BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Increased risk of ischemic stroke in patients with migraine: A longitudinal follow-up study using a national sample cohort in Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027701
Article Type:	Research
Date Submitted by the Author:	04-Nov-2018
Complete List of Authors:	Lee, Sang-Yeon Lim, Jae-Sung Oh, Dong Jun; Asan Medical Center, University of Ulsan College of Medicine Kong, Il Gyu; Hallym University College of Medicine, Otorhinolaryngology Choi, Hyo Geun; Hallym University,
Keywords:	EPIDEMIOLOGY, Migraine < NEUROLOGY, Stroke < NEUROLOGY

SCHOLARONE[™] Manuscripts

2 3 4 5	1	Increased risk of ischemic stroke in patients with
6 7 8 9	2	migraine: A longitudinal follow-up study using a national
10 11 12	3	sample cohort in Korea
13 14 15	4	
16 17	5	Sang-Yeon Lee ¹ , Jae-Sung Lim ² , Dong Jun Oh ³ , Il Gyu Kong ⁴ , Hyo Geun Choi ^{4*}
18 19	6	
20 21 22	7	¹ Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University
23 24	8	Hospital, Seoul National University College of Medicine, Seoul, South Korea
25 26 27	9	² Department of Neurology, Hallym University College of Medicine, Anyang, Korea
27 28 29	10	³ Department of Internal Medicine, Asan Medical Center, University of Ulsan College of
30 31	11	Medicine, Seoul
32 33 34	12	⁴ Department of Laboratory Medicine, Hallym University College of Medicine, Anyang,
35 36	13	Korea
37	14	
38 39 40	15	Corresponding author: Hyo Geun Choi
41 42 43	16	Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart
43 44 45	17	Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068
46 47	18	Republic of Korea
48 49 50	19	Tel: 82-31-380-3849
50 51 52	20	Fax: 82-31-386-3860
53 54	21	Email: <u>pupen@naver.com</u>
55 56 57	22	
57 58 59 60	23	Word Count:3226

1		
2 3 4	24	Abstract
5 6	25	Objective: Growing evidence has supported the association between migraine and stroke, but
7 8	26	the causative association remains unclear at present. According to stroke type, we aimed to
9 10 11	27	investigate the risk of stroke in patients with migraine using a national sample cohort from
12 13	28	Korea.
14 15	29	Design: A longitudinal follow-up study
16 17	30	Setting: Data from 2002 to 2013 national cohort collected by Korean Health Insurance
18 19 20	31	Review and Assessment were used.
21 22	32	Participants : We extracted the data from patients with migraine ($n = 41,585$) and 1:4-
23 24	33	matched controls ($n = 166,340$) and analyzed the occurrence of ischemic and hemorrhagic
25 26 27	34	strokes. The migraine group included participants diagnosed with migraine (ICD-10: G43) \geq
27 28 29	35	2 times. Hemorrhagic stroke (I60-I62) and ischemic stroke (I63) were determined using
30 31	36	admission histories. The crude and adjusted hazard ratios (HRs) were calculated using Cox
32 33	37	proportional hazard models, and the 95% confidence intervals (CIs) were determined.
34 35 36	38	Subgroup analyses based on age and sex were also performed.
37 38	39	Results : The rates of ischemic stroke were higher in the migraine group (2.3% [964/41, 585])
39 40	40	than in the control group (2.0% [3,294/163,046], $P < 0.001$). The adjusted HR of ischemic
41 42 43	41	stroke was 1.18 (95% CI = 1.10-1.26) in the migraine group ($P < 0.001$). The strongest
43 44 45	42	association between migraine and ischemic stroke was found in young women. The
46 47	43	contribution of migraine to the occurrence of ischemic stroke was also observed in middle
48 49	44	aged women, old women, and young men (each $P < 0.05$). The risk of hemorrhagic stroke did
50 51 52	45	not reach statistical significance.
53 54	46	Conclusion : Migraine is associated with an increased risk of ischemic stroke but not
55 56	47	hemorrhagic stroke.
57 58		2
59 60		-

1		
2 3 4	48	Keywords: migraine, stroke, cohort study, Korea
5 6	49	
7 8 9	50	STRENGHTS AND LIMITATIONS OF THIS STUDY
9 10 11	51	* Migraine is associated with the increased risk of developing ischemic stroke.
12 13	52	* The strongest association between migraine and ischemic stroke was found in young
14 15 16	53	women (20-39 years old).
17 18	54	* A higher risk of hemorrhagic stroke in patients with migraine did not reach statistical
19 20	55	significance, but it awaits further confirmation.
21 22 23	56	
23 24 25	57	
26 27	58	
28 29 30	59	
31 32	60	
33 34	61	
35 36 37	62	
38 39	63	
40 41	64	
42 43	65	
44 45 46	66	
47 48	67	
49 50	68	
51 52 53	69	
54 55	70	
56 57	71	
58 59 60		3

72 Introduction

Migraine is a common neurovascular disorder characterized by recurrent disabling episodes of headache, most often unilateral headache. The headache is partly accompanied with visual or sensory symptoms, namely, aura.¹ The annual prevalence of migraine is approximately 8%–15% worldwide,²³ and in Korea, the estimated incidence is 6.1%.⁴ Migraine appears to present at a relatively young age (< 45 years); it is more prevalent in women than men, with a prevalence of > 25% in the 35–39-year-old female population worldwide.¹ The use of migraine as an independent risk factor for cardiovascular events has been debated for many years, but it is an established risk factor for ischemic stroke.⁵ Stroke is a cerebrovascular condition involving limitation of blood flow to the brain due to blockage or rupture in the cerebrovascular system.⁶ Stroke is responsible for approximately

83 700,000 deaths annually in the Western world.⁷ In Korea, the estimated stroke incidence is
84 approximately 795,000 in people aged ≥ 30 years.⁸ More than 80% of stroke cases are
85 ischemic, and the rest are hemorrhagic; ischemic and hemorrhagic strokes differ with regard
86 to risk factors, genetic predisposition, and mortality rates.⁹¹⁰

To date, several underlying physiological mechanisms have been suggested to explain the association between migraine and stroke. The risk factors for stroke in migraineurs have been widely evaluated; the common comorbidities, including hypertension, obesity, dyslipidemia, and smoking, were validated.¹¹ In addition, specific genetic etiologies associated with vasculopathy can manifest in both migraine and stroke.¹² A recent investigation employing a migraine mutant mouse model also indicated that shared genetic risk factors rendered the brain more vulnerable to ischemic stroke.¹³

Moreover, migraine itself carries an increased risk of ischemic stroke. Recently, a
 population-based case-control study in Taiwan demonstrated an association between

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
01	

107

migraine and ischemic stroke (adjusted hazard ratio [HR]: 1.24, confidence interval [CI]:
1.12–1.38).³ Similarly, an increased risk of ischemic stroke has been consistently found in
migraineurs, especially in those with migraine with aura.^{3 14-17} Furthermore, growing
evidence has supported the association between migraine and hemorrhagic stroke,^{18 19} but the
causative association remains unclear at present. Given that stroke is a leading cause of
mortality, validation of the association between migraine and stroke may facilitate treatment
and prognosis in such cases.

Herein, by using a national Korean population-based sample cohort, we examined the association between migraine and stroke. We extracted data for patients with migraine and a 1:4-matched control group and analyzed the occurrence of ischemic stroke and hemorrhagic stroke in this cohort. Subgroup analyses according to age and sex were also performed.

108 Materials and Methods

109 Study Population and Data Collection

110 The ethics committee of Hallym University (2014-I148) approved the use of these data. The 111 Institutional Review Board exempted the requirement for written informed consent. 112 This national cohort study used data from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC). The Korean NHIS selects samples directly 113 114 from the entire population database to prevent non-sampling errors. Approximately 2% of the 115 samples (one million) were selected from the entire Korean population (50 million). The 116 selected data were classified into 1,476 levels (age [18 categories], sex [2 categories], and 117 income level [41 categories]) using randomized stratified systematic sampling methods via 118 proportional allocation to represent the entire population. A previous study verified the 119 appropriateness of the sample after data selection.²⁰ The National Health Insurance Sharing

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13 14	
14	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
27	
28	
29	
30	
31	
32	
33 24	
34 35	
35 36	
30 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
58 59	
60	
00	

1

120 Service provides a detailed description of the methods used to perform these procedures.²¹ 121 This cohort database included (i) personal information, (ii) health insurance claim codes (procedures and prescriptions), (iii) diagnostic codes using the International Classification of 122 123 Disease-10 (ICD-10), (iv) death records from the Korean National Statistical Office (using 124 the Korean Standard Classification of disease), (v) socio-economic data (residence and income), and (vi) medical examination data for each participant from 2002 to 2013. 125 126 All Korean citizens are recognized by a 13-digit resident registration number from birth 127 to death. Therefore, exact population statistics have been determined using this database. All 128 Koreans are required to enroll in the NHIS. All Korean hospitals and clinics use the 13-digit 129 resident registration number to register individual patients in the medical insurance system. 130 Therefore, the risk of overlapping medical records is minimal, even if a patient moves from 131 one place to another. All medical treatments in Korea are tracked without exception using the 132 Health Insurance Review & Assessment (HIRA) system. In Korea, the law states that a notice of death must be provided to an administrative entity before a funeral can be held. Medical 133 134 doctors record the date and cause of death on a death certificate. 135

136 Participant Selection

23137Out of 1,125,691 cases with 114,369,638 medical claim codes, participants who were45138diagnosed with migraine (ICD-10: G43) were included. Among them, participants who were45139treated ≥ 2 times (n = 45,587) were selected. The participants were followed up for 12 years.40The history of admission for hemorrhagic stroke (I60: Subarachnoid hemorrhage, I61:141Intracerebral hemorrhage, and I62: Other nontraumatic intracranial hemorrhage) and142ischemic stroke (I63: Cerebral infarction) was identified using ICD-10 codes. We selected the

BMJ Open

143participants who were treated ≥ 1 times. These methods were used in other studies evaluating144the incidence of stoke in Korea.^{8 22}

The migraine participants were matched 1:4 with participants (control group) who were never diagnosed with a migraine from 2002 through 2013 in this cohort. The control groups were selected from the mother population (n = 1,080,104). The matches were processed for age, group, sex, income group, region of residence, and past medical histories (hypertension, diabetes, and dyslipidemia). To prevent selection bias when selecting the matched participants, we sorted the control group participants using a random number order, and they were then selected from top to bottom. It was assumed that the matched control participants were involved at the same time as each matched migraine participant (index date). Therefore, control group members who died before the index date were excluded. In both the migraine and control groups, participants with histories of hemorrhagic or ischemic stroke before the index date were excluded. In the migraine group, 438 participants were excluded. The migraine participants for whom we could not identify sufficient numbers of matching participants were excluded (n = 185). We excluded participants under 20 years old (n = 185). 3,379). Finally, 1:4 matching resulted in the inclusion of 41,585 migraine participants and 166,340 control participants (Fig.1).

