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Overview 
TEPIC2 is a versatile tool for the analysis of transcription factor (TF) binding and offers several machine 

learning approaches for integrative analysis of predicted transcription factor binding sites (TFBS) and 

gene expression data. 

Briefly, TEPIC2 offers: 

o Annotation of user-defined regions with TF affinities using TRAP and a variety of provided TF 

motifs obtained, 

o Aggregation of TF affinities to TF gene scores, 

o Computation of statistical scores such as peak-length, peak-count and peak-signal per gene, 

o Discretization of continuous TF affinities using a background distribution into a binary measure 

for TF binding, 

o Linear regression analysis to infer key transcriptional regulators within one sample (INVOKE), 

o Logistic regression classifier to suggest key transcriptional regulators between samples 

(DYNAMITE), 

o Generate input for DREM to infer key TFs from temporal epigenomic and gene expression data 

(EPIC-DREM). 

An overview on the possible analyses is shown in Figure 1.  The Supplementary material is based on text 

from the TEPIC2 ReadMe file, the online documentation included in the repository, the original TEPIC 

publication [0], its supplement, and on the supplement of [14]. 

 

Supplementary Figure1: Overview of the basic workflow supported by TEPIC2. The input to the 

submodules is shown in blue, whereas the output is shown in black italic font.      

  



1 Methods for transcription factor binding site prediction and 

integrative analysis 
This chapter is partly based on a review article on predicting transcription factor binding [46] and on our 

original TEPIC publication [0]. 

As described in [46] there are several methods to predict transcription factor binding sites (TFBSs) using 

position specific weight matrices (PWMs) for individual TFs, e.g. Matrix-Scan [47], Clover [48], Fimo [26], 

and PoSSuMsearch [49].  

Matrix-Scan computes a log ratio score per sequence comparing the probability of motif hit in S against 

a background model [47]. Similarly, Clover computes a log-ratio score and in addition computes a p-

value to assess the scores significance using, e.g. permutation experiments and also corrects for multiple 

testing [48]. The widely used method Fimo computes a log-likelihood ratio score for each distinct 

sequence position against a zero-order background model and computes a p-value per site using 

dynamic programming and supports correcting for multiple hypothesis testing too [26]. PoSSuMsearch 

builds a suffix array of the considered sequence to speed up search time. Also, it offers a dynamic 

programming approach to come up with matrix specific thresholds based on a user defined E- or p-value 

[51]. The aforementioned tools have been systematically compared in [46], where it turned out that 

Fimo is outperforming the competing approaches. All evaluated methods are available as a local 

software installation, allowing them to be applied large-scale. Additionally, some methods can also be 

used as a webserver, for instance. Fimo [26]. While the list of methods considered in [46] is extensive, it 

is still not exhaustive, e.g. the method TRAP [13] used in TEPIC is not considered. This is underlining that 

an exhaustive listing and comparison of all TFBS predictions methods is hardly feasible, due to the large 

number of available methods. An overview on purely sequence based methods mentioned above is 

provided in Supplementary Table 1. 

Method Available Supports parallel 

execution 

Hit-

based 

Affinity-
Based 

Maintained 
set of PWMs 

TF gene score 
computation 

Supports 
linear 
analysis 

Supports 
differential 
analysis 

Matrix-Scan Registration 
required 

NA Yes No NA No No No 

Clover Yes No Yes No No No No No 

Fimo Yes No Yes No No No No No 

PoSSuMsearch Yes Yes Yes No No No No No 

TRAP Yes No No Yes No No No No 

DEEP-Bind Yes Yes <NA> <NA> No No No No 

Supplementary Table 1: Characteristics and Features of various, purely sequence based, tools for TFBS prediction and analysis. An entry of 

<NA> indicates that this particular characteristic is not applicable to a certain method. 

Applying such predictions methods as the ones mentioned above genome-wide generates many false-

positive hits compared to TF ChIP-seq experiments. Because it was observed that TFs usually bind to 

regions of open-chromatin [20, 25, 36], the false-positive rate could be reduced by the inclusion of 

epigenetics data. There are two general classes of methods using epigenetics data to improve TFBS 

predictions: (1) site-centric methods and (2) segmentation-based methods. 

Site-centric methods require the identification of putative TFBSs in the entire genomic search space. 

According to one or multiple epigenetic signatures, the putative TFBSs are either classified as bound or 

unbound in a post processing step. This strategy has been pursued in many applications: For example, in 

Centipede, not only chromatin accessibility, but also histone modifications, genome conservation and 

the distance of a putative binding site to the closest TSS are combined in a hierarchical mixture model 

[25]. This method has been simplified in [17], where an epigenetic prior is computed from DNaseI-seq 



data, which is then combined with a motif score computed with Fimo [26]. In PIQ [18], TFBS are 

predicted with Bayesian inference considering both PWM scores and epigenetics data.  

In addition to these unsupervised methods, also supervised methods have been proposed, for instance 

MILLIPEDE [27] and BinDNase [28]. These tools attempt to learn a TF specific signature of the epigenetic 

signal around putative TFBS. Specifically, they use a binned DNaseI-seq signal around candidate TFBSs as 

features in a regression approach to identify actual TFBSs.  

Segmentation-based approaches, on the other hand, narrow down the genomic search space 

beforehand, e.g. to DNase hypersensitive sites, TF footprints, or putative enhancer and promoter 

regions identified e.g. with ChromHMM [29]. This reduces the runtime compared to site-centric 

approaches. 

Especially TF footprints have been found to be highly predictive for true TFBSs and various tools have 

been suggested to identify them from both DNaseI-seq and ATAC-seq data [8, 30]. Footprints are 

believed to be caused by TFs that are bound to DNA, thereby preventing the DNaseI-seq enzyme from 

cutting or the transposase from inserting. Various footprint-callers have been proposed in literature. 

They are based on sliding windows [31] or hidden Markov models (HMM) [8, 32, 33]. DNase2TF is using 

a binomial z-score to interpret the depletion of DNaseI-seq reads around putative footprints [33], while 

Wellington applies a binomial test to identify footprints [34]. Recent footprint calling methods, like 

HINT-BC, allow for correcting the cleavage bias of the enzymes used to assess chromatin accessibility 

[35]. 

The drawback of calling footprints is that in addition to the peak calling step, which is required to narrow 

down the search space, the actual footprint calling itself needs to be performed, too. Depending on the 

method, not only DNase1-seq or ATAC-seq but also Histone Modification ChIP-seq data is required to 

run these calls. Also, it is being argued in literature that some TFs do not generate footprints because 

their binding is subtle and unstable. Thus, they do not remain bound long enough at a distinct genomic 

location to generate a footprint [33].  

Importantly, the peak calling step for epigenetic data, e.g. DNase1-seq or ATAC-seq is not trivial either. 

Several peak callers have been suggested to account for the unique characteristics of the respective 

assays [37]. 

Another downside of all aforementioned approaches for TF binding prediction is the usage of hit-based 

motif screening algorithms, such as Fimo [26]. These methods use a threshold to classify a genomic site 

as a putative TFBS or not. Low affinity binding sites may be lost in this classification. However it was 

shown that low-affinity binding is essential in biology [38, 39]. 

To circumvent all of the aforementioned limitations and to incorporate the advantages of segmentation 

based methods, i.e. favorable runtime, our TEPIC method considers segments, which can be TF 

footprints, DHS sites, ATAC-peaks, NOME-peaks and so on and annotates those regions with TRAP [13] 

and a set of user provided position weight matrices (see Sup. Section 4 and [13] for further details). 

