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1. Direct measurement of dDAC movement with a Michelson interferometer 16 

 17 
Fig. S1. (A) Schematic of dDAC setup with interferometric system. (B) Intensity change of interference pattern 18 
during compression and resulting cell displacement with time. 19 
 20 

Dynamic diamond anvil cell (dDAC) described in previous studies [S1-S3] modulates 21 

pressure of sample by piezoelectric actuators; the actuators embedded in the dDAC body 22 

cause dynamic (de)compression of a gasket cell, containing sample at a fixed static pressure. 23 

We assume that elastic deformation of diamond anvils is negligible and confirm that the 24 

lower diamond anvil is strongly fixed on the dDAC body. Thus, the thickness change (∆l) of 25 

gasket cell during (de)compression is identical to the moving displacement of the upper 26 

diamond anvil. Here, we continuously monitor the movement of the upper anvil with a 27 

Michelson interferometer integrated into the dDAC system (see Fig. S1A); when piezoelectric 28 
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actuators push or pull the upper plate of dDAC, on which the upper anvil is mounted, the 1 

laser beam reflected from table face of the upper diamond anvil makes dynamic interference 2 

pattern with the reference laser beam reflected from the fixed mirror. Power of the incident 3 

laser beam was limited to less than 2 mW in order to minimize heating the sample chamber. 4 

Intensity variation of the interference pattern recorded with a high-speed camera was fitted 5 

with a sinusoidal function to obtain the phase angles (θ) of each data points (Fig. S1B). 6 

Finally, the displacement (∆l) was calculated as shown in Fig. S1B based on the relation of 7  = 2Δ, where λ is the wavelength of incident laser (532 nm) and n is the number of fringe 8 

order (θ/2π). Even in the hold step formed by applying a constant voltage to the actuators, a 9 

minute variation of the interference intensity was recorded and this is converted to standard 10 

deviation of the displacement measurement of ±43.92 nm. 11 

 12 

2. Quantitative analyses on compression strain and strain rate 13 

Upon compression, sample strain is calculated by dividing the measured displacement 14 

(∆l) by the initial gasket thickness (l0) and subsequently the strain rate is calculated by 15 

dividing the strain (∆l/l0) with the compression time (t). Assuming that the area of gasket hole 16 

() does not change upon dynamic (de)compression, the measured strain can be same with 17 

the volume strain of sample (εV), as follows;  = Δ ⁄ = (Δ ⋅ ) ( ⋅ )⁄ = Δ ⁄ , 18 

where ΔV is the change of the sample volume by dynamic (de)compression, V0 is initial 19 

volume of sample (or gasket cell) at ambient pressure. 20 

In order to measure standard deviations of the strain and the strain rate, we check the 21 

measurement uncertainty of the initial gasket thickness and the displacement; the initial 22 

gasket thickness measurement carries a uncertainty of ±500 nm and the displacement 23 

measurement using the Michelson interferometer carries a uncertainty of ±43.92 nm. Since 24 

we generate the trapezoidal function with different compression rates by controlling the cycle 25 

period for a given voltage amplitude, standard deviation of the measured strain for each 26 

sample chamber has a constant value; the measured strain is 0.0273±8.70x10-4 when the anvil 27 

displacement of 1.33 μm is considered for the initial cell thickness of 49 μm. The specific 28 

chamber dimension and testing condition is same with that for Figs. 1A and 1B. Here, the 29 

standard deviation of the strain rate changes with the compression time; for the strain rate of 30 

0.181, we expect a standard deviation of ±6.00x10-3 /s. 31 
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When the displacement of 1.33 μm corresponding to the driving voltage amplitude of 1 

500 mV (to the piezoelectric actuators) is considered for the compression time in the range of 2 

20 ms ~ 100 s, the compression speed varies from 1.33x10-8 to 6.65x10-5 m/s. The diffusion 3 

speed of water molecules at the equilibrium melting pressure is determined as 5.78 m/s when 4 

the diffusivity and interatomic distance between oxygen atoms are given by 1.67 x 10-9 m2/s 5 

and 2.89 x10-10 m, respectively [S4, S5]. The diffusion speed of water molecules is about 104 6 

times faster than the compression speed. Therefore, we can neglect the possibility of 7 

inhomogeneous local density variation in the water due to the dynamic compression. In 8 

addition, the strain rate by ramping in this study is still much smaller than shock (dynamic) 9 

compression (≫104 /s) [S6]. Thus, we believe that this experimental condition is nearly 10 

matches hydrostatic condition even though crystal growth occurs inside of the water sample. 11 