161 Variables

The age groups were classified using 5-year intervals: 20-24, 25-29, 30-34..., and 85+ years
old. A total of 14 age groups were designated. The income groups were initially divided into
41 classes (one health aid class, 20 self-employment health insurance classes, and 20
employment health insurance classes). These groups were re-categorized into 11 classes
(class 1 [lowest income]–class 11 [highest income]). Region of residence was divided into 16

1 2					
2 3 4	167	areas according to administrative district. These regions were regrouped into urban (Seoul,			
5 6	168	Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan) and rural (Gyeonggi, Gangwon,			
7 8 9	169	Chungcheongbuk, Chungcheongnam, Jeollabuk, Jeollanam, Gyeongsangbuk,			
10 11 12 13	170	Gyeongsangnam, and Jeju) areas.			
	171	The past medical histories of the participants were evaluated using ICD-10 codes. For			
14 15 16	172	the accuracy of diagnosis, hypertension (I10 and I15), diabetes (E10-E14), and dyslipidemia			
17 18	173	(E78) were assessed if the participants were treated ≥ 2 times.			
19 20	174				
21 22	175	Statistical Analyses			
23 24 25	176	Chi-square tests were used to compare the general characteristics between the migraine and			
26 27	177	control groups. For analysis of the HRs of migraine on hemorrhagic stroke and ischemic			
28 29 30 31 32 33 34	178	stroke, Cox proportional hazard models were used, and 95% CIs were calculated. In these			
	179	analyses, crude (simple) and adjusted (age, sex, income, region of residence, hypertension,			
	180	diabetes, and dyslipidemia) models were used. For the subgroup analysis, we divided the			
35 36	181	participants by age and sex (20-39 years old, 40-59 years old, 60+ years old; men and			
37 38 39	182	women). Two-tailed analyses were conducted, and P values less than 0.05 were considered			
40 41	183	significant. The results were statistically analyzed using SPSS v. 21.0 (IBM, Armonk, NY,			
42 43	184	USA).			
44 45	185				
46 47 48	186	Results			
49 50 51 52	187	The mean follow-up was 80.9 (standard deviation [SD] = 41.6) months in migraine patients			
	188	and $80.9 (SD = 41.6)$ months in controls. The rates of hemorrhagic stroke were not higher in			
53 54 55	189	the migraine group (0.7% [295/41,585]) than the control group (0.7% [1,113/166,340], P =			
56 57	190	0.370, Table 1). The rates of ischemic stroke were higher in the migraine group (2.3%)			
58 59		8			
60					

Page 9 of 31

1 2	
2 3 4	191
5 6	192
7 8	193
9 10 11	194
12 13	195
14 15	196
16 17	
18 19 20	
20 21 22	
23 24	
25 26	
27 28	
29 30 31	
31 32 33	
34 35	
36 37	
38 39	
40 41	
42 43 44	
44 45 46	
47 48	
49 50	
51 52	
53 54	
55 56 57	
57 58 59	
60	

60

191 [964/41,585]) than the control group (2.0% [3,294/163,046]. P < 0.001). The general
192 characteristics (age, sex, income, region of residence, hypertension, diabetes, and
193 dyslipidemia histories) of participants were the same due to the matching protocol (P =

194 1.000).

196 **Table 1 General Characteristics of Participants**

Psoriasis (n, %)		
	Control (n, %)	P-value
		1.000
1,994 (4.8)	7,976 (4.8)	
2,649 (6.4)	10,596 (6.4)	
3,640 (8.8)	14,560 (8.8)	
4,309 (10.4)	17,236 (10.4)	
4,859 (11.7)	19,436 (11.7)	
5,187 (12.5)	20,748 (12.5)	
4,512 (10.9)	18,048 (10.9)	
3,508 (8.4)	14,032 (8.4)	
3,209 (7.7)	12,836 (7.7)	
3,049 (7.3)	12,196 (7.3)	
2,328 (5.6)	9,312 (5.6)	
1,423 (3.4)	5,692 (3.4)	
651 (1.6)	2,604 (1.6)	
267 (0.6)	1,068 (0.6)	
		1.000
	2,649 (6.4) 3,640 (8.8) 4,309 (10.4) 4,859 (11.7) 5,187 (12.5) 4,512 (10.9) 3,508 (8.4) 3,209 (7.7) 3,049 (7.3) 2,328 (5.6) 1,423 (3.4) 651 (1.6)	2,649 (6.4) $10,596 (6.4)$ $3,640 (8.8)$ $14,560 (8.8)$ $4,309 (10.4)$ $17,236 (10.4)$ $4,859 (11.7)$ $19,436 (11.7)$ $5,187 (12.5)$ $20,748 (12.5)$ $4,512 (10.9)$ $18,048 (10.9)$ $3,508 (8.4)$ $14,032 (8.4)$ $3,209 (7.7)$ $12,836 (7.7)$ $3,049 (7.3)$ $12,196 (7.3)$ $2,328 (5.6)$ $9,312 (5.6)$ $1,423 (3.4)$ $5,692 (3.4)$ $651 (1.6)$ $2,604 (1.6)$

Male	10,476 (25.2)	41,904 (25.2)	
Female	31,109 (74.8)	124,436 (74.8)	
Income			1.000
1 (lowest)	837 (2.0)	3,348 (2.0)	
2	3,170 (7.6)	12,680 (7.6)	
3	3,004 (7.2)	12,016 (7.2)	
4	3,131 (7.5)	12,524 (7.5)	
5	3,345 (8.0)	13,380 (8.0)	
6	3,615 (8.7)	14,460 (8.7)	
7	3,908 (9.4)	15,632 (9.4)	
8	4,411 (10.6)	17,644 (10.6)	
9	4,908 (11.8)	19,632 (11.8)	
10	5,456 (13.1)	21,824 (13.1)	
11 (highest)	5,800 (13.9)	23,200 (13.9)	
Region of residence			1.000
Urban	17,959 (43.2)	71,836 (43.2)	
Rural	23,626 (56.8)	94,504 (56.8)	
Hypertension			1.000
Yes	16,209 (39.0)	64,836 (39.0)	
No	25,376 (61.0)	101,504 (61.0)	
Diabetes			1.000
Yes	7,261 (17.5)	29,044 (17.5)	
No	34,324 (82.5)	137,296 (82.5)	
Dyslipidemia			1.000

1 2					
3 4		Yes	12,837 (30.9)	51,348 (30.9)	
5 6		No	28,748 (69.1)	114,992 (69.1)	
7 8 9		Hemorrhagic stroke			0.370
9 10 11		Yes	295 (0.7)	1,113 (0.7)	
12 13		No	41,290 (99.3)	165,227 (99.3)	
14 15		Ischemic stroke			< 0.001*
16 17 18		Yes	964 (2.3)	3,294 (2.0)	
19 20		No	40,621 (97.7)	163,046 (98.0)	
21 22	197				
23 24	198	*Chi-square test. Signific	cance at P < 0.05		
25 26	199				
27 28 29	200	The crude and adjust	ed HRs of hemorrhagic s	troke were 1.06 (95% CI	= 0.93–1.21, P =
30 31	201	0.369) and 1.06 (95% CI	= 0.93–1.21, P = 0.371),	respectively, in the migra	aine group (Table
32 33	202	2). The crude and adjuste	d HRs of ischemic strok	e were 1.17 (95% CI = 1.0	09–1.26) and 1.18
34 35 36	203	(95% CI = 1.10–1.26), re	spectively, in the migrain	ne group (each P < 0.001)	
30 37 38	204				
39 40	205				
41 42	206			ne group (each P < 0.001)	
43 44					
45 46					
47 48					
49 50					
51 52					
53					
54 55					
56 57					
58			11		
59 60			11		

Table 2 Crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic stroke Characteristics Hemorrhagic stroke Ischemic stroke P-value Adjusted[†] P-value Adjusted[†] Crude P-value Crude P-value < 0.001* < 0.001* Migraine 0.369 0.371 1.06 (0.93-1.21) Yes 1.06 (0.93-1.21) 1.17 (1.09-1.26) 1.18 (1.10-1.26) 1.00 1.00 1.00 1.00 No * Cox-proportional hazard regression model, Significance at P < 0.05[†] Adjusted model for age, sex, income, region of residence, hypertension, diabetes, and dyslipidemia histories ien only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 31

1

2		
2 3 4	212	In the subgroup analyses, all crude and adjusted HRs of hemorrhagic stroke did not reach
5 6	213	statistical significance (Table 3). For patients with ischemic stroke, young men, young
7 8 9	214	women, middle aged men, old men, and old women showed statistical significance (each P \leq
10 11	215	0.05). The significant adjusted HRs were 2.15 (95% CI = $1.15-4.02$) in < 40-year-old men;
12 13	216	2.54 (95% CI = 1.55–4.15) in < 40-year-old women; 1.36 (95% CI = 1.36–1.64) in 40–59-
14 15	217	year-old women; and 1.17 (95% CI = 1.06–1.29) in \geq 60-year-old women.
16 17 18	218	
19 20	219	
21 22	220	
23 24 25	221	
26 27	222	
28 29	223	
30 31	224	
32 33 34	225	
35 36	226	
37 38	227	
39 40 41	228	
42 43	229	
44 45	230	
46 47 48	231	
49 50	232	
51 52	233	
53 54	234	
55 56 57	235	
58 59		13
60		

Table 3 Subgroup analysis of crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and