TRAP circumvents the drawback of hit-based methods by quantifying TF binding using a biophysical 

model producing affinity values for each TF. TRAP affinities have been used before in various 

applications [40, 41, 42, 43]. Furthermore, TEPIC readily aggregates TF binding predictions to the level of 

individual genes, given a gene annotation file, e.g. from Gencode. As shown in Sup. Tab. 1, this is not a 



standard feature among other tools, although per gene scores have been postulated in literature before 

[15, 59], but current software does not allow for their direct computation. 

We acknowledge that recent efforts have been made to replace PWMs with more sophisticated models 

describing within motif dependencies, e.g. slim models [44]. However, without the availability of large 

scale open-source databases such as JASPAR providing these kind of motif descriptions, they are (a) hard 

to be obtained by end-users and (b) not available for all TFs, limiting the possible research applications.  

Recent deep-learning approaches, for instance DEEP-Bind [45], try to learn the sequence specificities of 

TFs de novo from large data sets. These approaches require a lot of data, special hardware to be trained 

and are not as interpretable as a classical PWMs or the slim models. Therefore, these tools have not 

been applied to many TFs, also limiting their practical usage for hands-on research.  

Supplementary Table 2 holds an overview on several approaches for TFBS prediction and analysis that 

utilize epigenetics data, illustrating the characteristics and features of the individual methods. 

Method Available Supports parallel 

execution 

Hit-

based 

Affinity-
Based 

Maintained 
set of PWMs 

TF gene score 
computation 

Supports 
linear 
analysis 

Supports 
differential 
analysis 

Centipede Yes No Yes No No No No No 

Fimo-Prior Yes No Yes No No No No No 

PIQ Yes Requires qsub Yes No No No No No 

Millipede Yes NA Yes No NA No No No 

BinDNase No NA Yes No NA No No No 

TEPIC2 Yes Yes (Yes) Yes Yes Yes Yes Yes 

RACER Yes NA NA NA NA NA Yes No 

Supplementary Table 2: Characteristics and features of various tools for TFBS prediction and analysis that utilize epigenetics data in addition to 

the sequence specificity of the TFs. An entry of <NA> indicates that this particular characteristic is not applicable to a certain method. 

While predicting TFBS throughout the genome is already helpful to gain an understanding on potential 

functions of TFs, e.g. via enrichment analysis, combining TFBS with gene expression data allows to 

establish a relation between TFs and expression of their target genes. Such experiments have been 

previously conducted with TF ChIP-seq data [15, 51, 52], as well as epigenetics data and predicted TF 

binding sites [20, 21, 22]. Unfortunately, these do not offer stand-alone software to carry out TFBS 

predictions, aggregate those to a gene level and feed them into a linear regression model to prioritize 

candidate regulators, all be it [21] provide a virtual environment to enhance the reproducibility of their 

results. In 2014, a tool called RACER has been published using TF ChIP-seq and miRNA data to predict 

gene expression. However, this tool does not support predicting TF binding events and is specifically 

tailored for the application in [50]. Within TEPIC 2, we offer a pipeline that can be easily used to predict 

TF binding from epigenetics data, compute TF gene scores and utilize those to build a linear model 

predicting steady state gene-expression. Additionally, it is possible to run only individual steps of the 

pipeline which allows for example to use TF ChIP-seq data, instead of predicted TFBS.  Further details 

are provided in Section 8. 

In addition to the linear analysis presented above, it is also of interest to identify regulators associated 

to differentially expressed genes, e.g. between tissues or healthy and diseased samples. Originally, this 

problem has been mainly tackled using TF ChIP-seq data and specialized peak callers have been 

developed to determine differential TF ChIP-seq peak calls [53]. As shown in [54] differential TF ChIP-seq 

signals are correlated to differential gene-expression and can thus be used to suggest regulators 

potentially driving expression differences. Unfortunately [54] is not providing a software package to 

generate these associations. Another observation has been made in [55]. Here, it is shown that the 

epigenetic landscape differs between cell-types and leads to a distinct, predictable, binding behavior of 



TFs. In light of that, specialized tools have been developed to call differential peaks from epigenetics 

data, e.g. histoneHMM [56], or MAnorm [57]. While these tools identify differential peaks, e.g. 

differential Histone Marks, they are not able to associate these regions to TFs and subsequently link 

them to differentially expressed genes. Our DYNAMITE approach included in TEPIC2 predicts TF binding 

from epigenetic data, e.g. differential peak calls or even standard peak calls and uses a log ratio score 

between TF affinities computed for two conditions to identify regulators linked to differential gene 

expression. Further details are provided in Section 9. 

As exemplified in [58], considering time is essential for comparative epigenomic studies. One of the 

widely used tools to suggest master regulators in time-series experiments is DREM [24]. DREM comes 

with a default set of TF ChIP-seq data used for the analysis. In [16], we have shown that the predictions 

of DREM can be improved by applying DREM on TFBS predictions using temporal epigenomic data. To 

this end, we added an output format to TEPIC which can be readily used as input for DREM. 

 

  



2 Data & Preprocessing 
 

For this article, we used data from the German epigenome program (DEEP) [1] and from ENCDOE [2]. 

Supplementary Table 3 lists an overview on the official DEEP sample IDs as well as the ENCODE 

accession numbers. From ENCODE, we obtained quantified gene expression data as well as DNase1-seq 

BAM files. 

BAM files of DEEP RNA-Seq reads were produced with TopHat 2.0.11 [3], with Bowtie 2.2.1 [4] and NCBI 

build 37.1 in --library-type fr-firststrand and --b2-very-sensitive setting. Gene expression has been 

quantified using Cufflinks version 2.0.2 [5], the hg19 reference genome and with the options frag-bias-

correct, multi-read-correct, and compatible-hits-norm enabled. 

DEEP DNase1-seq bam files were created according to the DEEP GAL v1 process 

(http://doi.org/10.17617/1.2W). Alignments were produced with BWA [6], sorted with samtools [7], and 

duplicated reads were marked with Picard tools (http://broadinstitute.github.io/picard). 

DNase hypersensitive sites (DHS) have been called with JAMM using default parameters for both 

ENCODE and DEEP data. All peaks passing the JAMM filtering step have been used for further analysis.  

TF footprints for GM12878, HepG2, H1-hESCs, and K562 have been called using HINT-BC [8] and are 

available online (http://costalab.org/publications-2/dh-hmm/). 

TF ChIP-seq data was obtained from ENCODE for several TFs for K562, GM12878, HepG2, and H1-hESCs 

in narrow peak format. Supplementary Table 4 provides an overview.  