 12 

3. Ice VI crystal growth in 3-d and 2-d modes under different compression rates 13 

Fig. S2 shows crystal growths for three different compression times (10 s, 250 ms, 14 

and 20 ms). Early stages of the crystal growth exhibits same behavior for all the three cases; 15 

the rounded 3-d crystal becomes faceted crystal. Here, we can clearly observe that the parallel 16 

growth of the {112} plane is faster than the vertical growth; the edges in the culet-parallel 17 

direction already forms sharply, while the edges in the vertical direction is still growing (See 18 

Fig. S2A). The different growth speed of crystal planes is well known phenomenon in early 19 

stage of crystal growth due to anisotropic property, which is not an equilibrium shape [S7]. 20 

We can observe same phenomenon with 250-ms ramping time which is relatively slow 21 

compression (See Fig. S2B), and 20-ms ramping time with shock growth (Fig. S2C). In the 22 

case of 20-ms compression time, once the shock growth occurs from the parallel {112} 23 

planes, the overpressure decreases. And thus, there is no longer sufficient driving force 24 

available to form the 2-d shock growth in the vertical {112} planes. Therefore, the 2-d shock 25 

crystal growth is dominated by the interface property from the crystallographic viewpoint 26 

because it occurs after a noticeable faceting of the rounded initial crystal. Also its occurrence 27 

can be affected by the sequence of facet plane formation with acute corners and clean edges. 28 
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 2 

 3 
Fig. S2. Regardless of the shock crystal growth, faceting of a rounded starting crystal occurs at the early stage of 4 
the compression. A polygonal crystal was shaped from the rounded seed, then grew along the perpendicular 5 
direction and finally formed a 3-d faceted polyhedron for (A) slow ramping with compressing time of 10 s and 6 
(B) moderate ramping with compression time of 0.25 s. (C) For the case of fast ramping with compression time 7 
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of 20 ms, similar faceting process was observed but 2-d shock crystal growth along the in-plane direction 1 
occurred before formation of an acute corner along the perpendicular direction. 2 

 3 

4. Surface indexing for 3-d faceted and 2-d shock-grown ice VI crystals 4 

 5 
Fig. S3. Morphologies of (A) 3-d octahedral and (B) 2-d shock-grown rhombic crystals. Both crystals have same 6 
corner angles of α = ~114o and β = ~66o. (C) Plane indexing for a shock-grown 2-d crystal having 3-d faceted 7 
mother crystal at its center. 8 
 9 

Crystal planes can be indexed based on geometric characteristics (e.g., corner angles) 10 

and crystallographic information. 3-d and 2-d crystals have same corner angles of α= ~114o 11 

and β= ~66o (Figs. S3A and B), indicating an identical crystalline orientation regardless of the 12 

growth behavior. For a tetragonal lattice, the included angle (ϕ) between two planes of (h1k1l1) 13 

and (h2k2l2) is given. As a result of various (hkl) combination with the lattice parameter of ice 14 

VI, a = 0.61812 nm and c = 0.5689 nm [S8], four edge planes forming α and β angles are 15 

found to be {112} planes family; the (112) plane have interplanar angle of 113.89o with the 16 

(112) plane and 66.11o with the (112) plane, which are nearly identical with the experimental 17 

α and β angles. While corner direction along the short axis of the octahedral crystal is 18 

determined as <001>, those along the long axes are <110>. Finally, morphology of 3-d and 2-19 

d crystal can be described as octahedron covered by {101} crystal planes and rhombic plate 20 

covered by four {112} and two {110} crystal planes, respectively. Our indexing for the 3-d 21 

crystal is supported by Yamamoto [S9], who also observed {101} ice VI crystal formation 22 

under static high-pressure with X-ray precession photographs.  23 

 24 

5. Effect of different DAC boundaries (or different chamber thickness) on 2-d shock 25 

crystal growth 26 

In order to check the dependence of the 2-d shock crystal growth on boundary condition 27 