237 ischemic stroke

Crude	P-value					Ischemic stroke			
		Adjusted†	P-value	Crude	P-value	Adjusted†	P-value		
ears old, n = 15,	550)								
	0.158		0.158		0.017*		0.017*		
.56 (0.84-2.89)		1.56 (0.84-2.89)		2.15 (1.15-4.02)		2.15 (1.15-4.02)			
1.00		1.00		1.00		1.00			
) years old, n = 4	47,410)								
	0.726		0.726		<0.001*		< 0.001		
.10 (0.64-1.92)		1.10 (0.64-1.92)		2.54 (1.55-4.15)		2.54 (1.55-4.15)			
1.00		1.00		1.00		1.00			
)-59 years old, n	= 22,090)								
	0.721		0.725		0.565		0.565		
.07 (0.73-1.56)		1.07 (0.73-1.56)		0.93 (0.71-1.21)		0.93 (0.71-1.21)			
			14						
	For peer revie	w only - http://bmjope	en.bmj.com/s	site/about/guidelines.x	html				
	1.00 9 years old, n = 4 10 (0.64-1.92) 1.00 -59 years old, n .07 (0.73-1.56)	.56 (0.84-2.89) 1.00 9 years old, n = 47,410) 0.726 10 (0.64-1.92) 1.00 -59 years old, n = 22,090) 0.721 .07 (0.73-1.56)	1.56 (0.84-2.89) = 1.56 (0.84-2.89) = 1.00 = 1.00 = 1.00 9 years old, n = 47,410) 0.726 10 (0.64-1.92) = 1.10 (0.64-1.92) = 1.00 = 1.00 = 1.00 0.721 0.7 (0.73-1.56) = 0.721 = 0.721.56)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 (0.84-2.89) 1.56 (0.84-2.89) 2.15 (1.15-4.02) 1.00 1.00 1.00 9 years old, $n = 47,410$) 0.726 0.726 .10 (0.64-1.92) 1.10 (0.64-1.92) 2.54 (1.55-4.15) 1.00 1.00 1.00 -59 years old, $n = 22,090$) 0.725 0.725 .07 (0.73-1.56) 1.07 (0.73-1.56) 0.93 (0.71-1.21)	$56 (0.84-2.89)$ $1.56 (0.84-2.89)$ $2.15 (1.15-4.02)$ 1.00 1.00 1.00 9 years old, n = 47,410) 0.726 0.726 0.726 0.726 $<0.001^*$ $10 (0.64-1.92)$ $1.10 (0.64-1.92)$ $2.54 (1.55-4.15)$ 1.00 1.00 1.00 -59 years old, n = 22,090) 0.725 0.565 $07 (0.73-1.56)$ $1.07 (0.73-1.56)$ $0.93 (0.71-1.21)$	56 (0.84-2.89) 1.56 (0.84-2.89) 2.15 (1.15-4.02) 2.15 (1.15-4.02) 1.00 1.00 1.00 1.00 Pyears old, n = 47,410) $0.726 0.726 < 0.726 < 0.001*$ $10 (0.64-1.92) 1.10 (0.64-1.92) 2.54 (1.55-4.15) 2.54 (1.55-4.15) 1.00 1.00 1.00 1.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 0.00$		

1.00	1.00		1.00		1.00	
omen (40-59 years old, n	= 68,240)					
0	0.582	0.583		0.002*		0.002*
1.07 (0.84-1.38)	1.07 (0.84-1.38)		1.35 (1.12-1.64)		1.36 (1.12-1.64)	
1.00	1.00		1.00		1.00	
years old, n = 14,740)						
0	0.115	0.116		0.275		0.279
1.29 (0.94-1.78)	1.29 (0.94-1.78)		1.09 (0.93-1.27)		1.09 (0.93-1.27)	
1.00	1.00		1.00		1.00	
0+ years old, n = 39,895)						
0	0.462	0.464		0.002*		0.002*
0.92 (0.75-1.14)	0.92 (0.75-1.14)		1.17 (1.06-1.29)		1.17 (1.06-1.29)	
1.00	1.00		1.00		1.00	
nal hazard regression mode	l, Significance at P < 0.05					
el for age, sex, income, regi	on of residence, hypertensio	n, diabetes	, and dyslipidemia	histories		
			, <u>, , , ,</u>			
		15				
	1.07 (0.84-1.38) 1.00 years old, n = 14,740) $1.29 (0.94-1.78)$ 1.00 0+ years old, n = 39,895) 0 0.92 (0.75-1.14) 1.00 nal hazard regression mode	1.00 1.00 years old, n = 14,740) 0.115 $1.29 (0.94-1.78)$ $1.29 (0.94-1.78)$ 1.00 1.00 1.00 1.00 1.00 1.00 0.462 $0.92 (0.75-1.14)$ $0.92 (0.75-1.14)$ $0.92 (0.75-1.14)$ 1.00 1.00 hal hazard regression model, Significance at P < 0.05 el for age, sex, income, region of residence, hypertension	0.582 0.583 $1.07 (0.84-1.38) 1.07 (0.84-1.38) 1.00 1.00 1.00 1.00 0.115 0.116 1.29 (0.94-1.78) 0.115 0.116 1.29 (0.94-1.78) 1.29 (0.94-1.78) 1.00 1.00 1.00 1.00 0.462 0.464 0.92 (0.75-1.14) 0.92 (0.75-1.14) 1.00 1$	0.582 0.583 $1.07 (0.84-1.38) 1.07 (0.84-1.38) 1.35 (1.12-1.64)$ $1.00 1.00 1.00 1.00$ years old, n = 14,740) $0.115 0.116$ $1.29 (0.94-1.78) 1.29 (0.94-1.78) 1.09 (0.93-1.27)$ $1.00 1.00 1.00 1.00$ $0.462 0.464$ $0.92 (0.75-1.14) 0.92 (0.75-1.14) 1.17 (1.06-1.29)$ $1.00 1.00 1.00 1.00$ hal hazard regression model, Significance at P < 0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.582 0.583 0.002^* $1.07 (0.84-1.38)$ $1.07 (0.84-1.38)$ $1.35 (1.12-1.64)$ $1.36 (1.12-1.64)$ 1.00 1.00 1.00 1.00 1.00 years old, n = 14,740) 0.115 0.116 0.275 $1.29 (0.94-1.78)$ $1.29 (0.94-1.78)$ $1.09 (0.93-1.27)$ $1.09 (0.93-1.27)$ 1.00 0.462 0.464 0.002^* $0.92 (0.75-1.14)$ $0.17 (1.06-1.29)$ $1.17 (1.06-1.29)$ 1.00 1.00 1.00 1.00 1.00 1.00

Discussion

Migraine appeared to increase the risk of ischemic stroke but not of hemorrhagic stroke. The risk of ischemic stroke was 1.18-fold greater in the patients with migraine than in the matched control subjects, even after adjustment for confounding factors. In the subgroup analyses by age and sex, the relationship with ischemic stroke was observed primarily in young women, middle aged women, old women, and young men, all of whom showed a significant correlation. In contrast, the risk of hemorrhagic stroke was not higher in patients with migraine than in the matched control patients.

Migraine, especially migraine with aura, is an established risk factor for ischemic stroke. Migraine with aura especially increased the risk of ischemic stroke based on the results of large population-based cohort studies and meta-analyses.^{3 14-17} Cortical spreading depression (CSD) is a self-propagating wave of depolarization across the cerebral cortex at a slow velocity, 3 to 5 mm/min.²³ CSD has been implicated in migraine with aura, which plays a critical role in the pathophysiology of ischemic stroke. In an experimental study, CSD induced tone alterations in resistance vessels, causing hypoperfusion in tissue at risk for progressive damage, namely, cortical spreading ischemia.²⁴ In addition, the inflammatory cascade of the neurovascular system, characterized by endothelial dysfunction and coagulation abnormalities, may contribute to the development of ischemic stroke. In the aura phase, the endothelium activates coagulation and thrombosis, which are mediated by inflammatory cytokines and endothelial biomarkers.^{25 26} Moreover, specific genetic etiologies, such as Factor V Leiden G 619 1A, prothrombin G20210A, and familial hemiplegic migraine type 1, were reported in migraine with aura. These shared genetic factors may precipitate the susceptibility to CSD, which may explain the association between migraine and stroke.²⁷

Page 17 of 31

1 2	
2 3 4	,
3 4 5 6 7 8 9	,
7 8 0	,
9 10 11	,
12 13	,
12 13 14 15 16 17 18	,
16 17 18	,
19 20	,
21	,
22 23 24 25	,
25 26 27	,
28 29	,
30	,
32 33 34	,
31 32 33 34 35 36 37	,
38	,
39 40	,
41 42 43	,
44 45	,
46 47	,
48 49	,
50 51 52	,
53	,
54 55 56	,
57 58	-
59 60	

264	There is a growing body of evidence regarding the increased risk of ischemic stroke in
265	migraine without aura. Notably, a significant association was found in cases of ischemic
266	stroke resulting from cervical artery dissection. ²⁸ In addition, genetic overlaps among
267	migraine without aura, large artery stroke, and cardio-embolic stroke have been identified. ²⁹
268	However, strong evidence has been not reported. A recent large population-based study
269	demonstrated an insignificant risk of ischemic stroke in patients with migraine without aura
270	but an increased risk in patients with migraine with aura. ³ The study suggested that the
271	difference may be due to lipid profile, susceptibility to thrombosis, and genetic
272	predisposition. ³ A meta-analysis found that there was no significant association between
273	migraine without aura and ischemic stroke. ¹⁷ In the present study, we did not differentiate
274	between migraine subtypes, such as migraine with and without aura, when analyzing the risk
275	of stroke. Given this, the risk of ischemic stroke in migraine was relatively low despite
276	statistical significance compared to that of other studies investigating specific conditions.
277	Notably, in this study, migraine was not linked to an increased risk of hemorrhagic stroke.
278	In contrast to the present study, a recent meta-analysis, based on 4 case-control and 4 cohort
279	studies, concluded that migraine may increase the risk of hemorrhagic stroke. ¹⁹ However, a
280	recent large population-based case-control study did not show an association with
281	hemorrhagic stroke type, including intracerebral hemorrhage and subarachnoid hemorrhage.
282	30 Migraine was an independent risk factor for aneurismal rupture (OR = 2.4; CI 95% 1.1–
283	5.1) in a case-control study, ³¹ and even if headache is a premonitory symptom of aneurismal
284	rupture, recall biases might have affected the study results. Above all, a relatively small
285	number of hemorrhagic stroke cases might have resulted in decreased statistical power.
286	Consistent with the results of previous studies, the strongest association between migraine
287	and ischemic stroke was found in young women. The contribution of migraine to the
	17