 

DEEP Sample ID Sample ID used in this study 

01_HepG2_LiHG_Ct1   HepG2 

41_Hf01_LiHe_Ct   LiHe1 

41_Hf02_LiHe_Ct   LiHe2 

41_Hf03_LiHe_Ct LiHe3 

DEEP File ID Data Type 

01_HepG2_LiHG_Ct1_mRNA_K_1.LXPv1.20150508_genes.fpkm_tracking   Quantified mRNA   

01_HepG2_LiHG_Ct1_DNase_S_1.bwa.20140719.bam Dnase-1 seq   

41_Hf01_LiHe_Ct_mRNA_K_1.LXPv1.20150508_genes.fpkm_tracking   Quantified mRNA   

41_Hf01_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq   

41_Hf01_LiHe_Ct_mRNA_K_1.LXPv1.20150508_genes.fpkm_tracking   Quantified mRNA   

41_Hf02_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq   

41_Hf03_LiHe_Ct_mRNA_K_1.LXPv1.20150508_genes.fpkm_tracking   Quantified mRNA   

41_Hf03_LiHe_Ct_DNase_S_1.bwa.20150120.bam Dnase-1 seq   

ENCFF000DYC   Quantified mRNA of K562  

ENCFF000SVN   DNase -1 seq of K562  

ENCFF000CZF   Quantified mRNA of GM12878 

ENCFF000SKV   DNase -1 seq of GM12878 

ENCFF000SKW   DNase -1 seq of GM12878 

ENCFF000SKZ   DNase -1 seq of GM12878 

ENCFF000SLB   DNase -1 seq of GM12878 

ENCFF000SLD   DNase -1 seq of GM12878 

http://doi.org/10.17617/1.2W


ENCFF000DHQ   Quantified mRNA of H1-hESC 

ENCFF000DHS   Quantified mRNA of H1-hESC 

ENCFF000DHU   Quantified mRNA of H1-hESC 

ENCFF000DHW   Quantified mRNA of H1-hESC 

ENCFF000SOA   DNase-1 seq of H1-hESC 

ENCFF000SOC   DNase-1 seq of H1-hESC 

Supplementary Table 3: DEEP and ENCODE sample IDs of RNA-seq and DNase1-seq data. 

ENCODE Accession number TF ChIP-seq in K562 

ENCSR000BRQ CEBPB 

ENCSR000DWE CTCF 

ENCSR000BLI E2F6 

ENCSR000BNE EGR1 

ENCSR000BMD ELF1 

ENCSR000BKQ ETS1 

ENCSR000BMV FOSL1 

ENCSR000BLO GABPA 

ENCSR000BKM GATA2 

ENCSR000EFV MAX 

ENCSR000BNV MEF2A 

ENCSR000BMW REST 

ENCSR000BKO SP1 

ENCSR000BGW SPI1 

ENCSR000BLK SRF 

ENCSR000BRR STAT5A 

ENCSR000BKT USF1 

ENCSR000BKU YY1 

ENCSR000BKF ZBTB33 
 

TF ChIP-seq in HepG2 

ENCSR000BID BHLHE40 

ENCFF002CTU BRCA1 

ENCFF002CTV CEBPB 

ENCSR000DUG CTCF 

ENCSR000BMZ ELF1 

ENCFF002CUA ESRRA 

ENCSR000BHP FOSL2 

ENCSR000BMO FOXA1 

ENCSR000BNI FOXA2 

ENCSR000BJK GABPA 

ENCSR000BLF HNF4A 

ENCSR000BNJ HNF4G 

ENCFF002CUD HSF1 

ENCSR000BGK JUND 

ENCFF002CUG MAFF 



ENCFF002CUI MAFK 

ENCFF002CUJ MAX 

ENCFF002CUY NR2C2 

ENCFF002CUM NRF1 

ENCSR000BOT REST 

ENCFF002CUT RFX5 

ENCSR00BHU RXRA 

ENCSR000BJX SP1 

ENCSR000BOU SP2 

ENCFF002CUV SREBF1 

ENCFF001VLB SREBF2 

ENCSR000BLV SRF 

ENCFF002CUW TBP 

ENCSR200BJG TCF12 

ENCFF002CUX TCF7L2 

ENCSR000BGM USF1 

ENCFF002CUZ USF2 

ENCSR000BHR ZBTB33 
 

TF ChIP-seq in H1-hESC 

ENCFF002CQQ BRCA1 

ENCFF002CQR CEBPB 

ENCFF002CIU CTCF 

ENCFF002CIV EGR1 

ENCFF002CIW FOSL1 

ENCFF002CIX GABPA 

ENCFF002CQU JUN 

ENCFF002CQY JUND 

ENCFF002CQZ MAFK 

ENCFF002CRA MAX 

ENCFF002CRC NRF1 

ENCFF002CJB REST 

ENCFF002CRE RFX5 

ENCFF002CJH RXRA 

ENCFF002CJK SP1 

ENCFF002CJL SP2 

ENCFF002CJN SRF 

ENCFF002CRH TBP 

ENCFF002CJQ TCF12 

ENCFF002CJS USF1 

ENCFF002CRI USF2 

ENCFF002CJT YY1 
 

TF ChIP-seq in GM12878 

ENCFF002CGQ BATF 



ENCFF002CGU CEBPB 

ENCFF002CGV EBF1 

ENCFF002CGW EGR1 

ENCFF002CGX ELF1 

ENCFF002CGY ETS1 

ENCFF002CGZ FOXM1 

ENCFF002CHA GABPA 

ENCFF939TZS JUNB 

ENCFF002CHC MEF2A 

ENCFF002CHH REST 

ENCFF002CHT RXRA 

ENCFF002CHV SP1 

ENCFF002CHQ SPI1 

ENCFF002CHW SRF 

ENCFF002CHX STAT5A 

ENCFF002CHZ TCF12 

ENCFF002CIA TCF3 

ENCFF144PGS TCF7 

ENCFF002CIB USF1 

ENCFF002CIC YY1 

ENCFF694OTE ZBED1 

ENCFF002CID ZBTB33 

ENCFF002CIE ZEB1 

Supplementary Table 4: ENCODE accession numbers of TF ChIP-seq data. 

 

  



3 Position specific energy matrices (PSEMs) 
Our current collection of PSEMs is comprised of matrices from JASPAR [9], HOCOMOCO [10], and the 

Kellis ENCODE Motif database [11].  

In detail, the current collection contains from the JASPAR 2018 Core database: 

o 579 PSEMs for vertebrates, 

o 176 PSEMs for fungi, 

o 26 PSEMs for nematodes, 

o 489 PSEMs for plants, 

o 1 PSEM for urochordates, 

o 133 PSEMs for insects. 

 Additionally, we provide species-specific collections of JASPAR matrices: 

o 3 PSEMs for Antirrhinum majus, 

o 5 PSEMs for Arabidopsis lyrata, 

o 440 PSEMs for Arabidopsis thaliana, 

o 22 PSEMs for Caenorhabditis elegans, 

o 132 PSEMs for Drosophila melanogaster, 

o 1 PSEM for Fragaria x ananassa, 

o 7 PSEMs for Gallus gallus, 

o 6 PSEMs for Glycine max, 

o 1 PSEM for Halocynthia roretzi, 

o 459 PSEMs for Homo sapiens, 

o 1 PSEM for Hordeum vulgare, 

o 1 PSEM for Medicago truncatula, 

o 1 PSEM for Meleagris gallopavo, 

o 157 PSEMs for Mus musculus, 

o 1 PSEM for Neurospora crassa, 

o 1 PSEM for Nicotiana, 

o 4 PSEMs for Orcytolagus, 

o 7 PSEMs for Oryza sativa, 

o 1 PSEM for Petunia x hybrida, 

o 1 PSEM for Phaeodactylum tricornutum, 

o 9 PSEMs for Physcomitrella patens, 

o 3 PSEMs for Pisum sativum, 

o 1 PSEM for Populus trichocarpa, 

o 2 PSEMs for Rattus norvegicus, 

o 2 PSEMs for Rattus rattus, 

o 176 PSEMs for Saccaromyces cerevisiae, 

o 2 PSEMs for Solanum lycopersicum, 

o 1 PSEM for Triticum aestivum, 

o 4 PSEMs for Xenopus laevis, 

o 8 PSEMs for Zea mays. 