(or dimensional shape) of the sample chamber, we prepared three gaskets with different initial 28 

thicknesses of 17, 53 and 91 μm, but with the same diameter of the gasket hole of 100 μm. 29 
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When fast compression of 6.65x10-5 m/s (or compression time of 20 ms) is applied, the shock 1 

crystal growth is observed for all experimental conditions. Fig. S4 shows the shock crystal 2 

grown in the sample chamber with 91 μm in thickness and 100 μm in diameter. This result 3 

vindicates that the boundary condition of the sample chamber is not a crucial factor for the 4 

shock crystal growth. 5 

 6 

Fig. S4. Faceting and shock crystal growth evolved in a chamber with comparable dimensions along diameter 7 
and thickness directions. 8 

 9 

6. Estimation of thickness of the 2-d shock grown crystal 10 

If we assume that volumetric growth rates of 3-d and 2-d crystals are identical for short 11 

duration, thickness of the 2-d shock grown crystal can be estimated by equating the volume 12 

increase of the 3-d crystal with that of the 2-d crystal for a given strain increment. In the case 13 

of a rhombohedral plate of the 2-d crystal (Fig. S3B), its crystal volume ()  is 14 2  ℎ, where h is the thickness of the 2-d crystal;   can be simplified into 15 3.06842 ∙ ℎ ∙  . Fig. S5 shows growth displacements in <001> direction, (d001) for 3-d and 16 

2-d growth. Immediately following the shock initiation indicated by an arrow in Fig. S5, the 17 

thickness of the 2-d crystal can be calculated by assuming that ΔV3-d is equal to ΔV2-d for a 18 
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short duration. 1 

2-d grown area was analyzed from one or two image frames after the shock moment 2 

corresponding to the elapsed time of 0.67 ms for a few crystals. A volume increase of the 3-d 3 

facet crystal was also measured from the crystal size change with the same time. Since the 3-4 

d crystal have an octahedral geometry with short <001> and long <110> corners (Fig. S3A), 5 

its volume () can be given by    , where dhkl is dimension of growing axis along 6 

<hkl> directions;  can be reduced to 3.1381 ∙  , considering the lattice parameters 7 

of ice VI (a = 0.61812 nm and c = 0.5689 nm [S8]) and the geometric relation of  =8 √   in tetragonal lattice. As a result, h is determined to be 132.62±32.07 nm. 9 

  10 
Fig. S5. Growth displacement along <001> corner direction for 3-d and 2-d growth under compression strain 11 
rate of 0.000542 /s and 0.1814 /s, respectively. The onset of shock growth is marked by an arrow.  12 
 13 

In order to check the latent heat formation by the 2-d shock crystal growth, we consider a 14 

simple model system. If a lozenge-shaped, 2-d crystal advances by 5 μm from a 3-d 15 

octahedral crystal with a long diagonal axis of 10 μm, the shock-grown volume of the 2-d ice 16 

crystal is 12.47 μm3 (or 9.22x10-13 mol) with the nominal thickness of 130 nm. This growth 17 

releases the latent heat of 5.37x10-9 J. The molar volume and latent heat of ice VI are given as 18 

1.35x10-5 m3/mol and 5.83 kJ/mol, respectively [S10]. If the sample chamber with 100 μm in 19 

diameter and 50 μm in thickness is filled with liquid water at 0.96 GPa and ambient 20 

temperature, the released latent heat can heat up the water mass of 4.84x10-7 g to about 21 

0.0030 K. The molar volume, molar mass and heat capacity of the water are 1.46x10-5 22 

m3/mol, 18.02 g/mol and 3.76 J/(g·K), respectively [S11]. We currently do not have capability 23 

to measure such a minor increase in temperature. 24 
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 1 

 2 

7. Uncertainty of pressure measurement 3 

 4 
Fig. S6. (A) Ruby fluorescence peak (R1) enlarged from peaks in the inset. Red and blue data exhibit peak shift 5 
about 0.0132 and 0.0280 nm from equilibrium melting state (black data), corresponding to the overpressure 6 
about 0.036 and 0.077 GPa, respectively. (B) Standard deviation of the pressure measurement is given by ±2.8 7 
MPa. 8 

