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1. Imaging data acquisition and preprocessing 

MRI data were acquired on a Bruker Biospin 9.4T scanner (Bruker Medizintechnik, 

Karlsruhe, Germany) using a surface circular coil and birdcage volume transmit coil. High-

resolution anatomical images were acquired using a Rapid Acquisition with Relaxation 

Enhancement (RARE) sequence (repetition time (TR) = 2200 ms, FOV = 35×35 mm2, slice 

thickness = 0.5 mm, slice number = 30). FMRI data were acquired using a T2*-weighted 

EPI sequence (TE = 13 ms, TR = 1000 ms, FOV = 35 × 35 mm2, matrix size = 64×64, slice 

thickness = 1 mm, slice number = 15), initiated 90 minutes post anesthesia induction (1). 

FSL (https://fsl.fmrib.ox.ac.uk) and AFNI (2) were used in fMRI data preprocessing, which 

included discarding the first 4 volumes, slice timing correction, motion correction, and 

spatial smoothing (blurred to a full-width at half-maximum of 0.8 mm). Independent 

component analysis (ICA) was applied to decompose the data into 30 components. 

Components with the following characteristics were identified as noise components: 1) 

signals dominated by a single frequency or by high frequencies above 0.3 Hz; 2) signals 

with obvious spikes in the time domain; and 3) signals with equal power distribution in 

the whole frequency range and spatially scattered in the brain. Noise components were 

regressed out and a bandpass filter (0.01 - 0.25Hz) was applied to the de-noised data 

before functional connectivity calculation (3). The fMRI images were aligned to their 

corresponding T2-weighted image and normalized to a 3D template space aligned with a 

rat stereotaxic atlas (4) using Advanced Normalization Tools 

(https://stnava.github.io/ANTs/).  Seed-based rsFC was calculated by correlating the time 

course of a seed region with the voxel-wise time course in the rest of the brain. The 

resultant correlation coefficients (r) were transformed to z-values using Fisher’s r-to-z 

transformation
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2. Computational modelling of SA data 

The ratio of drug intake on the last shock day to that on the last SA training day (day 20) 

was used to characterize compulsive behavior. As significant day-to-day drug intake 

variability is seen across animals, to mitigate these fluctuations and determine stable drug 

intake, infusion data during the SA training and punishment phases were modeled for 

each rat using formula 1 and 2, respectively. Mode fitting was implemented with the 

Matlab function “fit” (MATLAB and Statistics Toolbox Release 2017b, The MathWorks, 

Inc., Natick, MA, USA). SI Fig. S2 shows exemplar patterns of METH infusions in the SA 

training and punishment phases together with the computationally fitted data (solid lines). 

For infusions during SA: Y = ( 
1

1+𝑒−𝑥∗𝑎1 − 0.5 ) ∗ 𝑏1 + 𝑐1    (1), 

where Y is the infusion number and x ∈ [0, 19] is the 20 experiment days; a1, b1, and c1 

are parameters determined specifically for each rat by mode fitting.   

For infusions during SA+FS: Y = 𝑒−𝑥 ∗ 𝑏2 + 𝑐2    (2),  

where Y is the infusion number of the last SA day with the five punishment days, and x ∈ 

[0, 5] is the experiment days; b2 and c2 are parameters determined specifically for each 

rat by mode fitting.   

3. Animal preparation for fMRI experiment  

For magnetic resonance imaging (MRI) scans, animals were anesthetized with a 

combination of isoflurane (Piramal Critical Care Inc., Bethlehem, PA, USA) and 

dexmedetomidine hydrochloride (Zoetis Services LLC, Parsippany, NJ, USA). Briefly, 

anesthesia was induced with 2% isoflurane and a 0.02 mg/kg subcutaneous bolus 

injection of dexmedetomidine. Rats were secured in an animal holder with a bite bar and 

core body temperature was maintained at 37±1o C with a water-circulating heating pump. 

Heart rate and blood oxygenation levels were continuously monitored using a 

noninvasive pulse oximetry attached to the animal’s hind foot, while respiration rate was 

monitored with a MouseOx sensor (Starr Life Sciences, Oakmont, PA, USA) beneath the 

animal’s chest. Respiration rate, oxygenation and heart rate varied between 65 to 80 
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cycles/min, 90% - 100% and 250-320 BMP, respectively, during functional MRI (fMRI) data 

acquisition.  

