Science Advances

advances.sciencemag.org/cgi/content/full/5/5/eaav3430/DC1

Supplementary Materials for

Dynamically controllable polarity modulation of MoTe₂ field-effect transistors through ultraviolet light and electrostatic activation

Enxiu Wu, Yuan Xie, Jing Zhang, Hao Zhang, Xiaodong Hu, Jing Liu*, Chongwu Zhou*, Daihua Zhang*

*Corresponding author. Email: jingliu_1112@tju.edu.cn (J.L.); chongwuz@usc.edu (C.Z.); zhangdaihua@gmail.com (D.Z.)

Published 3 May 2019, *Sci. Adv.* **5**, eaav3430 (2019) DOI: 10.1126/sciadv.aav3430

This PDF file includes:

Supplementary Materials and Methods

Fig. S1. AFM images of devices.

Fig. S2. Output characteristic curves of device A and device B.

Fig. S3. Position of MCP versus writing voltage in the p-type and n-type doping processes.

Fig. S4. Transfer characteristics of four other MoTe₂ samples under different doping conditions.

Fig. S5. Transfer characteristics of WSe₂ and MoS₂ under different doping conditions.

Fig. S6. Transfer characteristics of MoTe₂ on SiO₂ substrate under different conditions.

Fig. S7. Doping behaviors of the MoTe₂/BN device under visible light illumination.

Fig. S8. Dynamic response characteristics of device C at different V_{ds} .

Supplementary Materials and Methods

S1. Atomic force microscopy (AFM) characterization of the device

AFM measurements indicate that the thicknesses of MoTe₂ and h-BN are around 28 nm and 11.5 nm, respectively, as shown in fig. S1.

Fig. S1. AFM images of devices. (a) AFM image of the whole device. (b) Height images of the different regions as highlighted on the device.

S2. Output characteristic curves of Device A and B at different $V_{gs} \, under \, different \, light \, illumination$

Notably, as shown in fig. S2d, output characteristics of Device B at different V_{gs} under UV illumination exhibited almost negligible gate modulation with source-drain current of pA level, which is consistent with transfer characteristic as shown in Fig. 1e.

Fig. S2. Output characteristic curves of device A and device B. Output characteristics of Device A in dark (**a**) and UV illumination (**b**), respectively. Output characteristics of Device B in dark (**c**) and UV illumination (**d**) respectively.

S3. Position of minimum conduction point (MCP) versus writing voltage in p-type and n-type doping processes

Fig. S3. Position of MCP versus writing voltage in the p-type and n-type doping processes. Position of minimum conduction point in p-type doping (**a**) and n-type doping (**b**) processes extracted from

transfer characteristic curves in Fig. 2a and c. Data points for writing voltages of $V_{gs} > +30$ V and $V_{gs} < -60$ V are missing as the device became completely unipolar in these regions.

S4. Transport properties of photo-doped MoTe₂/BN devices with different thicknesses of MoTe₂ and BN

As shown in fig. S4, the thickness of BN ranges from 5.6 to 24 nm, while the thickness of $MoTe_2$ ranges from 4.0 to 28 nm. Consistently with the text, the original devices exhibited ambipolar transport property. We exposed the devices to UV illumination for 1 second at writing voltage = 60 V (writing voltage = -60 V) to achieve p-type doping (n-type doping) of devices, which indicates excellent reproducibility of this doping process.

Fig. S4. Transfer characteristics of four other MoTe₂ **samples under different doping conditions.** (a), (b), (c), (d) Optical microscopy images and corresponding transfer characteristics of four other sample devices under different doping condition.

S5. Transport properties of photo-doped WSe₂/BN and MoS₂/BN heterostructure

The WSe₂-based transistors exhibit ambipolar transfer characteristic as shown in red curves of fig. S5b. The WSe₂/h-BN device exhibits significant p-type and n-type enhancement after being exposed to UV illumination for 1 second at writing voltage = 0 V, 60 V, -60 V, respectively. Due to the strong pinning effect at metal-MoS₂ interface, the p-type MoS₂ transistors are seldomly achieved. We also face the same predicament using this doping technology, as shown in fig. S5d. After exposing MoS₂/BN device in UV illumination for 1 second at writing voltage = 60 V, the p-regime of MoS₂ shows negligible enhancement, but the current of n-regime of MoS₂ decrease evidently.

Fig. S5. Transfer characteristics of WSe₂ and MoS₂ under different doping conditions. Optical microscopy images of fabricated WSe₂/h-BN (**a**) and MoS₂/h-BN (**c**) devices. Scale bar is 5 um. Transport characteristics of WSe₂/h-BN (**b**) and MoS₂/h-BN (**d**) after photoinduced modulation doping.

S6. Transport properties of MoTe₂ on bare SiO₂ substrate under different various doping conditions

As shown in fig. S6, the red trace is the transfer characteristic of $MoTe_2$ device in the darkness. The violet and blue traces are transfer characteristics of $MoTe_2$ device after being exposed to UV light for 1 seconds at writing voltage = 0 V, -60 V and 60 V, respectively. We found that there was no p/n-doping effect in device, which indicates that the h-BN plays an important role in the UV-induced doping process.

Fig. S6. Transfer characteristics of MoTe₂ **on SiO**₂ **substrate under different conditions.** (a) Optical microscopy image of MoTe₂ transistor on SiO₂ substrate. (b) Transport properties of MoTe₂ on bare SiO₂ substrate under different doping conditions.

S7. Doping behaviors of the MoTe₂/BN device under visible light illumination

We explore the doping behaviors of $MoTe_2/BN$ device under visible light illumination for 5 min at writing voltage = 0 V, -60 V and 60 V, respectively. The wavelengths of visible light are 400 nm and 500 nm, respectively.

Fig. S7. Doping behaviors of the MoTe₂/BN device under visible light illumination. Transfer characteristics of MoTe₂/BN device after being exposed to visible light illumination at wavelength of 400 nm (**a**) and 500 nm (**b**), respectively.

S8. Dynamic photo-response of the device at different V_{ds}

Figure S8 shows dynamic photo-response of the device. The power of incident light is 1.25 nW. At V_{ds} = 0 V, the response time of device is ~ 2 ms. The device exhibited positive photoresponse and showed a maximum photo-detection responsivity of 31.4 A/W at V_{ds} = 1 V. Moreover, the response time is shorter than 200 us, significantly enhanced by one order of magnitude compared with the response at V_{ds} = 0 V.

Fig. S8. Dynamic response characteristics of device C at different V_{ds} . Dynamic photo-response of the device at $V_{ds} = 0$ V (a) and $V_{ds} = 1$ V (b), respectively.