Supplementary information for "Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity"

Hongwei Liu^{1,2#*}, Muhammad Yahya Khan^{3#}, Lilia C. Carvalhais⁴, Manuel Delgado-Baquerizo⁵, Lijuan Yan⁶, Mark Crawford⁷, Paul G. Dennis⁸, Brajesh Singh², Peer M. Schenk¹

¹Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; ²Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia; ³Institute of Soil and Environmental Science, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; ⁴Centre for Horticultural science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia; ⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309,USA; ⁶Institute of Biodiversity, Friedrich Schiller University Jena 07749, Germany; ⁷Department of Natural Resources and Mines, Toowoomba, QLD, Australia; ⁸School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.

[#]Equal contribution

*Correspondence: h.liu2@westernsydney.edu.au

Table of contents:

Table S1 Effects of ACC treatments on bacterial/archaeal taxa in saline soils
Table S2 Effects of ACC treatments on bacterial/archaeal taxa in non-saline soils4
Table S3 Phylogenetic molecular ecological network analysis
Table S4 Effects of salinity treatments on soil fungal taxa
Table S5 Pearson correlation between the axes from NMDSs and single taxa
Table S6 Soil physicochemical properties
Table S7 Primers used for measuring genes involved in C and N cycling9
Fig.S1 Heatmap summarising variations in bacterial and archaeal taxa10
Fig.S2 Effects of ACC and salinity treatments on soil microbial phyla11
Fig.S3 Changes in network structure of soil prokaryotic communities12
Fig.S4 Soil microbial diversity
Fig.S5 ACC effects on soil carbon substrate utilization14
Fig.S6 SEM analysis15
References

Table S1. Soil bacterial populations (operational taxonomic units (OTUs)) that were

 influenced by ACC treatments in the saline soils.

OTU_ID	p-values	P-values	0: rel. freq.	50: rel. freq.	200: rel. freq.	2000: rel. freq.	Taxonomy
		(corrected)	(%)	(%)	(%)	(%)	
3	0.034	0.376	2.74±0.73	2.02±0.14	1.85±0.04	1.27±0.24	p_Acidobacteria; c_Acidobacteria; o_Acidobacteriales; f_unclassified; g_unclassified
10	0.014	0.150	0.17±0.08	0.43±0.22	0.61±0.05	1.26±0.44	p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Microbacteriaceae; g_Microbacterium
36	0.008	0.093	1.17±0.22	0.39±0.04	0.64±0.15	0.57±0.20	p_SPAM; c_0319-6G9; o_unclassified; f_unclassified; g_unclassified
27	0.028	0.311	0.47±0.08	0.27±0.04	0.30±0.05	0.39±0.04	p_Proteobacteria; c_Betaproteobacteria; o_unclassified; f_unclassified; g_unclassified
OTU_56069	0.012	0.128	0.63±0.05	0.54±0.05	0.37±0.07	0.39±0.09	p_Acidobacteria;c_Acidobacteria;o_Acidobacteriales;f_unclassified;g_unclassified
OTU_63594	0.031	0.341	0.28±0.06	0.41±0.11	0.39±0.07	0.58±0.06	p_Actinobacteria;c_Actinobacteria;o_Solirubrobacterales;f_Solirubrobacteraceae;g_unclassifed
OTU_76249	0.008	0.083	0.15±0.04	0.28±0.07	0.34±0.08	0.46±0.05	p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Microbacteriaceae;g_Agromyces
OTU_47099	0.023	0.248	0.06±0.03	0.22±0.05	0.20±0.06	0.38±0.13	p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Microbacteriaceae;g_Microbacterium
OTU_72418	0.049	0.541	0.21±0.02	0.25±0.05	0.33±0.04	0.37±0.08	p_Actinobacteria;c_Actinobacteria;o_MC47;f_unclassified;g_unclassified
OTU_62989	0.029	0.321	0.30±0.02	0.35±0.03	0.34±0.04	0.25±0.02	p_Acidobacteria;c_Acidobacteria;o_Acidobacteriales;f_unclassified;g_unclassified
OTU_55567	0.004	0.044	0.06±0.02	0.14±0.08	0.21±0.05	0.32±0.02	$p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_\textit{Microbacteriaceae}; g_\textit{Microbacterium}$

The OTUs shown differed between the control and ACC treatments in the saline soils using ANOVA with Tukey-Kramer tests for post-hoc comparisons of means as implemented in STAMP. The values shown in ACC (level 0, 50, 200, 2000 μ M) columns are the mean relative abundances within each treatment ±SDs. Shown are OTUs present at \geq 0.3% mean relative abundance in different ACC treatments.