4. ICA denoising for fMRI data 

Independent component analysis (ICA) was applied to decompose the data into 30 

components. Components with the following characteristics were identified as noise: 1) 

signals dominated by a single frequency or by high frequencies above 0.3 Hz; 2) signals 

with obvious spikes in the time domain; and 3) signals with equal power distribution in 

the whole frequency range and spatially scattered in the brain. Noise components were 

regressed out and a bandpass filter (0.01 - 0.25Hz) was applied to the de-noised data 

before functional connectivity calculation (3). 

5. Step-wise regression of CI against “go” and “stop” rsFC 

Further step-wise regression analyses indicated that while the “stop” circuit rsFC alone 

predicted CI, adding the “go” circuit rsFC significantly improved prediction accuracy (F(1,4) 

change = 11.51, P = 0.027, SI Tables S1 and S2). In contrast, while the “go” circuit alone 

also significantly predicted CI, adding the “stop” circuit only produced a trend level 

improvement in prediction (F(1,4) change = 6.08, P = 0.069, SI Tables S3 and S4).  
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6. Supplementary Figures and Tables 

 

Fig. S1. Control seed analysis. (A) The primary somatosensory cortex hind limb region 

(S1HL, red color) was chosen as a control seed region whose resting-state functional 

connectivity (rsFC) was not expected to be impacted by drug as the prelimbic and 

orbitofrontal cortices. (B) No GROUP-by-SESSION interaction was detected in the S1HL 

rsFC when controlling for false positive (Note: correction for multiple comparisons 

requires p<0.001 & cluster size >8, herein the cluster of 3 voxels in the figure is considered 

as false positive). (C) Voxelwise F-stats for the GROUP-by-SESSION interaction without 

thresholding show negligible effect in most brain regions. (D) Individual rsFC trajectories 

between S1HL and the “go” medial striatal (MS) mask and (E) between S1HL and the “stop” 

ventral striatal (VS) mask in the saline group indicate the inter-session stability of the rsFC 

measure. 
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Fig. S2. Examples of computational modelling (solid lines) of drug intake (dots). (A) During 

the self-administration training phase, some rats showed a small intake variability at 

plateau (left), but some others showed large day to day variation (middle and right). (B) 

When foot shock was added to self-administration, some rats showed gradient decrease 

in drug intake (left) but some others demonstrated large deviations from the decrease 

trend at the last day  (middle and right). Computationally modelling takes all data points 

into account to estimate an inherent drug taking behavioral pattern. 

 

 

Fig. S3. Lever presses during self-administration (SA) and foot shock (FS) phases. (A) Both 

methamphetamine (METH) and saline (SAL) rats pressed the inactive lever at a low level. 

(B) While the SAL group pressed the active and inactive lever similarly, the METH rats 

escalated the active lever presses during the SA phase and deceased it as a function of 

foot shock when SA was paired with FS. (C) The shock resistant (SR) and shock sensitive 

(SS) rats showed similar escalation in active lever presses during SA phase; while both 

groups reduced lever presses when foot shock was imposed, the SR rats pressed more 

than did the SS rats. 
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Fig. S4. Lever presses during withdrawal phase. GROUP (SS,SR) x LEVER (Active, Inactive) 

x Time (Day 3, Day 30) ANOVA analysis indicated that both SS and SR rats pressed 

significantly more on the active lever ( main effect of LEVER, P < 0.001); while the rats 

pressed more at withdrawal Day 30 (main effect of TIME, P = 0.03), no significant 

difference in lever presses change from Day 3 and Day 30 was seen between the two 

groups (for all GROUP related effects, Ps > 0.27), although the SR rats did press more on 

the active lever on Day 3 (SR-SS, T = 1.88, one tailed p = 0.04). 

