers were 50, 300 and 550 respectively.

Finally for spectra prediction with the 132K
dataset, we did not run the BO algorithm, because of
very long training times. Instead we followed the settings
for 132K energy level prediction. We set the length of the
atom coefficient vector to 40, the initial learning rate of
Adam to 1e-5 and used a mini-batch size of 50 during
training. The first two hidden layers used to predict con-
tribution from each atomic coefficient vector had 100 and
200 units, respectively.
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