Table S2. Soil prokaryotic populations (operational taxonomic units (OTUs)) that were influenced by ACC treatments in the non-saline soils.

OTU_ID	p-values	p-values	0: rel. freq.	200: rel. freq.	2000: rel. freq.	50: rel. freq.	Taxonomy
		(corrected)	(%)	(%)	(%)	(%)	
1	0.028	0.167	1.00±0.15	1.64±0.02	1.61±0.35	1.00±0.23	k_Archaea; p_Crenarchaeota; c_Thaumarchaeota; o_Nitrososphaerales; f_Nitrososphaeraceae; g_Nitrososphaera
33	0.005	0.030	0.42±0.06	0.70±0.11	0.51±0.08	0.32±0.01	k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Chromatiales; f_Sinobacteraceae; g_unclassified
OTU_60523	0.000	0.002	0.47±0.04	0.28±0.01	0.26±0.04	0.24±0.03	k_Bacteria;p_Acidobacteria;c_Acidobacteria;o_Acidobacteriales;f_unclassified;g_unclassified
OTU_8606	0.048	0.287	0.10±0.03	0.24±0.09	0.38±0.01	0.25±0.12	k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Microbacteriaceae;g_Microbacterium
OTU_63984	0.021	0.126	0.31±0.04	0.19±0.06	0.14±0.06	0.12±0.03	k_Bacteria;p_Nitrospirae;c_Nitrospira;o_Nitrospirales;f_Nitrospiraceae;g_Nitrospira
OTU_32822	0.010	0.063	0.30±0.04	0.15±0.04	0.17±0.02	0.10±0.06	$\label{eq:k_bacteria} k_acteria; p_Acidobacteria; o_Acidobacteriales; f_unclassified; g_unclassified; d_unclassified; d_uncl$

The OTUs shown differed between the control and ACC treatments in the non-saline soils using ANOVA with Tukey-Kramer tests for post-hoc comparisons of means as implemented in STAMP. The values shown in ACC (level 0, 50, 200, 2000 μ M) columns are the mean relative abundances within each treatment ±SDs. Shown are OTUs present at $\geq 0.3\%$ mean relative abundance in different ACC treatments.

Table S3. Changes in bacterial/fungal communities in response to salinity treatments usingphylogenetic molecular ecological networks (pMENs).

Domomotors	Bac	teria	Fungi		
Farameters	Control	Saline	Control	Saline	
Clustering coefficient	0.038	0.01	0	0.023	
Connected component	17	16	25	18	
Network diameter	17	12	4	14	
Short paths	4110 (36%)	2214(33%)	160 (3%)	3330 (31%)	
Average number of neighbours	1.83	1.71	1.31	1.81	
Number of nodes	106	82	70	103	
Network heterogeneity	0.584	0.545	0.473	0.578	

Table S4. Soil fungal operational taxonomic units (OTUs) that were influenced by salinity treatments.

OTU_ID	P value	P value corrected	Salinity: rel. freq. (%)	non-salinity: rel. freq. (%)	Тахопоту
OTU_8	0.0000	0.0002	4.00±1.24	1.83±0.39	p_Ascomycota;c_Sordariomycetes;o_Hypocreales;f_Nectriaceae;g_Haematonectria
OTU_9	0.0002	0.0027	3.16±1.18	1.51±0.36	p_Ascomycota;c_Sordariomycetes;o_Hypocreales;f_Nectriaceae;g_Fusarium
OTU_3	0.0002	0.0030	10.16±1.90	7.16±1.25	p_Basidiomycota;c_Tremellomycetes;o_Trichosporonales;f_Trichosporonaceae;g_Trichosporon
OTU_4	0.0003	0.0035	4.81±1.92	2.20±0.57	p_Ascomycota;c_Sordariomycetes;o_Hypocreales;f_Nectriaceae;g_Fusarium
OTU_27	0.0006	0.0076	0.77±0.38	0.29±0.12	p_Ascomycota;c_Sordariomycetes;o_Hypocreales;f_Nectriaceae;g_Fusarium
OTU_1	0.0009	0.0123	9.88±10.87	26.27±9.22	p_Ascomycota;c_Pezizomycetes;o_Pezizales;f_Pezizaceae;g_unidentified
OTU_21	0.0051	0.0660	0.57±0.22	0.96±0.36	p_unidentified;c_unidentified;o_unidentified;f_unidentified;g_unidentified
OTU_2	0.0076	0.0982	21.59±7.61	14.09±3.69	p_Basidiomycota;c_Tremellomycetes;o_Trichosporonales;f_Trichosporonaceae;g_Trichosporon
OTU_25	0.0150	0.1950	0.70±0.27	0.41±0.25	p_Ascomycota;c_unidentified;o_unidentified;f_unidentified;g_unidentified
OTU_12	0.0300	0.3900	1.38±0.39	1.91±0.64	p_Ascomycota;c_Sordariomycetes;o_Sordariales;f_Chaetomiaceae;g_Thielavia
OTU_13	0.0410	0.5330	1.34±0.34	1.64±0.33	p_unidentified;c_unidentified;o_unidentified;f_unidentified;g_unidentified
OTU_30	0.0410	0.5330	0.75±0.76	0.24±0.10	p_Ascomycota;c_Sordariomycetes;o_Hypocreales;f_Nectriaceae;g_Fusarium
OTU_26	0.0450	0.5850	0.35±0.29	0.72±0.48	p_Zygomycota;c_Incertae_sedis;o_Mortierellales;f_Mortierellaceae;g_Mortierella