 

From HOCOMOCO we provide 402 motifs for Homo sapiens and 358 for mus musculus. The Kellis set 

contains 58 TF motifs.  

Besides, we provide non-redundant collections for homo sapiens and mus musculus considering motifs 

from all three sources: 

o 561 PSEMs for homo sapiens, 

o 380 PSEMs for mus musculus. 

Furthermore, we used a motif clustering approach [12] to merge similar motifs of the aforementioned 

aggregated files. This led to: 

o 483 PSEMs for homo sapiens, 

o 306 PSEMs for mus musculus. 

We generated PSEMs from position count matrices (PCMs) using the following conversion: A PCM M is 

converted to a PSEM E according to: 

𝐸𝑖,𝑗 =
1

𝜆
𝑙𝑜𝑔 (

𝑀𝑚𝑎𝑥,𝑗

𝑀𝑖,𝑗
𝑏𝑖,𝑗) , with 𝑀𝑚𝑎𝑥,𝑗 =  max

𝑖∈{𝐴,𝐶,𝐺,𝑇}
𝑀𝑖,𝑗 . 

The parameter𝜆 is used for scaling the mismatch energies and 𝑏𝑖,𝑗 denotes the background frequency of 

the nucleotide i with respect to the most frequent nucleotide at position j. By definition, if j=max, than 

𝐸𝑖,𝑗 = 0, as there should be no mismatch energy for the best possible sequence match. Note that, during 

conversion, a pseudo count pc = 1 is added to each 𝑀𝑖,𝑗. The conversion is done by a C++ tool provided 

by the authors of TRAP. This is also included in the TEPIC repository. As suggested in [13], we use the 

following parameters for the conversion: 

𝜆 =0.7, m=0.584, and n=-5.66. 

The parameters slope m and intercept n are used to compute a matrix specific parameter 𝑅0 that 

combines the concentration of the corresponding TF and the equilibrium constant of the binding 

reaction with its optimal binding site as defined in [13]. The authors of TRAP found a linear 

approximation for 𝑅0 with: 

ln(𝑅0) = 𝑚 ∙  |𝑀| + 𝑛, 

where |M| denotes the length of the PCM. 

Further, we exploit species-specific GC-content values: 

o homo sapiens = 0.41, 

o mus musculus = 0.42, 

o rattus norvegicus = 0.42, 

o drosophila melanogaster = 0.43, 

o caenorhabditis elegans = 0.36. 

In all other cases, a default GC-content of 0.42 is used. 

   



4 Score computation in TEPIC 
TEPIC computes TF affinities using TRAP [13]. Extensive details on the mathematical background of TRAP 

can be found in Roider et al. [13]. Here, we only provide a brief summary of Section 2.3 of the 

aforementioned paper, which is extracted from the Supplement of [14]. In TRAP, one assumes that the 

fraction of TFs bound to a certain genomic location S is at an equilibrium such that the fraction of bound 

sites p(S) can be denoted as  

𝑝(𝑆) =  
𝐾(𝑆)∗[𝑇𝐹]

1+𝐾(𝑆)∗[𝑇𝐹]
. 

Here, K denotes a site-specific equilibrium constant, which depends on the site with highest affinity (S0), 

a TF specific mismatch energy E(S) and the Boltzmann constant kB: 

𝐾(𝑆) = 𝐾(𝑆0)𝑒−𝛽𝐸(𝑆). 

Thus, we can denote p(S) as:  

𝑝(𝑆) =  
𝐾(𝑆0) ∗ [𝑇𝐹] ∗ 𝑒−𝛽𝐸(𝑆)

1 + 𝐾(𝑆0) ∗ [𝑇𝐹] ∗ 𝑒−𝛽𝐸(𝑆)
=

𝑅0 ∗ 𝑒−𝛽𝐸(𝑆)

1 + 𝑅0 ∗ 𝑒−𝛽𝐸(𝑆)
 . 

The mismatch energy E(S) is computed using a TF motif matrix according to:  

𝛽𝐸(𝑆) =
1

 𝜆
∑ ∑ 𝑆𝑖

𝛼

𝛼=𝐴,𝐶,𝐺,𝑇

log (
𝑚𝑖,𝑚𝑎𝑥

𝑚𝑖,𝛼
𝑏𝑖,𝛼)

𝑊

𝑖=1

. 

Here, 𝑆𝑖
𝛼, is an indicator function evaluating to 1 if the considered sequence S has letter α at position i. 

The most frequent element in the motif matrix is denoted by 𝑚𝑖,𝑚𝑎𝑥. The parameter 𝜆 is a parameter 

used to scale the mismatch energy.  

Thus, there are only two sequence and TF independent parameters R0 and 𝜆. For details on how these 

parameters are determined, please consult Sections 2.3 and 3.1 of Roider et al. [13].  

Overall, TRAP computes the expected number N of TFs bound to sequence S with length L by summing 

up the binding score for each individual binding site in S:  

𝑁 = 𝑝(𝑆) = ∑ 𝑝𝑙
𝐿−𝑊
𝑙=1 =  ∑

𝑅0∗𝑒−𝛽𝐸𝑙(𝜆)

1+𝑅0∗𝑒−𝛽𝐸𝑙(𝜆) 
𝐿−𝑊
𝑙=1 .  

Here, W denotes the length of the motif for the TF of interest. 

Using our collections of PSEMs, TRAP computes TF binding affinities as described above in all user 

provided regions that could be found in the reference genomes of the respective species. To reduce run-

time, the annotation can be further limited to only those genes overlapping with a window of user-

defined size w centered at the most 5' TSS of each annotated gene in the considered organism. 

Then, TF gene scores are computed by incorporating all candidate binding sites within the window 

centered on the 5' TSS of genes in the final score 𝑎𝑔,𝑖
𝑤 . The contribution of the individual sites is weighted 

by their distance to the selected TSS with an exponential decay function [15]. 

Formally, the TF gene score 𝑎𝑔,𝑖
𝑤  for gene g and TF i is computed as 



𝑎𝑔,𝑖
𝑤 =  ∑ 𝑎𝑝,𝑖𝑒

−
𝑑𝑝,𝑔

𝑑0𝑝∈𝑃𝑔,𝑤
, 

where 𝑎𝑝,𝑖  is the affinity of TF i in peak p, the set 𝑃𝑔,𝑤 contains all open-chromatin peaks in a window of 

size w around gene g, 𝑑𝑝,𝑔is the distance from the center of peak p to the TSS of gene g, and 𝑑0 is a 

constant fixed at 5kb. Additionally, affinities can be normalized by peak (and motif)-length during the 

computation of TF gene scores: 

𝑎𝑔,𝑖
𝑤 =  ∑

𝑎𝑝,𝑖

|𝑝|−|𝑚𝑖|
𝑒

−
𝑑𝑝,𝑔

𝑑0𝑝∈𝑃𝑔,𝑤
, 

 

where |p| is the length of peak p, |𝑚𝑖| is the length of the motif of TF i, with a pseudo-count of 1. If the 

signal within a peak should be directly considered in the TF gene score, we compute: 

𝑎𝑔,𝑖
𝑤 =  ∑

𝑎𝑝,𝑖

|𝑝|−|𝑚𝑖|
𝑠𝑝𝑒

−
𝑑𝑝,𝑔

𝑑0𝑝∈𝑃𝑔,𝑤
, 

where 𝑠𝑝is the per base signal in peak p. This computation can be performed with and without length 

normalization of the affinities.  In addition to the TF gene scores, TEPIC can compute features for peak 

length (𝑝𝑙𝑔), peak count (𝑝𝑐𝑔), and peak signal (𝑝𝑠𝑠) following the same scoring formulation as for TF 

affinities: 