 

 

Fig. S5. A multiple regression model predicting compulsive index from OFC (“go”) and PrL 

(“stop”) connectivity together. (A) A scatter plot of compulsivity index and predicted 

values.  Partial plots showing that compulsivity index is correlated with connectivity 

changes from SA to shock in both (B) “go” and (C) “stop” circuits when controlling for each 

other. Statistics for prediction models are listed in Tables S1-4.  
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Table S1  the PrL (“stop”) resting-state functional connectivity (rsFC) predicts 
compulsivity index; adding the OFC (“go”) rsFC significantly improves prediction 
accuracy 

Mode
l 

R R2 Adj 
R2 SE 

Change Statistics 

ΔR2 ΔF  df1 df2 Sig.  F change 

1 .839 0.704 0.645 0.073 0.704 
11.91
4 

1 5 0.018 

2 .961 0.924 0.886 0.041 0.220 
11.50
7 

1 4 0.027 

Model 1: Predictors: (Constant), change in "stop" rsFC from SA to shock phase 
Model 2: Predictors: (Constant), changes in "stop" and "go" rsFC from SA to shock 
phase 
Dependent Variable: Compulsivity Index 

 

 

Table S2 Coefficients in prediction models 1 and 2 starting with the “stop” resting-state functional 

connectivity (rsFC) 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

Collinearity 

Statistics 

B Std. Error (Beta) Tolerance VIF 

1 (Constant) .671 .037  18.028 .000   

“Stop” 

rsFC(shock-SA) 
-1.085 .314 -.839 -3.452 .018 1.000 1.000 

2 (Constant) .781 .039  20.170 .000   

“Stop” 

rsFC(shock-SA) 
-.575 .233 -.445 -2.466 .069 .585 1.709 

“Go”    

rsFC(shock-SA) 
.918 .271 .612 3.392 .027 .585 1.709 

Model 1: Predictors: (Constant), “stop” rsFC(shock-SA) 

Model 2: Predictors: (Constant), “stop” rsFC(shock-SA), “go” rsFC(shock-SA) 

Dependent Variable: Compulsivity Index 
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Table S3  the OFC(“go”) resting-state functional connectivity (rsFC) predicts compulsivity 
index; adding the PrL (“stop”) connectivity has a trend level of significance to improve 
prediction accuracy 

Mode
l 

R R2 Adj 
R2 SE 

Change Statistics 

ΔR2 ΔF  df1 df2 Sig.  F change 

1 
.899 .808 .769 .059 .808 21.01

7 
1 5 .006 

2 .961 .924 .886 .042 .116 6.082 1 4 .069 

Model 1: Predictors: (Constant), change in "go" rsFC from SA to shock phase 
Model 2: Predictors: (Constant), changes in "go" and "stop" rsFC from SA to shock 
phase 
Dependent Variable: Compulsivity Index 

 

 

Table S4 Coefficients in prediction models 1 and 2 starting with the “go” resting-state functional 

connectivity (rsFC) 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

Collinearity 

Statistics 

B Std. Error (Beta) Tolerance VIF 

1 (Constant) .860 .032  27.248 .000   

“go” 

rsFC(shock-SA) 

1.348 .294 .899 4.584 .006 1.000 1.000 

2 (Constant) .781 .039  20.170 .000   

“go”     

rsFC(shock-SA) 

.918 .271 .612 3.392 .027 .585 1.709 

“stop”  

rsFC(shock-SA) 

-.575 .233 -.445 -2.466 .069 .585 1.709 

Model 1: Predictors: (Constant), “go” rsFC(shock-SA) 

Model 2: Predictors: (Constant), “go” rsFC(shock-SA), “stop” rsFC(shock-SA) 

Dependent Variable: Compulsivity Index 

References 

1. Brynildsen JK, et al. (2017) Physiological characterization of a robust survival rodent 
fMRI method. Magn Reson Imaging 35:54-60. 

2. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic 
resonance neuroimages. Comput Biomed Res 29(3):162-173. 

3. Hsu LM, et al. (2016) Constituents and functional implications of the rat default mode 
network. Proc Natl Acad Sci U S A 113(31):E4541-4547. 

4. Lu H, et al. (2012) Rat brains also have a default mode network. Proceedings of the 

National Academy of Sciences of the United States of America 109(10):3979-3984. 