The OTUs shown differed between the saline and non-saline conditions using ANOVA with Tukey-Kramer tests for post-hoc comparisons of means as implemented in STAMP. The values shown in saline/non-saline columns are the mean relative abundances within each treatment \pm SDs. Shown are OTUs present at \geq 0.5% mean relative abundance in different salinity treatments.

Table S5. The correlation between the axes from NMDSs and single taxa tested using the linear correlation test (Pearson).

Bacterial community (OTU>0.05% in relative abundance)						
	BACT 1		BACT 2			
OTU_ID	r	Sig.	OTU_ID	r	Sig.	
3	0.66	***	1	0.8	***	
4	0.64	***	2	0.64	***	
5	0.53	**	9	-0.44	*	
6	0.64	***	14	-0.47	*	
8	-0.7	***	17	0.57	**	
9	-0.74	***	18	0.67	***	
10	-0.69	***	25	-0.44	*	
11	-0.88	***	28	-0.51	*	
12	-0.82	***	33	0.41	*	
13	-0.68	***				
14	-0.77	***				
15	-0.88	***				
16	-0.69	***				
17	0.51	*				
19	-0.54	**				
20	-0.55	**				
21	0.48	*				
22	0.67	***				
24	0.48	*				
26	0.57	**				
27	0.53	**				
29	0.61	***				
30	0.58	**				
31	0.77	***				
32	0.82	***				
36	0.81	***				
37	0.78	***			_	

	Fungal community (Top 10 OTUs)							
		FUNG_1		FUNG_2				
(DTU_ID	r	Sig.	OTU_ID	r	Sig.		
	38	-0.95	***	40	-0.42	*		
	39	0.82	***	43	-0.54	**		
	40	0.8	***	45	0.68	***		
	41	0.9	***	46	0.63	**		
	43	0.76	***	47	-0.44	*		
	44	0.7	***					
_	47	0.42	*					

 Table S6. Soil physicochemical properties.

Soil parameter	Value
Sand (%)	12
Silt (%)	50
Clay (%)	38
рН	7.8
EC (dS m ⁻¹)	1.42
Total carbon content (Wt%)	1.13
Total nitrogen content (Wt%)	0.04
Total AI concentration (Wt%)	4.86
Total As concentration (mg kg ⁻¹)	0.84
Total Ba concentration (mg kg ⁻¹)	251
Total Ca concentration (Wt%)	1.3
Total Cd concentration (mg kg ⁻¹)	0.35
Total Co concentration (mg kg ⁻¹)	2.47
Total Cr concentration (mg kg ⁻¹)	78
Total Cu concentration (mg kg ⁻¹)	52
Total Fe concentration (Wt%)	5.63
Total K concentration (Wt%)	3.6
Total Mg concentration (Wt%)	0.21
Total Mn concentration (mg kg ⁻¹)	1295
Total Mo concentration (mg kg ⁻¹)	1.44
Total Na concentration (Wt%)	2.91
Total Ni concentration (mg kg ⁻¹)	59
Total P concentration (Wt%)	0.31
Total Pb concentration (mg kg ⁻¹)	0.18
Total S concentration (mg kg ⁻¹)	1836
Total Se concentration (mg kg ⁻¹)	0.33
Total Si concentration (Wt%)	32
Total Sr concentration (mg kg ⁻¹)	190
Total Zn concentration (mg kg ⁻¹)	315

Table S7. Primer sequences used for real-time PCR assays designed for the determination of

 copy numbers of nitrogen and carbon cycling genes in soil.