𝑝𝑙𝑔 =  ∑ |𝑝|𝑒
−

𝑑𝑝,𝑔

𝑑0𝑝∈𝑃𝑔,𝑤
, 

𝑝𝑐𝑔 =  ∑ 𝑒
−

𝑑𝑝,𝑔

𝑑0𝑝∈𝑃𝑔,𝑤
, 

𝑝𝑠𝑔 =  ∑ 𝑠𝑝𝑒
−

𝑑𝑝,𝑔

𝑑0𝑝∈𝑃𝑔,𝑤
, 

where |p| is the length of p. These features can be used for example to assess the influence of 

chromatin accessibility on gene expression without considering TF binding predictions. Furthermore, 

TEPIC can compute a TF specific affinity cut-off derived from either user-defined, or randomly generated 

sequences (r), to distinguish likely bound sites from unbound sites. Specifically, we compute TF affinities 

𝑎𝑖,𝑟 in those regions r to determine a TF specific cut-off, i.e. for TF i for the original affinities 𝑎𝑖,𝑜using the 

frequency distribution of TF affinities 𝑎𝑖,𝑟. As described in [16], TF affinities are normalized according to 

the length of their respective region: 

𝑎′𝑖,𝑟 =  
𝑎𝑖,𝑟

|𝑟|
 , 𝑎′𝑖,𝑜 =  

𝑎𝑖,𝑜

|𝑜|
 . 

Using a p-value cut-off of 0.05 we determine a TF specific affinity threshold 𝑡𝑖 from 𝑎′𝑖,𝑟 and from this 

infer a binary TF to gene assignment 𝑏𝑖,𝑜 according to 

𝑏𝑖,𝑜 = {
1, 𝑎′𝑖,𝑜 ≥  𝑡𝑖 ,

0, 𝑎′𝑖,𝑜 <  𝑡𝑖.
  

These scores can be used to come-up with a binary TF gene assignment as described in [16]. 



5 Runtime evaluation of TEPIC 
We benchmarked the runtime of TEPIC and its competitors using the Unix time utility (/usr/bin/time) on 

a compute server equipped with Intel Xeon CPU E7-8837 processors and 1TB of main memory. For TEPIC 

and JAMM we used 16 cores. Runtime was assessed for the original version of TEPIC, referred to as 

TEPIC1, for TEPIC2, as well as two conceptually different competitors FIMO-Prior [17] and PIQ [18]. 

We've computed TF affinities for the original PWM set comprising 458 TFs.  

As shown in Figure 2, TEPIC2 improves considerably over the runtime of the original TEPIC 

implementation and is also outperforming both Fimo-Prior and PIQ considerably. The long-runtime of 

the latter two is due to two main reasons. Firstly, none of the methods comes with an easy-to-use build-

in parallelization procedure and secondly, instead of reducing the annotation to several candidate sites, 

these tools screen the entire genome first to identify TF binding sites.  In Supplementary Table 5, all 

runtimes are listed also including the runtime for peak calling with JAMM. Note that even with the time 

required for peak calling, TEPIC2 is still considerably faster than the competing methods.  

 

Supplementary Figure 2: Runtime comparison between Fimo-Prior, PIQ, TEPIC1 and TEPIC2. Note that 

the scale of the y-axis is different for each method.  

Sample\Runtime[min] PIQ Fimo-Prior TEPIC1 TEPIC2 TEPIC1+JAMM TEPIC2+ JAMM 

HepG2 1836 9480 765 10 960 205 

GM12878 1685 8046 100 2 358 260 

H1-hESC 1748 6576 300 5 546 251 

K562 5049 6942 1185 15 1386 216 

LiHe1 4223 10272 915 10 1092 187 

LiHe2 3167 10542 880 12 1002 134 

LiHe3 4452 10506 1290 10 1608 328 

Supplementary Table 5: Overview on the runtime of TEPIC2 compared to TEPIC1 with and without Peak 

calling using JAMM. 

We used default parameters for PIQ by adapting the included shell scripts to be used with our data. 

Aside from the file paths, we did not change the settings. In Fimo-Prior, we increased the max-stored-

scores to 200 000, instead of the default value. Specifically, the following commands have been used for 

the time measurement (each exemplified for one sample): 

 

 



TEPIC1: 

bash TEPIC.sh -g hs37d5.fa  -b JAMM/41/LiHe/01/peaks/filtered.peaks.narrowPeak -o Time_Asses_Hf01 

–p pwm_vertebrates_jaspar_uniprobe_converted.txt -a gencode.v19.protein_coding_only.gtf -c 16 

TEPIC2: 

bash TEPIC.sh -g hs37d5.fa  -b JAMM/41/LiHe/01/peaks/filtered.peaks.narrowPeak -o Time_Asses_Hf01 

–p pwm_vertebrates_jaspar_uniprobe_converted.PSEM -a gencode.v19.protein_coding_only.gtf -f 

gencode.v19.protein_coding_only.gtf -c 16 

PIQ: 

Execute the shell script shown below, adapted from the provided script PIQ_1_3/testers/runall.k562.sh 

#!/bin/bash 
jobname="hg19k562" 
bampath="/MMCI/MS/DEEP-liver/work/Data/K562/DNase/BAMs/ENCFF441RET.bam" 
tmpdir="/MMCI/MS/DEEP-liver/nobackup/PIQ_Temp" 
basedir="/MMCI/MS/DEEP-liver/work/Tools/PIQ_1_3" 
baseoutdir="/MMCI/MS/DEEP-liver/work/Tools/PIQ_1_3/Predictions_Paper/K562" 
mkdir ${baseoutdir}  
pushd $basedir 
jobid="$(date +"%y%m%d")" 
idname="$jobid-$jobname" 
popd 
commonfile="$basedir/common.r" 
outdir="$baseoutdir/$idname.calls/" 
bamfile="$baseoutdir/rdata/$jobname.RData" 
jaspardir="$basedir/pwms/pwm_vertebrates_jaspar_uniprobe_converted.txt" 
pwmdir="$baseoutdir/$idname.pwms/" 
mkdir ${baseoutdir}"/rdata" 
pushd $basedir 
./bam2rdata.r $commonfile $bamfile $bampath 
popd 
mkdir $pwmdir 
IDs=$(seq 458) 
for pwmid in $IDs 
do 
     Rscript pwmmatch.exact.r $commonfile $jaspardir $pwmid $pwmdir 
done 
cp $jaspardir $pwmdir 
cp $commonfile $pwmdir 
mkdir $outdir 
for pwmid in $IDs 
do 
     echo Rscript pertf.r $commonfile $pwmdir $tmpdir $outdir $bamfile $pwmid 
     Rscript pertf.r $commonfile $pwmdir $tmpdir $outdir $bamfile $pwmid 
done 



Fimo-Prior: 

./create-priors sequences_50000.fa 41Hf01.wig --parse-genomic-coord --oc Priors/41Hf01_50000 

and 

./fimo --oc T41_01_50000_1 --psp Priors/41Hf01_50000/priors.wig --prior-dist 

Priors/41Hf01_50000/priors.dist pwm_vertebrates_jaspar_uniprobe_converted.meme 

sequences_50000.fa --max-stored-scores 200000 

Peak-Calling with JAMM: 

bash JAMM.sh -s 41_Hf01.bed -o Peaks/41_Hf01 -g  hg19.genomseSize.txt -f 1 -p 16 

 When applicable, we reduced the annotation to a 50kb area around the TSS's of the genes to be 

annotated. This is not possible with the original TEPIC version and also not with PIQ.   