occurrence of ischemic stroke was shown to decrease as age increases. Considering that the predisposing factors of stroke increase the incidence of ischemic stroke with age.³² migraine itself rather than other risk factors could be implicated in the increased risk of ischemic stroke. Notably, we identified a significant association of migraine with ischemic stroke in middle aged and old women in this study. In contrast, a recent large population-based cohort study in Taiwan, with a relatively short follow-up duration of 3.6 years, did not show a significant association in the subset groups of women and those aged < 45 years.³ This discrepancy might be due to differences in the study design, follow-up duration, and ethnic composition of the study population. In addition, we demonstrated a significant association of ischemic stroke in young men with migraine. Recently, a trend of this association was also reported,³ but it requires further confirmation due to the lack of evidence at present. The present study has several strengths. The results of this study are consistent with those of our previous studies utilizing the HIRA-NSC.³³⁻³⁵ We examined a very large, representative, and nationwide population. Because the NHIS data cover all citizens of Korea without exception, no participants were lost during follow-up. The control group was randomly selected and matched based on age, sex, income, region of residence, and medical history to decrease any confounding effects. An adjusted hazard model was used to further minimize the impact of confounders. Considering that migraine attacks could be frequently repeated, we opted to include patients with migraine who underwent treatment at least twice based on the ICD-10 code to enhance the validity of the study [G43]. In a previous study, the prevalence of migraine in Korea was reported as being approximately 6.1%.⁴ This value appeared to be slightly higher than that in the present study, which was 3.7% (41,585/1,125,691) based on strict inclusion criteria of migraine. In addition, the patients with migraine were followed up for 12 years in the present study. Long study periods enable

Page 19 of 31

BMJ Open

312 recruitment of a large study population and enable researchers to observe and analyze the313 delayed effects of migraine on stroke.

However, the present study has certain limitations that should be addressed in future studies. First, the heterogeneity of migraine was not considered in the present study. Considering that the association could be modulated according to migraine subtype,³⁶ the present study could not draw a causative association. A firm correlation between the frequency of migraine attacks and the risk of stroke was found,³⁷ but it could not be assessed using this database. Similarly, the duration and severity of migraine were inconsistent among the study population. Patients with migraine who had mild complaints could not undergo consultation at the clinic; therefore, the impact of migraine on stroke may be underestimated in this study. Third, although this study attempted to include a representative large population and subsequently matched and adjusted for possible confounders, the risk factors for stroke in patients with migraine, such as cigarette smoking, obesity, and migraine-specific drugs, were not available in the insurance database.^{11 37}

327 Conclusion

Based on a large population-based cohort study in Korea, migraine increased the risk of
ischemic stroke but not of hemorrhagic stroke. The subgroup of patients at the highest risk of
ischemic stroke was young women.

332 ACKNOWLEDGMENTS

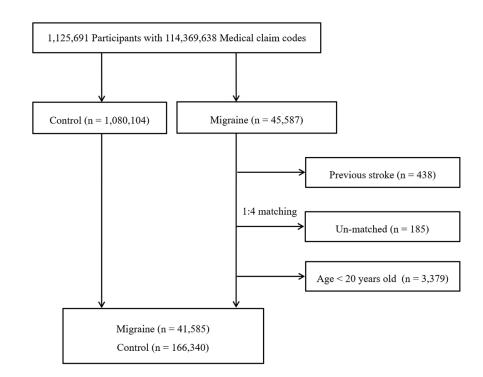
We thanks to the participants and examiners of Korean Health Insurance Review andAssessment for participating in this cohort study and providing the data.

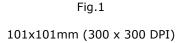
2							
3 4	336	DATA SHARING STATEMENT					
5 6 7	337	No additional data are available.					
7 8 9	338						
10 11 12 13	339	FUNDING STATEMENT					
	340	This work was supported by the Hallym University Research Fund and in part by a research					
14 15 16	341	grant (NRF-2015-R1D1A1A01060860) from the National Research Foundation (NRF) of					
10 17 18	342	Korea.					
19 20	343						
21 22	344	COMPETING INTERESTS STATEMENT					
23 24 25	345	There are no competing interests for any author.					
26 27	346						
28 29 30 31 32 33 34	347	AUTHOR CONTRIBUTIONS					
	348	As first authors, SYL wrote the manuscript. DJO and JSL analyzed and interpreted the data.					
	349	IGK performed the data processing. HGC conceptualized, wrote and reviewed the					
35 36	350	manuscript.					
37 38 39	351						
40 41	352						
42 43	353						
44 45 46	354						
47 48	355						
49 50	356						
51 52 53	357						
55 54 55	358						
56 57	359						
58 59 60		20					

Page 21 of 31

1 2		
2 3 4	360	References
5 6 7 8 9 10 11	361	1. Charles A. Migraine. N Engl J Med 2017;377(6):553-61. doi: 10.1056/NEJMcp1605502
	362	2. Lipton RB, Scher AI, Kolodner K, et al. Migraine in the United States: epidemiology and
	363	patterns of health care use. Neurology 2002;58(6):885-94.
12 13	364	3. Peng KP, Chen YT, Fuh JL, et al. Migraine and incidence of ischemic stroke: A
14 15	365	nationwide population-based study. Cephalalgia 2017;37(4):327-35. doi:
16 17 18	366	10.1177/0333102416642602
18 19 20	367	4. Kim BK, Chu MK, Lee TG, et al. Prevalence and impact of migraine and tension-type
21 22	368	headache in Korea. J Clin Neurol 2012;8(3):204-11. doi: 10.3988/jcn.2012.8.3.204
23 24	369	5. Wood H. Migraine: Migraine - a risk factor for cardiovascular disease? Nat Rev Neurol
25 26 27	370	2018;14(4):194-95. doi: 10.1038/nrneurol.2018.18
28 29	371	6. Feigin VL, Lawes CM, Bennett DA, et al. Worldwide stroke incidence and early case
30 31 32 33 34 35 36	372	fatality reported in 56 population-based studies: a systematic review. The Lancet
	373	Neurology 2009;8(4):355-69.
	374	7. Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, et al. Comparison of neurological clinical
37 38	375	manifestation in patients with hemorrhagic and ischemic stroke. World journal of
39 40	376	emergency medicine 2017;8(1):34.
41 42 42	377	8. Hong KS, Bang OY, Kang DW, et al. Stroke statistics in Korea: part I. Epidemiology and
43 44 45	378	risk factors: a report from the korean stroke society and clinical research center for
46 47	379	stroke. J Stroke 2013;15(1):2-20. doi: 10.5853/jos.2013.15.1.2
48 49	380	9. Andersen KK, Olsen TS, Dehlendorff C, et al. Hemorrhagic and ischemic strokes
50 51 52	381	compared: stroke severity, mortality, and risk factors. <i>Stroke</i> 2009;40(6):2068-72. doi:
52 53 54	382	10.1161/STROKEAHA.108.540112
55 56		
57 58 59 60		21

2 3 4	383	10. Das S, Roy S, Kaul S, et al. E-selectin gene (S128R) polymorphism in hemorrhagic
5 6 7 8 9 10 11	384	stroke: comparison with ischemic stroke. Neurosci Lett 2014;581:125-8. doi:
	385	10.1016/j.neulet.2014.08.032
	386	11. Gryglas A, Smigiel R. Migraine and Stroke: What's the Link? What to Do? Curr Neurol
12 13	387	Neurosci Rep 2017;17(3):22. doi: 10.1007/s11910-017-0729-y
14 15 16 17	388	12. Lee MJ, Lee C, Chung CS. The Migraine-Stroke Connection. J Stroke 2016;18(2):146-
	389	56. doi: 10.5853/jos.2015.01683
18 19 20	390	13. Eikermann-Haerter K, Lee JH, Yuzawa I, et al. Migraine mutations increase stroke
21 22	391	vulnerability by facilitating ischemic depolarizations. Circulation 2012;125(2):335-
23 24	392	45. doi: 10.1161/CIRCULATIONAHA.111.045096
25 26 27 28 29 30 31 32 33 34 35 36	393	14. Kurth T, Schurks M, Logroscino G, et al. Migraine, vascular risk, and cardiovascular
	394	events in women: prospective cohort study. BMJ 2008;337:a636. doi:
	395	10.1136/bmj.a636
	396	15. Kurth T, Gaziano JM, Cook NR, et al. Migraine and risk of cardiovascular disease in
	397	women. JAMA 2006;296(3):283-91. doi: 10.1001/jama.296.3.283
37 38	398	16. Monteith TS, Gardener H, Rundek T, et al. Migraine and risk of stroke in older adults:
39 40 41	399	Northern Manhattan Study. Neurology 2015;85(8):715-21. doi:
41 42 43	400	10.1212/WNL.0000000001854
44 45	401	17. Spector JT, Kahn SR, Jones MR, et al. Migraine headache and ischemic stroke risk: an
46 47 48	402	updated meta-analysis. Am J Med 2010;123(7):612-24. doi:
48 49 50	403	10.1016/j.amjmed.2009.12.021
51 52	404	18. Kuo CY, Yen MF, Chen LS, et al. Increased risk of hemorrhagic stroke in patients with
53 54	405	migraine: a population-based cohort study. PLoS One 2013;8(1):e55253. doi:
55 56 57	406	10.1371/journal.pone.0055253
58 59 60		22


