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Supplementary Notes
Supplementary	Note	1	
Principal Components Analysis (PCA) of  the 964 observed genomes according to the 10 following 
variables.  

1. Number of  susC/D-containing loci without CAZymes 

2. Number of  susC/D -containing loci without CAZymes, containing peptidases 

3. Number of  susC/D -containing loci without CAZymes, containing sulfatases 

4. Number of  susC/D -containing loci containing CAZymes (PULs) 

5. Percentage of  CAZyme genes outside PULs 

6. Number of  ORFs per PUL (median) 

7. Percentage of  CAZyme genes inside PULs  

8. Intergenic distances outside PULs (median) 

9. Intergenic distances inside PULs (median) 

10. Number of  genomic scaffolds 

The taxonomic class is indicated as a qualitative variable in left panels. The two main dimensions explain 47.8% 
of  the variability of  the data on all 964 genomes. The projections of  variables are represented by vectors and the 
contributions of  each variable are indicated by a colour code.  

� 	

This analysis shows that: 

i) The genome assembly quality (number of  scaffolds) does not appear to affect significantly the number 
of  PULs or their length. 

ii) The species with the largest number of  PULs are found in the Bacteroidia class.  

iii) In the Chitinophaga and Shingobacteriia classes, some species harbour a large number of  susC/D -
containing loci without CAZymes, along with high proportion of  CAZymes encoded outside the PULs. It is thus 
possible that the CAZyme genes of  these species adopt a genomic organization different from that of  canonical 
PULs.   
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Supplementary Figures
Supplementary	Figure	1	

Content	of	the	PULs.	Le5:	Distribu:on	of	the	number	of	different	CAZyme	families/subfamilies	in	the	unique	

PULs	with	zero	CAZyme	mismatches.	Density	is	represented	by	a	coloured	violinplot.	In	the	boxplot,	midline	

is	the	median,	and	the	box	represents	the	interquan:le	range	(IQR)	with	the	upper	and	lower	limits	of	the	

box	being	the	third	and	first	quar:le	(75th	and	25th	percen:le)	respec:vely.	Whiskers	are	calculated	with	a	

range	of	+/-1.5	IQR.	Data	points	located	outside	whiskers	represent	outliers.	Right:	The	most	frequent	PULs.	

The	PULs	encountered	at	least	100	:mes	are	shown	along	with	their	CAZyme	composi:on.	
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Supplementary	Figure	2	

Distribu:on	of	the	number	of	genes	per	PUL,	dis:nguishing	the	typical	canonical	single	susC/D	PULs	(le5)	

and	 tandem	 repeat	 susC/D	 PULs	 (right)	 Density	 is	 represented	 by	 a	 coloured	 violinplot.	 In	 the	 boxplot,	

midline	is	the	median,	and	the	box	represents	the	interquan:le	range	(IQR)	with	the	upper	and	lower	limits	

of	the	box	being	the	third	and	first	quar:le	(75th	and	25th	percen:le)	respec:vely.	Whiskers	are	calculated	

with	a	range	of	+/-1.5	IQR.	Data	points	located	outside	whiskers	represent	outliers.	
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Supplementary	Figure	3	

Boxplot	representa:on	of	the	distribu:ons	of	all	clusters	of	PULs	clusters	as	a	func:on	of	gene	synteny	and	

taxonomic	distance	(bo[om).	The	ver:cal	axis	represents	the	median	value	of	the	synteny	coefficients	of	

each	pair	of	PULs	within	a	cluster.	Midline	is	the	median,	and	box	represents	the	interquan:le	range	(IQR)	
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with	the	upper	lower	limit	of	the	box	being	the	third	and	first	quar:le	(75th	and	25th	percen:le)	

respec:vely.	Whiskers	are	calculated	with	a	range	of	+/-1.5	IQR.	Data	points	located	outside	whiskers	

represent	outliers.	An	example	of	a	strongly	syntenic	unique	PUL	is	given	in	the	upper	part.	The	

distribu:ons	are	presented	according	to	the	number	of	taxonomic	classes	covered	in	the	clusters.		
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Supplementary	Figure	4	

Impact	of	the	number	of	families	(orange)	and	of	genomes	(blue)	added	during	the	last	12	months	on	the	

number	of	unique	PULs,	with	different	levels	of	mismatches	allowed	during	clustering.			
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Supplementary Tables
Supplementary	Table	1	
Quality	of	the	predicted	PULs	against	literature	data.	Recall	indicates	the	percentage	propor:on	of	the	gene	

pairs	of	the	literature-derived	PULs	that	we	were	able	to	predict.	Precision	indicates	the	propor:on	of	the	

predicted	gene	pairs	that	are	reported	in	the	literature.		

Recall Precision Reference
Bacteroides	ovatus	ATCC	8483 0,84 0,94 1
Flavobacterium	johnsoniae	UW101 0,78 0,85 2
Capnocytophaga	canimorsus	Cc5 0,54 0,93 3
Zobellia	galactanivorans	DsijT 0,66 0,70 4
Bacteroides	cellulosily:cus	WH2	(new	assembly) 0,91 0,76 5
Bacteroides	thetaiotaomicron	7330	(new	assembly) 0,89 0,84 6
Bacteroides	ovatus	ATCC	8483	(new	assembly) 0,85 0,88 1
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Supplementary	Table	2	
Tandem-repeat	susC/D	PULs	and	single	susC/D	PULs	in	the	different	taxonomical	classes	of	Bacteroidetes.	

Chi2-	test	shows	significant	devia:on	from	random	distribu:on.	The	standard	residuals	highlight	the	most	

significantly	enriched	classes.	

Number	of	loci
Class Tandem	repeat	SusC/D	PULs Single	SusC/D	PULs
Bacteroidia 424 7726
Flavobacteriia 53 1935
Sphingobacteriia 37 923
Chi:nophagia 18 718
Cytophagia 34 1028
Saprospiria 1 26

Standard	residuals	(chi2	test)
Class Tandem	repeat	SusC/D	PULs Single	SusC/D	PULs
Bacteroidia 5.91 -5.91
Flavobacteriia -4.07 4.07
Sphingobacteriia -0.84 0.84
Chi:nophagia -2.65 2.65
Cytophagia -1.97 1.97

Saprospiria -0.17 0.17

Pearson's	Chi-squared	test
X-squared	=	37.805,	df	=	5,	p-value	=	4.13e-07

	p-value	=	4.13e-07
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