Uncertainty of pressure measurement is essentially determined by the resolution of ruby 9 

fluorescence peak (R1) measurement. Fig. S6A shows the ruby florescence signal during 10 

compression, which shows a clear shift of the R1 peak. Our Raman spectroscopy setup 11 

provides a pixel resolution of ~0.0368 nm/pixel corresponding to the pressure level of ~0.1 12 

GPa/pixel based on the well-known relation between R1 peak shift and pressure [S12]. 13 

However, more precise pressure estimation can be achieved by determining the wavelength 14 

centroid of the R1 peak via Gaussian fitting (see Fig. S6A). The standard deviation of the 15 

pressure is measured at a constant pressure value in the trapezoidal holding regime. More 16 

than hundred R1 peaks from the hold regime are analyzed; the standard deviation for the R1 17 

peak center is ±0.0010 nm which corresponds to the pressure standard deviation of ±0.0028 18 

GPa (see Fig. S6B). This precise pressure measurement is possible because small ruby balls 19 

with micron size are used and fully enclosed by the water at the melting pressure. In addition, 20 

the pressure range during the measurement is relatively narrow less than 0.06 GPa during 21 

crystal growth, shape distortion (or merging) of the ruby double peaks is negligible; Δλ 22 

between two ruby peaks was 1.4497±0.0015 nm regardless of compression rate or 23 

compression cycle. 24 
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8. Detection of the onset of the anomalous 2-d shock growth 1 

We detect the onset of the 2-d shock growth by monitoring the sudden increase of 2 

growth displacement (see Fig. S7). Interestingly, in spite of the coexistence of water and ice, 3 

pressure increases above the equilibrium melting pressure under fast compression (see Fig. 4 

S7). Such overpressure implies that crystal growth is delayed even under the significant 5 

accumulation of driving force for crystal growth due to a kinetic barrier at the crystal-liquid 6 

interface. After the instant of the 2-d shock growth (marked by an arrow in Fig. S7), the 7 

overpressure still increases but at a reduced rate. This observation indicates that the 8 

anomalous shock growth occurs under local non-equilibrium growth condition. 9 

 10 
Fig. S7. Simultaneous measurements of both pressure and crystal growth displacement with time. The onset of 11 
the 2-d shock growth is marked by an arrow and dashed line.  12 
 13 
 14 

9. Prediction of effective overpressure and determination of density partitioning at 15 

crystal-liquid interface 16 

 17 
Fig. S8. (A) Growth speed vs overpressure plot in Fig. 3B with extended overpressure range. The arrows 18 
indicate the way to estimate the effective overpressure; (B) Plot of effective liquid density with growth speed.   19 
 20 
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As analogous to the diffusionless solidification in alloy systems via solute trapping 1 

[S13-S15], rapid crystal growth of pure substance or colloidal systems under large driving 2 

force may accompany defect (or density) trapping [S16, S17]. As a result of the rapidly 3 

advancing interface, defects or free volume in liquid can be frozen into solid without defect 4 

partitioning at the interface. Thus the partition coefficient (i.e., the ratio of liquid to solid 5 

density at interface) becomes close to unity with increasing growth speed. Besides the Aziz’s 6 

model [S13] on the solute trapping, Jackson et al. developed a power law function for the 7 

partition coefficient [S14] and Sobolev extended the solute trapping theories to local non-8 

equilibrium diffusion model [S15]. The partition coefficient under local equilibrium changes 9 

into that under local non-equilibrium by considering relaxation effect of solute. 10 

To estimate partition coefficient under fast compression, we attempted to obtain the 11 

effective overpressure and the effective water density at the 3-d crystal surface. The effective 12 

overpressure necessary for inducing fast growth of the 3-d crystal, which is equivalent to the 13 

2-d shock growth speed, can be estimated from the extrapolation of the growth speed fitting 14 

for the 3-d facet crystal (Fig. S8A). The predicted value for the effective overpressure is 15 

converted to molar volume based on the third-order Birch-Murnaghan equation of state (EOS) 16 

with V0 = 18.145 cm3/mol, K0 = 1.986 GPa, and K0’ = 8.66 GPa for water [S18] and 17 

supercompressed water (Fig. S8B). EOS parameters for ice VI are V0 = 14.17 cm3/mol, K0 = 18 