Page 23 of 31


1 2							
3 4	407	19. Sacco S, Ornello R, Ripa P, et al. Migraine and hemorrhagic stroke: a meta-analysis.					
5 6 7 8 9 10 11 12 13 14 15	408	Stroke 2013;44(11):3032-8. doi: 10.1161/STROKEAHA.113.002465					
	409	20. Lee J, Lee JS, Park SH, et al. Cohort Profile: The National Health Insurance Service-					
	410	National Sample Cohort (NHIS-NSC), South Korea. International journal of					
	411	epidemiology 2016 doi: 10.1093/ije/dyv319					
	412	21. <u>http://nhiss.nhis.or.kr/</u> .					
16 17 18	413	22. Kim RB, Kim BG, Kim YM, et al. Trends in the incidence of hospitalized acute					
19 20	414	myocardial infarction and stroke in Korea, 2006-2010. J Korean Med Sci					
21 22	415	2013;28(1):16-24. doi: 10.3346/jkms.2013.28.1.16					
23 24 25 26 27 28 29 30 31 32 33 34 35 36	416	23. Tietjen EG. Migraine and ischaemic heart disease and stroke: potential mechanisms and					
	417	treatment implications. Cephalalgia 2007;27(8):981-7. doi: 10.1111/j.1468-					
	418	2982.2007.01407.x					
	419	24. Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process					
	420	involved in ischaemic damage in patients with aneurysmal subarachnoid					
	421	haemorrhage. Brain 2009;132(Pt 7):1866-81. doi: 10.1093/brain/awp102					
37 38	422	25. Liman TG, Bachelier-Walenta K, Neeb L, et al. Circulating endothelial microparticles in					
39 40 41	423	female migraineurs with aura. Cephalalgia 2015;35(2):88-94.					
42 43	424	26. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human					
44 45	425	diseases. International journal of biological sciences 2013;9(10):1057.					
46 47 48	426	27. Pezzini A, Grassi M, Lodigiani C, et al. Predictors of migraine subtypes in young adults					
49 50	427	with ischemic stroke: the italian project on stroke in young adults. Stroke					
51 52	428	2011;42(1):17-21. doi: 10.1161/STROKEAHA.110.592246					
53 54							
55 56 57							
58 59		23					

1

2		
2 3 4	429	28. De Giuli V, Grassi M, Lodigiani C, et al. Association between migraine and cervical
5 6	430	artery dissection: the Italian project on stroke in young adults. JAMA neurology
7 8	431	2017;74(5):512-18.
9 10 11	432	29. Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and ischemic
12 13	433	stroke: A genome-wide analysis of common variants. Neurology 2015;84(21):2132-
14 15	434	45. doi: 10.1212/WNL.000000000001606
16 17 18	435	30. Gaist D, Gonzalez-Perez A, Ashina M, et al. Migraine and risk of hemorrhagic stroke: a
19 20	436	study based on data from general practice. J Headache Pain 2014;15:74. doi:
21 22	437	10.1186/1129-2377-15-74
23 24 25	438	31. Vlak MH, Rinkel GJ, Greebe P, et al. Risk of rupture of an intracranial aneurysm based
25 26 27	439	on patient characteristics: a case-control study. Stroke 2013;44(5):1256-9. doi:
28 29	440	10.1161/STROKEAHA.111.000679
30 31 22	441	32. Tsai CF, Anderson N, Thomas B, et al. Comparing Risk Factor Profiles between
32 33 34	442	Intracerebral Hemorrhage and Ischemic Stroke in Chinese and White Populations:
35 36	443	Systematic Review and Meta-Analysis. PLoS One 2016;11(3):e0151743. doi:
37 38	444	10.1371/journal.pone.0151743
39 40 41	445	33. Choi HG, Park B, Sim S, et al. Tonsillectomy Does Not Reduce Upper Respiratory
42 43	446	Infections: A National Cohort Study. PLoS One 2016;11(12):e0169264. doi:
44 45	447	10.1371/journal.pone.0169264
46 47 48	448	34. Kim SY, Kim HJ, Park EK, et al. Severe hearing impairment and risk of depression: A
49 50	449	national cohort study. PLoS One 2017;12(6):e0179973. doi:
51 52	450	10.1371/journal.pone.0179973
53 54 55		
56 57		
58 59		24

3 4	451	35. Kim MS, Kim SY, Kim JH, et al. Depression in breast cancer patients who have					
5 6	452	undergone mastectomy: A national cohort study. PLoS One 2017;12(4):e0175395.					
7 8	453	doi: 10.1371/journal.pone.0175395					
9 10 11	454	36. Kurth T, Diener HC. Current views of the risk of stroke for migraine with and migraine					
12 13	455	without aura. Curr Pain Headache Rep 2006;10(3):214-20.					
14 15	456	37. Bousser M-G, Welch KMA. Relation between migraine and stroke. The Lancet					
16 17 18	457	Neurology 2005;4(9):533-42.					
19 20	458						
21 22	459	Figure legend					
23 24 25	460	Fig. 1 A schematic illustration of the participant selection process that was used in the present					
25 26 27 28 29 30 31 32 33 34	461	study. Out of a total of 1,125,691 participants, 41,585 migraine participants were matched					
	462	with 166,340 control participants for age, group, sex, income group, region of residence, and					
	463	past medical histories.					
	464						
35 36		past medical histories.					
37 38							
39 40 41							
42 43							
44 45							
46 47							
48 49							
50 51							
52							
53 54							
55 56							
57							
58 59		25					
60							

1 2 3 4 5	Reporting checklist for cohort study.						
6 7 8 9	Based on the STR	OBE col	nort guidelines.				
10 11 12	Instructions to authors						
13 14	Complete this checklist by entering the page numbers from your manuscript where readers will find						
15 16 17 18	each of the items listed below.						
19 20	Your article may no	Your article may not currently address all the items on the checklist. Please modify your text to					
21 22	include the missing information. If you are certain that an item does not apply, please write "n/a" and						
23 24 25	provide a short explanation.						
26 27 28	Upload your completed checklist as an extra file when you submit to a journal.						
29 30 31	In your methods section, say that you used the STROBE cohort reporting guidelines, and cite them						
32 33	as:						
34 35 36	von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening						
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for						
39 40 41 42	reporting observation	onal stu	dies.				
42 43				Page			
44 45 46			Reporting Item	Number			
47 48 49	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1			
50 51 52			title or the abstract				
53 54	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2			
55 56 57 58			of what was done and what was found				
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

1 2	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4-5
3 4 5	rationale		investigation being reported	
6 7 8 9 10 11 12 13 14 15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
			hypotheses	
	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5-6
17 18			periods of recruitment, exposure, follow-up, and data	
19 20 21			collection	
22 23	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6-7
24 25 26			selection of participants. Describe methods of follow-up.	
27 28		<u>#6b</u>	For matched studies, give matching criteria and number of	6-7
29 30 31			exposed and unexposed	
32 33	Variables	#7	Clearly define all outcomes, exposures, predictors, potential	7-8
34 35 36	Vanabico	<u>11 1</u>	confounders, and effect modifiers. Give diagnostic criteria, if	10
37 38			applicable	
39 40 41	Dete serves /			5.0
42 43	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5-8
44 45	measurement		of methods of assessment (measurement). Describe	
46 47			comparability of assessment methods if there is more than	
48 49			one group. Give information separately for for exposed and	
50 51			unexposed groups if applicable.	
52 53 54 55	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5-8
56 57 58	Study size	<u>#10</u>	Explain how the study size was arrived at	7
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7
	variables		analyses. If applicable, describe which groupings were	
			chosen, and why	
	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	8
	methods		control for confounding	
		<u>#12b</u>	Describe any methods used to examine subgroups and	8
			interactions	
19 20 21		<u>#12c</u>	Explain how missing data were addressed	NA
22 23 24		<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	NA
25 26 27		<u>#12e</u>	Describe any sensitivity analyses	NA
28 29 30	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	NA
31 32			numbers potentially eligible, examined for eligibility,	
33 34			confirmed eligible, included in the study, completing follow-	
35 36 37			up, and analysed. Give information separately for exposed	
38 39			and unexposed groups if applicable.	
40 41 42		<u>#13b</u>	Give reasons for non-participation at each stage	NA
43 44 45 46		<u>#13c</u>	Consider use of a flow diagram	7
40 47 48	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8-13
49 50			clinical, social) and information on exposures and potential	
51 52 53			confounders. Give information separately for exposed and	
53 54 55			unexposed groups if applicable.	
56 57				
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5		<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	8-13
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 83 9 40 41		<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	8
	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	NA
			over time. Give information separately for exposed and unexposed groups if applicable.	
	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence	8-13
			interval). Make clear which confounders were adjusted for and why they were included	
		<u>#16b</u>	Report category boundaries when continuous variables were categorized	NA
		<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	13-14
42 43 44 45	Key results	<u>#18</u>	Summarise key results with reference to study objectives	16
45 46 47 48	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	
49 50 51 52 53 54 55 56 57 58 59			of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	19
3 4			limitations, multiplicity of analyses, results from similar	
5 6 7			studies, and other relevant evidence.	
8 9 10	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	16-18
11 12 13			results	
14 15	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	20
16 17			present study and, if applicable, for the original study on	
18 19 20			which the present article is based	
21 22 23	2 The STROBE checklist is distributed under the terms of the Creative Commons Attribution Lice			License
24 25	CC-BY. This check	dist can	be completed online using <u>https://www.goodreports.org/</u> , a tool	made by
26 27 28	the EQUATOR Net	<u>twork</u> in	collaboration with Penelope.ai	
29 30				
31 32 33				
33 34 35				
36				
37 38				
39 40				
41 42				
43 44				
45 46				
47				
48 49				
50				
51 52				
53 54				
55				
56 57				
58				
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Increased risk of ischemic stroke in patients with migraine: A longitudinal follow-up study using a national sample cohort in Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027701.R1
Article Type:	Research
Date Submitted by the Author:	23-Jan-2019
Complete List of Authors:	Lee, Sang-Yeon; Seoul National University Hospital, Otorhinolaryngology-Head and Neck Surgery Lim, Jae-Sung; Hallym University Sacred Heart Hospital, Neurology Oh, Dong Jun; Asan Medical Center, University of Ulsan College of Medicine Kong, Il Gyu; Hallym University College of Medicine, Otorhinolaryngology Choi, Hyo Geun; Hallym University,
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Epidemiology, Neurology, Ear, nose and throat/otolaryngology
Keywords:	EPIDEMIOLOGY, Migraine < NEUROLOGY, Stroke < NEUROLOGY