6 Assessment of TFBS predictions using ChIP-seq data 
We obtained TF ChIP-seq data from ENCODE for HepG2, K562, GM12878, and H1-hESC in narrow peak 

format. All downloaded files are listed in Sup. Tab. 4. We use the same validation strategy as in [8], 

which defines the gold-standard set to be composed of all motif predicted binding sites that overlap 

with a ChIP-seq peak of the respective TF and all other motif predicted sites as negatives. We used Fimo 

with JASPAR matrices to screen the genome for TF binding sites and considered all sites with a p-value < 

0.05. Thereby, we generated a gold-standard set for 33 TFs in HepG2, 19 TFs in K562, 24 TFs in 

GM12878, and 22 TFs in H1-hESC. 

Consequently, we define a true positive site (TP) as a site predicted with a score > the current threshold 

overlapping with the gold-standard, a false positive (FP) as a site predicted with a score > the current 

threshold not overlapping with the gold-standard, a true negative (TN) is a site of the negative set which 

is either not overlapping any predicted site or having a score ≤ the current threshold. A false negative 

(FN) is defined as a site of the gold-standard set not overlapping with our predictions. 

Because this definition of an evaluation scheme leads to an unbalanced set of true and negative sites, 

i.e. there are many more negative than positive sites, we use area under the precision recall curve 

(AUPR) as a performance measure, since the more common ROC-curves would be biased towards the 

negative set, overestimating the performance of the models. Additionally, computing precision-recall 

(PR)-curves has the advantage that no threshold needs to be chosen for the TFBS prediction itself, as the 

entire scope of possible thresholds is sampled and precision and recall are computed accordingly. 

We have limited ourselves to compare TEPIC against Fimo -Prior and PIQ for several reasons: One of the 

first methods that successfully combined epigenetics data with the sequence dependence of TFs was 

CENTIPEDE, by Pique-Regi et al, and was considered as a gold-standard for TFBS-prediction methods in 

the field. Therefore, many tools have been compared against it, including Fimo-Prior and PiQ. The first 

one, Fimo-Prior, is essentially a simplification of CENTIPEDE, designed to avoid the potential overfitting 

of CENTIPEDEs mixture model and including only one epigenetic signal, e.g. DNase1-seq [17]. Additional 

features, for example sequence-conservation, or additional histone marks are not considered. The 

authors of Fimo-Prior have shown that, although their method is less complex and easier to use then 

CENTIPEDE, it does perform almost on par with the CENTIPEDE model [17].  

The second method, PIQ, is based on Bayesian inference to predict TFBS and was used to identify 
pioneering TFs, which open up the chromatin [18]. The authors of PIQ showed that their method 
performs favorably compared to Centipede as well as compared to DGF [31] another method 
considering DNase1-seq data. The observation of Sherwood et al., that PIQ outperforms CENTIPEDE is 
reflected in our evaluation as well, since PIQ is also outperforming Fimo-Prior. 

Due, to those findings, we decided not to include either CENTIPEDE nor DGF in our evaluation, as both 
Fimo-Prior and PIQ have been shown to perform on par or better than CENTIPEDE and DGF before, and 
are more prevalently used in practice.  

Furthermore, we excluded both Millipede and BinDNase, which was shown before to be at least as 
reliable as or better than Millipede [28], from consideration because these are supervised methods that 
require TF ChIP-seq data to be used for model training. Since this drastically reduces the applicability of 
these methods in practice, we did not consider them. 



However, we did check for the potential performance of these methods, compared to our tool and 
compared to Fimo-Prior and PIQ. We found that both Millipede and BinDNase outperform CENTIPEDE 
and that BinDNase slightly outperforms PIQ on a few TFs [28]. However, we do note that this 
comparison is (1) between an unsupervised and a supervised method, and therefore not completely fair. 
Also (2), the comparison is presented only on a negative set, which might be overestimating model 
performance due to an unbalanced distribution of negative and positive sites. Furthermore (3), we were 
unable to obtain an implementation of the BinDNase approach, as the link provided in the paper is not 
working. 

Recently published DEEP learning approaches, such as DEEP-Bind [45] have not been considered either 
as they require large amounts of data to be used, special hardware which might not be present in each 
lab, and are hard to interpret.  The easy availability of PWMs, and their straight forward interpretation 
still renders them to be the most common way of describing sequence preferences of TFs, explaining 
why they are frequently used in practice. 

Purely sequence based approaches, as listed in Sup. Table 1 have not been considered as they were 
shown to have a high-false positive rate with genome wide TFBS predictions [17]. 

Here, we used bedtools to intersect the predictions from TEPIC, Fimo-Prior, and PIQ with our gold-

standard set. These resulting files are reformatted with custom python scripts to be usable as input for 

the PRROC R-package [19]. The PRROC package uses continuous interpolation to compute PR-curves 

from both soft and hard-labeled data (as present in our setting). Based on the PR-curves, the package 

computes the AUPR values for each TF and each TFBS prediction method. Details on the required input 

format can be found in the PRROC documentation. 

Internally, the PRROC package computes Precision (Pre) as  

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

and Recall (Rec) as 

𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . 

Here, we compared TF affinities computed in TF footprints identified with HINT against TFBS predictions 

from Fimo-Prior [17] and PIQ[18] using JASPAR TF motifs for all methods. We used the same command 

arguments as shown above for the runtime experiments, except that, for TEPIC we used footprint calls 

as input and computed predictions with TEPIC and Fimo-Prior genome-wide: 

TEPIC2: 

bash TEPIC.sh -g hs37d5.fa  -b HepG2_Footprints.bed -o HepG2_HINT –p 

pwm_vertebrates_jaspar_uniprobe_converted.PSEM -c 16 

Fimo-Prior: 

./create-priors hg19.fa HepG2.wig --parse-genomic-coord --oc Priors/HepG2 

and 

./fimo --oc CHepG2 --psp Priors/HepG2/priors.wig --prior-dist Priors/HepG2/priors.dist 

pwm_vertebrates_jaspar_uniprobe_converted.meme hg19.fa --max-stored-scores 200000 



Figure 1b shows aggregated AUPR values across several TFs per method and cell-line, while 

Supplementary Figure 3 shows the results for individual TFs and cell-lines. Overall, TF affinities combined 

with footprints outperform the other two methods for most TFs, however for some factors, e.g. NRF1 or 

REST, Fimo-Prior performs best. We also observe that the prediction qualities differ between cell-types, 

which might be linked to the quality of the available chromatin accessibility data.       

We note that these performance measurements could have also been achieved with TEPIC 1.0, because 

the definition of the affinity computation has not been altered by switching the implementation of TRAP 

from R to C++. 

 



 

Supplementary Figure 3: TF and method specific AUPR values computed using PRROC [19]. 

  

A
U

P
R

 



7 Inferring essential regulators using linear regression (INVOKE) 

7.1 Motivation 
Epigenetics data contains a wealth of information on gene regulation. It was shown that especially data 

on open-chromatin is well suited to build predictive models of gene expression [20, 21, 22].  Interpreting 

these models allows the inference of regulators that may play a key role in gene expression regulation. 