14.01 GPa, and K0’ = 4 GPa [S19]. Density of water is obtained by dividing the molar volume 19 

by the molar mass of water (18.015 g/mol). Finally, partition coefficient is calculated as 20 

shown in Fig. 5 which is fitted with the Aziz’s model of  =  + / (1 + /)⁄  21 

[S13], where kEq is the equilibrium partition coefficient at melting pressure (0.9106), v is the 22 

measured growth speed, vDi is the fitted characteristic speed for density trapping and given by 23 

0.04224 m/s. We note that ice density is assumed to be negligibly affected by the effective 24 

overpressure that exists locally within interface regime and thus remains constant (1.35 g/cm3) 25 

during dynamic compressions. 26 

 27 

9. Information on MD simulation; potential model and growth speed calculation 28 
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 1 
Fig. S9. Time-sequence of the potential energy of the system during growth of (101), (110), and (112) planes 2 

under overpressure (ΔP) of 0.08, 0.38, and 0.58 GPa (A-C). 3 

 4 
Growth behavior of (101), (110), and (112) planes of ice VI crystal were explored in MD 5 

simulation with the TIP4P/ice potential model [S20]. This potential is available to the 6 

temperature-pressure range where ice VI exists. Three simulation systems were prepared for 7 

depicting the (101), (110) and (112) planes of an ice VI crystal exposed to supercompressed 8 

water. Each system, which consisted of bulk ice and water layers confined in a rectangular-9 

parallelepiped with three-dimensional periodic boundary conditions, was created in the same 10 

manner as described in the reference [S21]. Because of the periodic boundary conditions, two 11 

ice-water interfaces were created in each system. For both (101) and (110) systems, bulk ice 12 

and water layers consist of 2560 and 5120 H2O molecules, respectively. For the (112) system, 13 

bulk ice and water layers consist of 2264 and 4528 H2O molecules, respectively. 14 

According to the literature [S20], the pressure at which ice VI is in equilibrium with water 15 

at 298 K in the TIP4P/Ice model is approximately 1.4 GPa. In our simulation of the (101) 16 

system at 298 K, growth occurred at 1.45 GPa and melting occurred at 1.4 GPa, whereas 17 

neither growth nor melting occurred at 1.42 GPa. Thus, we assume that the equilibrium 18 

pressure is 1.42 GPa. The initial dimensions of each system corresponds to the equilibrium 19 

dimensions at 298 K and the equilibrium melting pressure; 4.91×3.39×10.47 nm3 for the (101) 20 

system, 4.68×3.48×10.73 nm3 for the (110) system, and 5.25×3.14×9.42 nm3 for the (112) 21 

system. The MD simulation for the growth of ice VI was performed for the pressure values of 22 

1.5, 1.75 and 2.0 GPa, corresponding to the overpressure (DP) of 0.08, 0.33 and 0.58 GPa at 23 

298 K. Since the MD simulation was performed under isothermal and isobaric condition, the 24 

volume of the system decreased as ice VI grew. The crystal growth speed was obtained along 25 

different crystal planes by taking the derivatives of the potential energy change with time (Fig. 26 
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S9) and summarized in Fig. 4B. According to the reference [S21], crystal growth speed (ν) 1 

were determined by  ∆   . Here, nint = 2 is the number of the interfaces included in 2 

the system. Duiw is the shift of the potential energy U when a water molecule in the water 3 

region was incorporated into the ice crystal in the system. The value of Duiw at each 4 

overpressure was estimated using Duiw = −3.7728×10−5×DP – 5.5221×10−4, which was 5 

determined by performing molecular dynamics simulations of bulk ice VI and water at high 6 

pressures separately. dl is the thickness of a molecular layer of the ice plane, and Nl is the 7 

number of molecules in the layer. dl/Nl = 1.3×10−3 nm was used for estimation of ν for all 8 

(101), (110), and (112) planes. The value of dU/dt was measured within whole t range for DP 9 

= 0.08 and 0.33 GPa and within 0-1.5 ns for DP = 0.58 GPa. 10 

The computation was performed using a leap-frog algorithm with a time step of 1 fs [S22]. 11 

During each simulation trial, temperature and pressure were maintained at 298 K and each 12 

pressure value by means of a method proposed by Berendsen et al. [S23]. The thermal and 13 

pressure bath constants were set to 0.1 and 2.0 ps, respectively. The simulations were 14 

performed with DL_POLY 2.20 [S24]. The Coulomb interaction was estimated by using the 15 