2 3 4 5	1	Increased risk of ischemic stroke in patients with
6 7 8	2	migraine: A longitudinal follow-up study using a national
9 10 11 12	3	sample cohort in Korea
 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 	4	
	5	Sang-Yeon Lee ¹ , Jae-Sung Lim ² , Dong Jun Oh ³ , Il Gyu Kong ⁴ , Hyo Geun Choi ^{4*}
	6	
	7	¹ Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University
	8	Hospital, Seoul National University College of Medicine, Seoul, South Korea
	9	² Department of Neurology, Hallym University College of Medicine, Anyang, Korea
	10	³ Department of Internal Medicine, Asan Medical Center, University of Ulsan College of
	11	Medicine, Seoul
	12	⁴ Department of Laboratory Medicine, Hallym University College of Medicine, Anyang,
	13	Korea
	14	
	15	Corresponding author: Hyo Geun Choi
41 42	16	Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart
43 44	17	Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068
45 46 47	18	Republic of Korea
48 49 50 51 52 53	19	Tel: 82-31-380-3849
	20	Fax: 82-31-386-3860
	21	Email: <u>pupen@naver.com</u>
54 55 56	22	
57 58 59 60	23	Word Count: 3226

2		
3 4	24	Abstract
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	25	Objective: Accumulating evidence has supported the association between migraine and
	26	stroke, but the causative association remains unclear. We aimed to investigate the risks of
	27	different types of stroke in patients with migraine.
	28	Design: A longitudinal follow-up study
	29	Setting: Data collected from a national cohort between 2002 and 2013 by the Korean Health
	30	Insurance Review and Assessment
	31	Participants : We extracted the data from patients with migraine ($n = 41,585$) and 1:4
	32	matched controls ($n = 166,340$) and analyzed the occurrence of ischemic and hemorrhagic
	33	strokes. The migraine group included participants treated for migraine (ICD-10: G43) \geq 2
	34	times. Hemorrhagic stroke (I60-I62) and ischemic stroke (I63) were determined based on the
	35	admission histories. The crude and adjusted hazard ratios (HRs) were calculated using Cox
	36	proportional hazard models, and the 95% confidence intervals (CIs) were determined.
	37	Subgroup analyses stratified by age and sex were also performed.
	38	Results: Higher rates of ischemic stroke were observed in the migraine group (2.3%
37 38	39	[964/41,585]) than in the control group (2.0% [3,294/166,340], P < 0.001). The adjusted HR
39 40 41	40	for ischemic stroke was 1.18 (95% CI = 1.10-1.26) in the migraine group ($P < 0.001$).
41 42 43	41	Compared with control subjects, participants who reported migraine with aura and migraine
44 45	42	without aura had increased adjusted HRs of 1.44 (95% CI = 1.09-1.89) and 1.15 (95% CI =
46 47	43	1.06-1.24), respectively, for ischemic stroke, but no increased risk of hemorrhagic stroke. In
48 49 50	44	our subgroup analysis, a strong association between migraine and ischemic stroke was
50 51 52	45	observed in young patients, specifically young women. The contribution of migraine to the
53 54 55 56	46	occurrence of ischemic stroke was also observed in middle-aged women and old women

Page 3 o	of 37	BMJ Open
1		
2 3 4	47	(each $P < 0.05$). The risk of hemorrhagic stroke did not reach statistical significance in any
5 6	48	age group.
7 8	49	Conclusion: Migraine is associated with an increased risk of ischemic stroke, but not
9 10 11	50	hemorrhagic stroke.
12 13	51	Keywords: migraine, stroke, cohort study, Korea
14 15	52	
16 17	53	STRENGTHS AND LIMITATIONS OF THIS STUDY
18 19 20	54	1. The strengths of the present study particularly result from the large cohort based on a
21 22	55	complete, national patient sample and the long follow-up period.
23 24	56	2. We designed a cohort study to evaluate the risks of different types of stroke in migraineurs.
25 26 27	57	3. Migraine should be considered in assessments of the risk of ischemic stroke, particularly in
28 29	58	young women.
30 31	59	4. Confounders linking migraine to stroke, such as cigarette smoking, obesity, and
32 33 34	60	prescription information, were not available in the present cohort study based on claim data.
35 36	61	
37 38	62	Introduction
39 40 41	63	Migraine is a common neurovascular disorder characterized by recurrent disabling episodes
41 42 43	64	of headache, most often unilateral headache. The headache is often accompanied by visual or
44 45	65	sensory symptoms, namely, aura. ¹ The annual prevalence of migraine is approximately 8–
46 47	66	15% worldwide, ²³ and in Korea, the estimated incidence is 6.1%. ⁴ Migraine appears to
48 49 50	67	present at a relatively young age (< 45 years); it is more prevalent in women than men, with a
51 52	68	prevalence $> 25\%$ in the 35–39-year-old female population worldwide. ¹ The inclusion of
53 54	69	migraine as an independent risk factor for cardiovascular events has been debated for many
55 56 57	70	years, but it is an established risk factor for ischemic stroke. ⁵
58 59 60		3

Stroke is a cerebrovascular condition characterized by limited blood flow to the brain due to a blockage or rupture in the cerebrovascular system.⁶ Stroke is responsible for approximately 700,000 deaths annually in the Western world.⁷ In Korea, the estimated stroke incidence is approximately 795,000 in people aged \geq 30 years.⁸ More than 80% of stroke cases are ischemic stroke, and the remaining cases are hemorrhagic stroke; ischemic and hemorrhagic strokes differ with regard to risk factors, genetic predisposition, and mortality rates.^{9 10}

To date, several underlying physiological mechanisms have been suggested to explain the association between migraine and stroke. The risk factors for stroke in migraineurs have been widely evaluated, and common comorbidities, including hypertension, obesity, dyslipidemia, and smoking, were validated.¹¹ In addition, specific genetic etiologies associated with vasculopathy can manifest in both patients suffering from migraine and stroke.¹² A recent investigation employing a mutant mouse model of migraine also indicated that shared genetic risk factors rendered the brain more vulnerable to ischemic stroke.¹³

Moreover, migraine itself carries an increased risk of ischemic stroke. Migraine is associated with an increased risk of perioperative ischemic stroke in a large cohort of surgical patients, suggesting that migraine should be included in the perioperative risk assessment.¹⁴ Recently, a population-based case-control study in Taiwan reported an association between migraine and ischemic stroke (adjusted hazard ratio [HR]: 1.24, confidence interval [CI]: 1.12–1.38).³ Similarly, an increased risk of ischemic stroke has been consistently observed in migraineurs, especially in those diagnosed with migraine with aura.^{3 15-18} Furthermore, accumulating evidence has supported the association between migraine and hemorrhagic stroke,^{19 20} but the causative association currently remains unclear.

Page 5 of 37

BMJ Open

Given the differences in the natures of hemorrhagic stroke and ischemic stroke in patients. including risk factors and genetic predispositions,^{9 10} we hypothesized that the contributions of migraine to an increased risk of stroke differ according to the stroke type. Thus, stroke types should be analyzed separately. Additionally, stroke is a leading cause of mortality; therefore, validation of the association between migraine and stroke may facilitate treatment and prognosis in these cases. Here, using a national Korean population-based sample cohort, we examined the associations between migraine and different types of stroke. **Materials and Methods** Study population and data collection The ethics committee of Hallym University (2014-I148) approved the use of these data. The Institutional Review Board exempted the requirement for written informed consent. This national cohort study used data from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC). The Korean NHIS selects samples directly from the entire population database to prevent nonsampling errors. Approximately 2% of the samples (one million) were selected from the entire Korean population (50 million). The selected data were classified into 1,476 levels (age [18 categories], sex [2 categories], and income level [41 categories]) using randomized, stratified, systematic sampling methods via proportional allocation to represent the entire population. A previous study verified the appropriateness of the sample after data selection.²¹ The National Health Insurance Sharing Service provides a detailed description of the methods used to perform these procedures.²² This cohort database included (i) personal information, (ii) health insurance claim codes (procedures and prescriptions), (iii) diagnostic codes based on the International Classification of Disease-10 (ICD-10), (iv) death records from the Korean National Statistical Office (using

1 2		
3 4	118	the Korean Standard Classification of disease), (v) socioeconomic data (residence and
5 6	119	income), and (vi) medical examination data for each participant from 2002 to 2013.
7 8 9	120	All Korean citizens are recognized by a 13-digit resident registration number from birth
9 10 11	121	to death. Therefore, exact population statistics have been determined using this database. All
12 13	122	Koreans are required to enroll in the NHIS. All Korean hospitals and clinics use the 13-digit
14 15	123	resident registration number to register individual patients in the medical insurance system.
16 17 18	124	Therefore, the risk of overlapping medical records is minimal, even if a patient moves from
19 20	125	one place to another. All medical treatments in Korea are tracked without exception using the
21 22	126	Health Insurance Review & Assessment (HIRA) system. In Korea, the law states that a notice
23 24	127	of death must be provided to an administrative entity before a funeral can be held. Medical
25 26 27	128	doctors record the date and cause of death on a death certificate.
28 29	129	
30 31	130	Patients and public involvement
32 33 34	131	No patients or public were involved in the present study.
35 36	132	
37 38	133	Participant Selection
39 40	134	Of the 1,125,691 patients with 114,369,638 medical claim codes, participants diagnosed with
41 42 43	135	migraine (ICD-10: G43) were included. Among these participants, those who were treated \geq
44 45	136	2 times (n = $45,587$) were selected. The participants were followed for 12 years.
46 47	137	The history of admission for hemorrhagic stroke (I60: Subarachnoid hemorrhage, I61:
48 49 50	138	Intracerebral hemorrhage, and I62: Other nontraumatic intracranial hemorrhage) and
50 51 52	139	ischemic stroke (I63: Cerebral infarction) was identified using ICD-10 codes. We selected the
53 54	140	participants who were treated ≥ 1 time. These methods were used in other studies evaluating
55 56 57	141	the incidence of stoke in Korea. ^{8 23}
58 59		6
60		

Page 7 of 37

BMJ Open

The participants with migraine were matched 1:4 with participants (control group) who had never been diagnosed with a migraine from 2002 through 2013 in this cohort. The control group was selected from the total population (n = 1,080,104). The matches were processed for age, group, sex, income group, region of residence, and past medical histories (age, sex, income, region of residence, hypertension, diabetes, and dyslipidemia histories). We sorted the participants in the control group using a random number order and then selected them from top to bottom to prevent selection bias when selecting the matched control participants. We assumed that the matched control participants were enrolled at the same time as each matched participant with migraine (index date). Therefore, control group members who died before the index date were excluded. In both the migraine and control groups, participants with histories of hemorrhagic or ischemic stroke before the index date were excluded. In the migraine group, 438 participants were excluded. The participants with migraine for whom we were unable to identify sufficient numbers of matching participants were excluded (n = 185). We excluded participants aged less than 20 years (n = 3,379). Finally, 1:4 matching resulted in the inclusion of 41,585 participants with migraine (migraine with aura = 3,458, migraine without aura = 38,127) and 166,340 control participants (Fig. 1).