Here, we offer an integrated analysis of epigenetics data, e.g. open-chromatin data (DNase1-seq, ATAC-

seq, NOMe-seq) and gene expression data to suggest key transcriptional regulators in the analyzed 

sample. 

Note that, although incorporating epigenetic data greatly improved the performance of TF binding 

predictions, both computing TF binding predictions and linking TFs to genes are still unsolved problems 

and all predictions should be seen as suggestions and not as the absolute truth. 

7.2 Description of the pipeline 
The INVOKE analysis is split up into two main steps.  

o Computing TF gene scores on the basis of epigenetic data using TEPIC (see Section 4). 

o Learning a linear regression model to predict gene expression from TF gene scores computed in 

the previous step. 

In order to learn about potentially important regulators, we build a linear, interpretable regression 

model, comparable to methods proposed in [20, 21, and 22].  

Here, we use TF gene scores computed with TEPIC as features in a linear regression setup to predict 

gene expression. In such a per sample approach, we stick to the simplifying assumption that all genes 

are regulated similarly.  

Features with a high regression coefficient can be seen as potential key regulators in the analyzed 

sample, as they seem to affect the expression of a large portion of the genes under consideration. 

However, the results of this method should be seen as suggestions for possible regulators and not as the 

absolute truth.  

We offer three different regularization techniques: 

Lasso: 

�̂� =  argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2 + ‖𝛽‖). 

Ridge: 

�̂� =  argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2 + ‖𝛽‖2). 

Elastic net: 

�̂� =  argmin
𝛽

(‖𝑦 − 𝑋𝛽‖2 + 𝛼‖𝛽‖2 + (1 − 𝛼)‖𝛽‖), 

 



where 𝛽 represents the regression coefficient vector, �̂� represents the estimated coefficients, X is the 

feature matrix, y is the response vector, and the parameter 𝛼 controls the distribution between Ridge 

and Lasso penalty in the elastic net. 

Using Lasso regularization, models are sparse and can be learned very fast.  However, Lasso cannot 

properly deal with correlated features, e.g. instead of distributing the coefficients among them, only one 

is selected. Also, Lasso solutions are not stable and therefore should be interpreted with caution. 

Nevertheless, Lasso regularization is good to get a first impression of model performance. The 

disadvantage of Ridge regression is that it cannot produce sparse models (many coefficients being 

exactly 0), which may hinder interpretability.  

Elastic net regularization was designed to overcome the limitations of both regularization techniques 

mentioned above. It resolves the correlation between features by distributing the feature weights 

among them, and simultaneously leads to sparse and stable models [23]. However, training a model 

using elastic net penalty is slower than using either only Lasso or Ridge regularization. 

In detail, the data matrix X, containing TF gene scores, and the response vector y, containing gene 

expression values, are log-transformed, with a pseudo-count of 1, centered and scaled. Regression 

coefficients are computed in an inner cross validation, the 𝛼 parameter of elastic net regularization is 

optimized with a default step size of 0.1. 

We offer two ways to use our learning pipeline: 

1. Learn a model for feature interpretation without computing performance measures: In order to 

provide a time efficient way of obtaining an interpretable model and to prevent a potential loss 

of information by considering only a portion of the full data set for model training, the 

regression coefficients are determined on the entire data set. 

2. Learn a model for feature interpretation and compute model performance: Nested cross-

validation is used to learn the models and to assess their performance. Per default, 20% of the 

data are used as test data and 80% are used as training data. Model performance is assessed in 

an outer cross validation. We report the mean Pearson correlation, the mean Spearman 

correlation, and the mean squared error over the outer folds as measures of model 

performance. Additionally, a model is learned on the entire data set as described in (1) for 

interpretation of the coefficients. 

All parameters mentioned in this section can be changed by the user. The training process is sketched in 

Sup. Fig. 4. 

In addition to the input required for the computation of TF gene scores in TEPIC, a file containing gene 

expression data must be provided to run INVOKE. This file should be structured such that column 1 

contains the gene identifiers and column 2 holds expression values. 

An INVOKE analysis always provides the user with the following files: 

o a list of regression coefficients computed on the entire data set, 

o a bar plot showing the regression coefficients with an absolute value > 0.025. 



The larger a regression coefficient, the stronger is the inferred effect of the corresponding TF on gene 

expression. Positive coefficients suggest an activating influence of TFs, negative coefficients suggest an 

inhibiting effect.  

 If model performance was assessed, the following is available as well: 

o a summary on model performance containing the aforementioned measures (Pearson 

correlation, Spearman correlation, mean squared error), 

o a list of regression coefficients determined in the outer cross validation, 

o a heatmap visualizing the regression coefficients determined in the outer cross validation for at 

most the top 10 positive and negative features, sorted according to their median. 

o an image showing a box plot for Pearson and Spearman correlation respectively. 

o scatter plots showing the predicted vs the measured gene expression for each outer cross 

validation fold. 

The heatmap can be easily used to judge model performance, as it shows the regression coefficients of 

all outer-cross validation runs. The box plots provide further insights into model performance and 

stability across the outer folds of the cross validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4: A scheme of the machine learning paradigm used for INVOKE 



7.3 Example 
An example for INVOKE is included in the repository of TEPIC (https://github.com/SchulzLab/TEPIC). 

Here, we learn a predictive model for a macrophage sample from Blueprint (S001S7). To keep the 

runtime short, we consider only DHS sites from chromosome 1.   

Running the example generates a bar-plot (Sup. Fig. 5) as well as a heatmap (Sup. Fig. 6) showcasing 

regression coefficients, scatter plots (Sup. Fig. 7) comparing measured against predicted gene 

expression per outer cross-fold as well as a boxplot showing model performance (Sup. Fig. 8). Note that 

the bar-plot reflects the model coefficients learned on the entire data-set, while the heatmap shows the 

coefficients determined during model training in the cross-validation procedure.  Text files holding 

information on model performance and on the regression coefficients are provided as well.  

 

Supplementary Figure 5: Regression weights computed on the entire data sets. Only coefficients with an 

absolute weight > 0.025 are shown. 

 

Supplementary Figure 6: Regression weights computed during the cross-validation procedure. At most 

the top 10 positive and negative coefficients are shown per fold, including their median value. 



 

Supplementary Figure 7: Scatter plots contrasting predicted (x) versus measured (y) gene expression are 

generated for each outer-fold.  

 

Supplementary Figure 8: Boxplots showing model performance computed in terms of Pearson and 

Spearman correlation across the outer cross-validation folds. 



8 Determining regulator of differential gene expression (DYNAMITE) 

8.1 Motivation 
In addition to the INVOKE analysis, which highlights regulators associated to stable gene expression 

values measured within one sample, we propose a method to infer the most likely transcriptional 

regulators for a set of differentially expressed genes.  

We use TF scores, computed using TEPIC, and logistic regression to identify TFs that have explanatory 

power to distinguish between up- and down-regulated genes, e.g. between to samples or between 

healthy and diseased tissue. 

8.2  Description of the pipeline 
To run DYNAMITE, a user must provide candidate regions of TF binding for two groups of samples, A and 

B, e.g. control and disease. These can be derived, for example, by open chromatin experiments such as 

DNase-seq. It is essential that the candidate regions reflect the characteristics of chromatin organization 

in the analyzed tissues. In addition, a list of differential expressed genes between two groups as well as 

log2 fold changes of the expression are needed.  

 Our method consists of two parts: (1) TF gene score computation, and (2) identification of key TFs.  