Genes	Forward sequence	Reverse sequence	Amplico n (bp)	Tm ^A (°C)	Reference
Chitinase A	CGTCGACATCGACTGGGARTDBC C	ACGCCGGTCCAGCCNCKNCCR TA	400	63	(Yergeau et al., 2007)
arch- amoA	TTCTTCTTTGTTGCCCAGTA	CTGAYTGGGCYTGGACATC	256	63	(Wuchter et al., 2006)
nifH	AAAGGYGGWATCGGYAARTCCAC CAC	TTGTTSGCSGCRTACATSGCC ATCAT	459	60	(Rösch et al., 2002)
amoA	GGGGTTTCTACTGGTGGT	CCCCTCKGSAAAGCCTTCTTC	491	56	(Rotthauwe et al., 1997)
nosZ	CGYTGTTCMTCGACAGCCAG	CATGTGCAGNGCRTGGCAGAA	700	64	(Rösch et al., 2002)
narG	TAYGTSGGSCARGARAA	TTYTCRTACCABGTBGC	650	59	(Philippot et al., 2002)
acdS	GGCAACAAGMYSCGCAAGCT	CTGCACSAGSACGCACTTCA	133	67	(Bouffaud et al., 2018)

Fig.S1 Heatmap summarizing variations in the microbial taxa based on data obtained from 16S rRNA and ITS amplicon sequencing (shown are taxa $\geq 0.5\%$ in relative abundance). Each Operational Taxonomic Unit (OTU) has a unique bracket that is consistent with those shown in other figures and tables. Stars after each OTU ID represent significant differences between saline and non-saline conditions (* *P*<0.05, ** *P*<0.01, *** *P*<0.001, ANOVA, Tukey-Kramer test). The green box inserted in heatmap (**b**) highlights the differences of OTU [42] between control and ACC treatments in the saline soil.

Fig.S2 Barplot summarizing top 20 bacterial/archaeal phyla in the silty clay loam (a) and those bacterial phyla responding to salinity treatments in relative abundances (b). The yellow and blue dots embedded in error bars distinguish decreases and increases in relative abundance of bacterial phyla after salinity treatments, respectively.

Fig.S3 Changes in soil bacterial/archaeal network structure in response to salinity treatments.

Fig.S4 The effect of ACC and salinity treatments on the observed species, predicted richness and evenness (Simpson's Diversity Index) of bacterial communities associated with soil environments. All values were based on 6,000 rarefied sequences per sample. Error bars denote SEs (n=3).

Fig.S5 The effects of ACC amendments on the utilization of 15 carbon substrates in the nonsaline and saline soils. Stars above columns represent significant differences between ACC treatments and control (0 μ M ACC) (*P*<0.05 *, *P*<0.01 ***, *P*<0.001 ***, ANOVA, Least Significant Difference (LSD)). Error bars denote SDs (n=3).

Figure S6. Structural equation models accounting for the direct and indirect effects of salinity and ACC on soil function and plant biomass via changes in microbial community composition (a, b). Numbers adjacent to arrows are path coefficients (P<0.05*, P<0.1a), and indicative of the effect size of the relationship. The thickness of the arrow indicates the strength of relationship. R², the proportion of variance explained. Biomass: plant biomass. Function: soil microbial function.

References

Bouffaud, ML., Renoud, S., Dubost, A., Moënne-Loccoz, Y., Muller, D. 2018. 1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6, 114.

Philippot, L., Piutti, S., Martin-Laurent, F., Hallet, S., Germon, J.C., 2002. Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. *Appl Environ Microbiol* 68, 6121-6128.

Rösch, C., Mergel, A., Bothe, H., 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. *Appl Environ Microbiol* 68, 3818-3829.

Rotthauwe, JH., Witzel, KP., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. *Appl Environ Microbiol* 63, 4704-4712.

Wuchter, C., Abbas, B., Coolen, M.J., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J., 2006. Archaeal nitrification in the ocean. *PNAS* 103, 12317-12322.

Yergeau, E., Kang, S., He, Z., Zhou, J., Kowalchuk, G.A., 2007. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. *ISME J* 1, 163-179.