Ewald method with an accuracy of 10−6. The real space cutoff distance was set to 10 Å and 16 

the Ewald convergence parameter was 0.3208 Å−1. The Lennard-Jones interaction acting 17 

between the oxygen atoms of a pair of water molecules was truncated at an intermolecular 18 

distance of 10 Å. 19 

 20 

10. Information on MD simulation; molecular density profile of interface 21 

The density profile for each plane was generated in the following manner. The system 22 

was divided into layers with the thickness of 0.2 Å along the direction normal to the interface, 23 

and the time-averaged number of oxygen atoms included in each layer over a period of 0.5 ns 24 

from the beginning of the simulation was calculated. The time-average number of oxygen 25 

atoms in each layer was normalized by the number of oxygen atoms that produces the density 26 

of 1 g/cm3. Then, the density profile was calculated as the normalized number of oxygen 27 

atoms as a function of the layer position in the direction normal to the interface. It may be 28 

noted that the density profile of an ice-water interface obtained in an MD simulation does not 29 

significantly depend on the system size [S25]. 30 
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Currently, it is not possible to obtain the density profiles shown in Figs. 4C and 4D using 1 

the experimental data. However, the density, thermal expansion coefficient, and isothermal 2 

compressibility of ice VI based on the TIP4P/Ice model are close to the experimental values 3 

[S20, S26], which supports that the TIP4P/Ice model correctly reproduces well the structure 4 

of ice VI in real systems. Therefore, we do not expect that the present density profiles 5 

significantly differ from those in real systems. To confirm the reliability of the density 6 

profiles shown in the manuscript, we also analyzed the density profiles using a modified six-7 

site model of H2O, which was recently proposed for simulations of ice and water [S28]. The 8 

modified six-site model provided almost the same density profiles as in the TIP4P/Ice model 9 

(Fig. S10). In previous studies [S22, S28], the interface structure obtained by an MD 10 

simulation has been successfully used to explain the growth mechanism of ice in real systems, 11 

regardless of the type of simulation system (the system for the growth at ice-water interfaces 12 

and the system for the free growth of an ice crystal in water). Thus, we believe that the 13 

density profiles obtained in this study are reliable and can be used to support the growth 14 

mechanism of ice VI explained in the main manuscript. 15 

 16 
Fig. S10. (A) The density profiles at DP = 0.1 and 0.6 GPa, which were obtained using the modified 17 
six-site model of H2O [S27]. We assumed that the equilibrium melting pressure of ice VI in the modif18 
ied six-site model was 1.6 GPa, because ice growth occurred at P > 1.6 GPa and melting occurred at19 
 P <1.6 GPa. (B) Normalized envelope is fitted with the scaled interface distance, Z relative to the thi20 
ckness of molecular layer, dl of each crystal plane. 21 
 22 

Notably, the purpose of the present MD simulations was to elucidate the reason for the 23 

larger growth speed for the {112} plane as compared to other planes at large DP, but not to 24 

reproduce the dimensional growth transition from 3-d to 2-d crystal. Since the size and time 25 

scales of the MD simulation are much different from those in real systems, it is not possible 26 

to numerically reproduce the growth transition from 3-d to 2-d crystal. Strictly speaking, the 27 
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growth speed at each plane and crystal morphology would be influenced not only by the 1 

growth mechanism at the molecular level but also by macroscopic quantities, such as the 2 

latent heat and convection. To discuss the relationship between the molecular-scale growth 3 

mechanism and the macroscopic crystal growth in detail, a large-scale macroscopic 4 

simulation, such as phase-field simulation [S29] will be required. 5 

In addition, we note that quantum effects in ice and water were not taken into account in 6 

the present MD simulation. At present, we do not expect that the simulation results were 7 

significantly affected by errors originating from the lack of quantum effects. Ab initio water 8 

potentials tend to overestimate the melting point of ice [S30, S31]. Confirming the validity of 9 

the present simulation results by first-principle MD simulations [S32] or MD simulations 10 

with the potential model in which quantum effects are taken into account [S33] will be an 11 

important future work. 12 

 13 
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