1. Computing TF gene scores:  

Using TEPIC, we compute TF gene scores gij for all differentially expressed genes i and distinct 

TFs j considering the provided candidate regions for all replicates a of group A and for all 

replicates b of group B. As a result, gene-TF matrices Mk for all replicates of both groups are 

obtained. To account for biological variation among the replicates, we compute two matrices 

MA, MB holding the mean TF gene scores among all replicates of a group, where 

𝑀𝐴𝑖𝑗
=

∑ 𝑎𝑖𝑗𝑎∈𝐴

|𝐴|
, 𝑀𝐵𝑖𝑗

=
∑ 𝑏𝑖𝑗𝑏∈𝐵

|𝐵|
. 

Using matrices MA and MB we compute a matrix RAB that holds the ratios of TF gene scores for all 

genes and all TFs: 

𝑅𝐴𝐵𝑖𝑗
=  

𝑀𝐴𝑖𝑗

𝑀𝐵𝑖𝑗

. 

Thus, RAB represents the changes in TF binding between groups A and B on a gene level. The 

feature computation is sketched in Sup. Fig. 9. 

2. Identification of potential key TFs: 

To identify those TFs that can explain the differential expression state of as many genes as 

possible, we build a logistic regression classifier. We use matrix RAB computed in Step 1 as the 

feature matrix X, and a binary vector of gene expression changes as response y. An example is 

shown in Sup. Fig. 10. 

We perform logistic regression with elastic net regularization [23]. As above, we tune the 

parameter 𝛼 that distributes the weight between lasso and ridge penalty in a grid search with 

user-defined step-size between 0 and 1. Model parameters are learned in an inner cross 



validation, while the accuracy of our classifier can be assessed through an outer cross validation. 

This is the same machine learning paradigm that is described for the INVOKE analysis (Sup. Fig. 

4). We use the entire dataset for model training and to interpret the regression coefficients. TFs 

that correspond to features with a non-zero regression coefficient can be seen as being essential 

to explain the observed expression differences and should be further investigated. 

Model performance is reported in a text file and visually in a bar plot using mean test and training 

accuracy as well as the F1 measure. A heatmap shows the regression coefficients in the outer cross 

validation folds. Additionally, we report confusion matrices for the outer cross validation folds. We 

generate a bar-plot with the regression coefficients of all TFs selected in the final model. A positive 

coefficient is used by the model to predict genes as upregulated, a negative coefficient is related to 

genes that are predicted as downregulated. The interpretation of the model can be simplified if the user 

makes sure that both TF ratios and gene expression fold changes are computed in the same order.   

We provide an additional script to generate further plots per feature that can help to understand the 

model. As shown in Sup. Fig. 11 density and scatter plots are generated to help elucidating why a 

particular feature was selected by the model. 

 

Supplementary Figure 9: Computation of differential TF features between two groups. 

 

Supplementary Figure 10: Example for a matrix used as input to the logistic regression. The column 

Expression Changes is used as response, while the affinity ratios TFx are used as features. 



 

Supplementary Figure 11: Example for an automatically created feature analysis Figure generated on 

the example data provided in the repository. The density plots show the distribution of TF affinities, the 

scatter plot relates the TF affinities to the observed expression changes. The miniature heatmap shows 

the regression coefficients determined during the outer cross validation. 

8.3 Example 
As for INVOKE, we provide an example for DYNAMITE in the TEPIC repository. Here, we investigate gene 

expression differences between two T-cell samples generated in scope of the DEEP project (Hf03_BlEM 

and Hf03_BlTN) using open chromatin regions identified with NOMe-seq. 

DYNAMITE produces bar plots showing model performance (Sup. Fig. 12), bar plots showing regression 

coefficients learned on the entire data set (Sup. Fig. 13) or during the cross-validation procedure (Sup. 

Fig. 14). Using an additional script and the model results, an overview Figure as depicted in Sup. Fig. 11 

can be computed for any feature the user is interested in. This can provide insights into how the 

features should be interpreted.  

 

Supplementary Figure 12: Bar plots showing model performance in terms of F1-measure computed for 

Up-regulated genes, for down-regulated genes as well as accuracy computed for training and test data. 



 

 

 

 

 

Supplementary Figure 13: Bar plot showing the value of regression coefficients computed on the entire 

data set. 

 

 

 

 

 

 

 

 

 

Supplementary Figure 14: Heatmap visualizing the regression weights of coefficients for the individual 

outer-cross folds.  



9 Identification of important regulators from time series epigenomics 

and expression data (EPIC-DREM) 

9.1 Motivation 
EPIC-DREM is a combination of TEPIC and the Dynamic Regulatory Events Miner (DREM) [24]. Instead of 

using static ChIP-seq data, which is provided in DREM 2.0, we suggest to use time-point specific TF 

binding predictions based on time-dependent epigenomic profiles. Thereby, DREM can infer regulators 

that can be linked to expression changes at distinct points in time. We have shown that using the 

predicted, dynamic TF binding events is superior to the static data included in DREM [16]. 

9.2 Description  
In order generate a sparse input matrix for DREM, we devised a strategy to threshold TF affinities based 

on a set of background sequences. These can be either chosen automatically or be provided by the user.  

In Sup. Fig. 15, we illustrate how TF affinities can be discretized and illustrate their usage in DREM. Note 

that DREM is not included in the TEPIC repository. It is available online at 

http://www.sb.cs.cmu.edu/drem/. 

In some applications it is required to make a binary decision whether a factor is binding or not to a 

distinct sequence. To infer this information from TF affinities, TEPIC allows the computation of a TF 

specific affinity threshold by calculating TF affinities on a randomly selected set of genomic regions. 

When selected by TEPIC, these regions show similar characteristics compared to the provided regions 

(GC content and length). Alternatively, a set of background regions can be provided by the user. By 

applying a user-defined p-value on the distribution of affinities computed on the random regions, a 

threshold is chosen. Per TF, all affinities that are smaller than the selected threshold, are set to zero, 

thus a sparse matrix with TF gene interactions can be generated.  

In addition to the standard input required for TEPIC, a reference genome in 2bit format is needed if 

TEPIC should determine the background sequences automatically. Alternatively, the user needs to 

provide a bed file containing background regions.   

In addition to the standard-output, this will generate: 

1. TF affinities for all selected PSEMs in the regions provided by the user that passed the filtering 

step, where all affinities below the specific thresholds are set to 0. 

2. (Length normalized) TF gene scores for all selected PSEMs calculated as described above 

(optionally including peak features) using the thresholded affinities. 

3. A sparse representation of TF gene interactions. 

Either (2) or (3) can be combined with RNA-seq data and used as input for DREM. 



Supplementary Figure 15: Overview on the EPIC-DREM approach: Note that in this Figure, different time 

points are indicated by different colors. First, epigenetic data, e.g. DNase1 experiments, are conducted 

for different points (a). Next, putative TF binding sites are identified by peak and/or footprint calling (b, 

c) and annotated with TF affinities (d). From the putative binding sites, a random set of genomic regions 

is chosen (e) and annotated with TF affinities as well (f). By applying a p-value cut-off on the distribution 

of TF affinities calculated on the random regions (g), a suitable, TF specific affinity threshold is chosen to 

discretize the original TF affinities (h). Using the default TEPIC TF gene score formulation (i), a TF gene 

interaction matrix (j) is computed. Together with gene expression data (k), the sparse matrix (j) can be 

used as input for DREM (l) to identify potential key regulators of expression changes in time series data.  
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