159 Variables

The age groups were classified using 5-year intervals: 20-24, 25-29, 30-34..., and 85+ years old. Fourteen age groups were designated. The income groups were initially divided into 41 classes (one health aid class, 20 self-employment health insurance classes, and 20 employment health insurance classes). These groups were recategorized into 11 classes (class 164 1 [lowest income]–class 11 [highest income]). The region of residence was divided into 16 areas according to administrative district. These regions were regrouped into urban (Seoul,

Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan) and rural (Gyeonggi, Gangwon, Chungcheongbuk, Chungcheongnam, Jeollabuk, Jeollanam, Gyeongsangbuk, Gyeongsangnam, and Jeju) areas. The past medical histories of the participants were evaluated using ICD-10 codes. For an accurate diagnosis, hypertension (I10 and I15), diabetes (E10-E14), and dyslipidemia (E78) were recorded if the participants were treated ≥ 2 times. Moreover, we further included variables including congestive heart failure, myocardial infarction, peripheral vascular disease, pulmonary disease, liver disease, and depression histories that might affect the association between migraine and stroke using the Charlson Comorbidity Index and subsequently performed the analysis with the added variables.

176 Statistical Analyses

Chi-square tests were used to compare the general characteristics between the migraine and control groups. For the analysis of the HRs of migraine for hemorrhagic stroke and ischemic stroke, Cox proportional hazard models were used, and 95% CIs were calculated. In these analyses, crude (simple) and adjusted (age, sex, income, region of residence, hypertension, diabetes, dyslipidemia, congestive heart failure, myocardial infarction, peripheral vascular disease, pulmonary disease, liver disease, and depression histories) models were used. For the subgroup analysis, we stratified the participants by age and sex (20–39 years old, 40–59 years old, 60+ years old; men and women). Two-tailed analyses were conducted, and P values less than 0.05 were considered significant. The results were statistically analyzed using SPSS v. 21.0 software (IBM, Armonk, NY, USA).

BMJ Open

188	Results
189	The mean follow-up period was 80.9 (standard deviation [SD] = 41.6) months for patients
190	with migraine and 80.9 (SD = 41.6) months for controls. The rates of hemorrhagic stroke
191	were similar in the migraine group $(0.7\% [295/41,585])$ and the control group $(0.7\% [295/41,585])$
192	[1,113/166,340], P = 0.370, Table 1). Higher rates of ischemic stroke were observed in the
193	migraine group (2.3% [964/41,585]) than in the control group (2.0% [3,294/166,340], P <
194	0.001). The general characteristics (age, sex, income, region of residence, hypertension,
195	diabetes, and dyslipidemia histories) of participants were the same due to the matching
196	protocol ($P = 1.000$).

Table 1 General characteristics of the participants

Т	otal participants	
Migraine (n, %)	Control (n, %)	P-value
Ŀ.		1.000
1,994 (4.8)	7,976 (4.8)	
2,649 (6.4)	10,596 (6.4)	
3,640 (8.8)	14,560 (8.8)	
4,309 (10.4)	17,236 (10.4)	
4,859 (11.7)	19,436 (11.7)	
5,187 (12.5)	20,748 (12.5)	
4,512 (10.9)	18,048 (10.9)	
3,508 (8.4)	14,032 (8.4)	
3,209 (7.7)	12,836 (7.7)	
3,049 (7.3)	12,196 (7.3)	
9		
	Migraine (n, %) 1,994 (4.8) 2,649 (6.4) 3,640 (8.8) 4,309 (10.4) 4,859 (11.7) 5,187 (12.5) 4,512 (10.9) 3,508 (8.4) 3,209 (7.7) 3,049 (7.3)	1,994 (4.8) $7,976$ (4.8) $2,649$ (6.4) $10,596$ (6.4) $3,640$ (8.8) $14,560$ (8.8) $4,309$ (10.4) $17,236$ (10.4) $4,859$ (11.7) $19,436$ (11.7) $5,187$ (12.5) $20,748$ (12.5) $4,512$ (10.9) $18,048$ (10.9) $3,508$ (8.4) $14,032$ (8.4) $3,209$ (7.7) $12,836$ (7.7) $3,049$ (7.3) $12,196$ (7.3)

70-74	2,328 (5.6)	9,312 (5.6)	
75-79	1,423 (3.4)	5,692 (3.4)	
80-84	651 (1.6)	2,604 (1.6)	
85+	267 (0.6)	1,068 (0.6)	
Sex			1.000
Male	10,476 (25.2)	41,904 (25.2)	
Female	31,109 (74.8)	124,436 (74.8)	
Income			1.000
Income 1 (lowest)	837 (2.0)	3,348 (2.0)	
2	3,170 (7.6)	12,680 (7.6)	
3	3,004 (7.2)	12,016 (7.2)	
4	3,131 (7.5)	12,524 (7.5)	
5	3,345 (8.0)	13,380 (8.0)	
6	3,615 (8.7)	14,460 (8.7)	
7	3,908 (9.4)	15,632 (9.4)	
8	4,411 (10.6)	17,644 (10.6)	
9	4,908 (11.8)	19,632 (11.8)	
10	5,456 (13.1)	21,824 (13.1)	
11 (highest)	5,800 (13.9)	23,200 (13.9)	
Region of residence			1.000
Urban	17,959 (43.2)	71,836 (43.2)	
Rural	23,626 (56.8)	94,504 (56.8)	
Hypertension	16,209 (39.0)	64,836 (39.0)	1.000
Diabetes	7,261 (17.5)	29,044 (17.5)	1.000

Page 11 of 37		BMJ Open					
l 2							
- 3 4	Dyslipidemia	12,837 (30.9)	51,348 (30.9)	1.000			
5	Congestive heart failure	2,030 (4.9)	6,761 (4.1)	< 0.001*			
7 3 9	Myocardial infarction	913 (2.2)	3,330 (2.0)	0.013*			
0 1	Peripheral vascular disease	7,942 (19.1)	20,217 (12.2)	< 0.001*			
2 3	Pulmonary disease	29,540 (71.0)	94,811 (57.0)	< 0.001*			
4 5 6	Liver disease	5,087 (12.2)	15,317 (9.2)	< 0.001*			
7 8	Depression	7,808 (18.8)	15,269 (9.2)	< 0.001*			
9 0	Hemorrhagic stroke	295 (0.7)	1,113 (0.7)	0.370			
21 22 23	Ischemic stroke	964 (2.3)	3,294 (2.0)	< 0.001*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 *Chi-square test. Differences were considered significant at P < 0.05. The crude and adjusted HRs for hemorrhagic stroke were 1.06 (95% CI = 0.93–1.21, P = 0.369) and 1.10 (95% CI = 0.96–1.25, P = 0.172), respectively, in the migraine group (Table 2). The crude and adjusted HRs for ischemic stroke were 1.17 (95% CI = 1.09–1.26) and 1.18 (95% CI = 1.08–1.25), respectively, in the migraine group (each P < 0.001). 						
41 42 207							
13 14 208 15							
46 47 48 49 50 51 52 53 54 55 56 57 58 59 50		11					

Table 2 Crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic stroke

	Characteristics		Hemorrha	agic stroke		Ischemic stroke			
		Crude	P-value	Adjusted†	P-value	Crude	P-value	Adjusted [†]	P-value
	Migraine		0.369		0.172		< 0.001*		< 0.001*
	Yes	1.06 (0.93-1.21)		1.10 (0.96-1.25)		1.17 (1.09-1.26)		1.17 (1.08-1.25)	
	No	1.00		1.00		1.00		1.00	
210				00					
211	* Cox proportional	l hazard regression n	nodel; differ	ences were consider	red significa	ant at $P < 0.05$.			
212	† Model adjusted f	for age, sex, income,	region of re	sidence, hypertensi	on, diabetes	, dyslipidemia, con	gestive hear	t failure, myocardia	al infarction,
213	nerinheral vascular	r disease, pulmonary	disease liv	er disease and denr	ession histo	nies			
215	peripheral vascula	uisease, puinionary		er diseuse, and depr					
					12				
			For peer revi	ew only - http://bmjop	en.bmj.com/s	ite/about/guidelines.>	khtml		

Page 13 of 37

BMJ Open

214	In the subgroup analyses, none of the crude and adjusted HRs for hemorrhagic stroke
215	reached statistical significance (Table 3). Among the patients with ischemic stroke, young
216	women, middle-aged women, and old women showed statistically significant differences
217	(each P < 0.05). The significant adjusted HRs were 2.31 (95% CI = $1.39-3.82$) in young
218	women (20-39 years old); 1.32 (95% CI = 1.08–1.61) in middle-aged women (40-59 years
219	old); and 1.18 (95% CI = 1.06–1.30) in \geq 60-year-old women. Moreover, descriptive
220	statistical analyses of the migraine prevalence and ischemic stroke occurrence within
221	subgroups revealed statistically significant differences in young men, young women, middle-
222	aged women, old men, and old women. On the other hand, the risk of hemorrhagic stroke in
223	patients with migraine was not significantly different from the control group (Supplement
224	table 1).
225	
226	table 1).
227	
228	
229	
230	
231	
232	
233	

Table 3 Subgroup analysis of crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic

235 stroke

	Hemorrhagic stroke			Ischemic stroke			
Crude	P-value	Adjusted†	P-value	Crude	P-value	Adjusted†	P-valu
39 years old, n = 15,	550)						
	0.158		0.330		0.017*		0.107
1.56 (0.84-2.89)		1.37 (0.73-2.59)		2.15 (1.15-4.02)		1.72 (0.89-3.32)	
1.00		1.00		1.00		1.00	
20-39 years old, n =	47,410)						
	0.726		0.879		< 0.001*		0.001*
1.10 (0.64-1.92)		1.05 (0.59-1.84)		2.54 (1.55-4.15)		2.31 (1.39-3.82)	
1.00		1.00		1.00		1.00	
n (40-59 years old, r	n = 22,090)						
	0.721		0.668		0.565		0.418
1.07 (0.73-1.56)		1.09 (0.74-1.61)		0.93 (0.71-1.21)		0.89 (0.68-1.17)	
			14				
	For peer review	w only - http://bmjop	en.bmj.com/	site/about/guidelines.x	html		
	39 years old, n = 15, 1.56 (0.84-2.89) 1.00 20-39 years old, n = 1 1.10 (0.64-1.92) 1.00 n (40-59 years old, r 1.07 (0.73-1.56)	Crude P-value 39 years old, n = 15,550) 0.158 $1.56 (0.84-2.89)$ 0.158 1.00 0.726 $20-39$ years old, n = 47,410) 0.726 $1.10 (0.64-1.92)$ 0.726 1.00 0.721 $1.07 (0.73-1.56)$ 0.721	39 years old, n = 15,550) 0.158 1.56 (0.84-2.89) 1.00 1.00 1.00 20-39 years old, n = 47,410) 0.726 1.10 (0.64-1.92) 1.05 (0.59-1.84) 1.00 1.00 n (40-59 years old, n = 22,090) 0.721 1.07 (0.73-1.56) 1.09 (0.74-1.61)	CrudeP-valueAdjusted†P-value39 years old, $n = 15,550$)0.1580.3301.56 (0.84-2.89)1.37 (0.73-2.59)0.3301.001.001.0020-39 years old, $n = 47,410$)0.7260.8791.10 (0.64-1.92)1.05 (0.59-1.84)0.8791.001.001.00n (40-59 years old, $n = 22,090$)0.7210.6681.07 (0.73-1.56)1.09 (0.74-1.61)14	Crude P-value Adjusted† P-value Crude 39 years old, n = 15,550) 0.158 0.330 0.156 0.330 1.56 (0.84-2.89) 1.37 (0.73-2.59) 2.15 (1.15-4.02) 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 20-39 years old, n = 47,410) 0.726 0.879 0.54 (1.55-4.15) 1.00 1.00 1.00 1.10 (0.64-1.92) 1.05 (0.59-1.84) 2.54 (1.55-4.15) 1.00 1.00 1.00 n (40-59 years old, n = 22,090) 0.721 0.668 0.93 (0.71-1.21) 14	CrudeP-valueAdjusted†P-valueCrudeP-value39 years old, $n = 15,550$)0.1580.3300.017*1.56 (0.84-2.89)1.37 (0.73-2.59)2.15 (1.15-4.02)1.001.001.001.0020-39 years old, $n = 47,410$)0.7260.879< 0.001*	CrudeP-valueAdjusted†P-valueCrudeP-valueAdjusted†39 years old, $n = 15,550$ 0.1580.3300.017*1.56 (0.84-2.89)1.37 (0.73-2.59)2.15 (1.15-4.02)1.72 (0.89-3.32)1.001.001.001.0020-39 years old, $n = 47,410$ 0.726 0.879 < 0.001*

BMJ Open

	1.00		1.00		1.00	
omen (40-59 years old, n	= 68.240)					
(0.582	0.388		0.002*		0.006*
1.07 (0.84-1.38)	1.12 (0.87-1.44)		1.35 (1.12-1.64)		1.32 (1.08-1.61)	
1.00	1.00		1.00		1.00	
years old, n = 14,740)						
(0.115	0.068		0.275		0.353
1.29 (0.94-1.78)	1.36 (0.98-1.88)		1.09 (0.93-1.27)		1.08 (0.92-1.26)	
1.00	1.00		1.00		1.00	
50 years old, n = 39,895)						
C	0.462	0.757		0.002*		0.002*
0.92 (0.75-1.14)	0.97 (0.78-1.20)		1.17 (1.06-1.29)		1.18 (1.06-1.30)	
1.00	1.00		1.00		1.00	
	1.07 (0.84-1.38) 1.00 years old, n = 14,740) (1.29 (0.94-1.78) 1.00 50 years old, n = 39,895) (0.92 (0.75-1.14)	1.07 (0.84-1.38) 1.12 (0.87-1.44) 1.00 1.00 1.00 1.00 1.00 1.29 (0.94-1.78) 1.36 (0.98-1.88) 1.00 1.00 1.00 1.00 0.115 1.36 (0.98-1.88) 1.00 0.462 0.92 (0.75-1.14) 0.97 (0.78-1.20)	1.07 (0.84-1.38) $1.12 (0.87-1.44)$ 1.00 1.00 years old, $n = 14,740$) 0.115 0.068 $1.29 (0.94-1.78)$ $1.36 (0.98-1.88)$ 0.068 1.00 1.00 0.068 0.00 years old, $n = 39,895$) 0.462 0.757 $0.92 (0.75-1.14)$ $0.97 (0.78-1.20)$	1.07 (0.84-1.38) $1.12 (0.87-1.44)$ $1.35 (1.12-1.64)$ 1.00 1.00 1.00 years old, $n = 14,740$) 0.115 0.068 $1.29 (0.94-1.78)$ $1.36 (0.98-1.88)$ $1.09 (0.93-1.27)$ 1.00 1.00 1.00 $0.92 (0.75-1.14)$ $0.97 (0.78-1.20)$ $1.17 (1.06-1.29)$	1.07 (0.84-1.38) $1.12 (0.87-1.44)$ $1.35 (1.12-1.64)$ 1.00 1.00 1.00 years old, $n = 14,740$) 0.115 0.068 0.275 $1.29 (0.94-1.78)$ $1.36 (0.98-1.88)$ $1.09 (0.93-1.27)$ 1.00 1.00 1.00 1.00 1.00 1.00 50 years old, $n = 39,895$) 0.462 0.757 $0.002*$ $0.92 (0.75-1.14)$ $0.97 (0.78-1.20)$ $1.17 (1.06-1.29)$	$1.07 (0.84-1.38)$ $1.12 (0.87-1.44)$ $1.35 (1.12-1.64)$ $1.32 (1.08-1.61)$ 1.00 1.00 1.00 1.00 1.00 rears old, $n = 14,740$) 0.115 0.068 0.275 0.115 0.068 0.275 $1.29 (0.94-1.78)$ $1.36 (0.98-1.88)$ $1.09 (0.93-1.27)$ $1.08 (0.92-1.26)$ 1.00 1.00 1.00 1.00 1.00 1.00 00 years old, $n = 39,895$) 0.462 0.757 0.002^* $0.92 (0.75-1.14)$ $0.97 (0.78-1.20)$ $1.17 (1.06-1.29)$ $1.18 (1.06-1.30)$

²³⁸ † Model adjusted for age, sex, income, region of residence, hypertension, diabetes, dyslipidemia, congestive heart failure, myocardial infarction,

For beer review only

239 peripheral vascular disease, pulmonary disease, liver disease, and depression histories.

Page 17 of 37

BMJ Open

1 2		
3 4	240	Compared with the control group, participants who reported migraine with aura and
5 6	241	migraine without aura had increased adjusted HRs of 1.44 (95% CI = 1.09-1.89) and 1.15
7 8 9	242	(95% CI = 1.06-1.24) for ischemic stroke, respectively, but no increased risk of hemorrhagic
10 11	243	stroke (Table 4).
12 13	244	
14 15 16	245	
16 17 18	246	
19 20	247	
21 22 22	248	
23 24 25	249	
26 27	250	
28 29	251	
30 31 32	252	
33 34	253	
35 36	254	
37 38 39	255	
40 41	256	
42 43	257	
44 45 46	258	
46 47 48	259	
49 50	260	
51 52	261	
53 54 55	262	
56 57	263	
58 59		17
60		

Table 4 Subgroup analysis of crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic

265 stroke

Characteristics		Hemorrhagic stroke			Ischemic stroke			
	Crude	P-value	Adjusted†	P-value	Crude	P-value	Adjusted†	P-value
Migraine with A	ura (n = 17,290)							
Migraine		0.531		0.506		0.006*		0.009*
Yes	1.17 (0.72-1.90)		1.19 (0.72-1.96)		1.45 (1.11-1.88)		1.44 (1.09-1.89)	
No	1.00		1.00		1.00		1.00	
Migraine withou	ıt Aura (n = 190,635)						
Migraine		0.446		0.213		< 0.001*		< 0.001*
Yes	1.05 (0.92-1.20)		1.09 (0.95-1.25)		1.16 (1.07-1.24)		1.15 (1.06-1.24)	
No	1.00		1.00		1.00		1.00	
* Cox proportional	l hazard regression m	odel; differen	nces were consider	red signific	ant at P < 0.05.			
† Model adjusted f	for age, sex, income,	region of resi	dence, hypertensi	on, diabetes	s, dyslipidemia, con	gestive hear	t failure, myocardia	al infarctio
peripheral vascular	r disease, pulmonary	disease, liver	disease, and depr	ession histo	ories.			
				18				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Discussion

Migraine appeared to increase the risk of ischemic stroke, but not hemorrhagic stroke. The risk of ischemic stroke was 1.18-fold greater in the patients with migraine than in the matched control subjects, even after adjustment for confounding factors. In the subgroup analyses stratified by age and sex, significant correlations with ischemic stroke were primarily observed in young women, middle-aged women, and old women. In contrast, the risk of hemorrhagic stroke was similar in patients with migraine and the matched control patients.

Migraine, particularly migraine with aura, is an established risk factor for ischemic stroke. In this study, compared with the control group, participants who reported migraine with aura had an increased adjusted HR of 1.44 (95% CI = 1.09-1.89) for ischemic stroke. Migraine with aura particularly increases the risk of ischemic stroke, based on the results of large population-based cohort studies and meta-analyses.^{3 15-18} Cortical spreading depression (CSD) is a self-propagating wave of depolarization across the cerebral cortex at a slow velocity of 3 to 5 mm/min.²⁴ CSD has been implicated in migraine with aura, which plays a critical role in the pathophysiology of ischemic stroke. In an experimental study, CSD altered the tone of resistance vessels, causing hypoperfusion in tissues at risk for progressive damage, namely, cortical spreading ischemia.²⁵ In addition, the inflammatory cascade of the neurovascular system, which is characterized by endothelial dysfunction and coagulation abnormalities, may contribute to the development of ischemic stroke. In the aura phase, the endothelium activates coagulation and thrombosis, which are mediated by inflammatory cytokines and endothelial biomarkers.^{26 27} Moreover, specific genetic etiologies, such as Factor V Leiden G 619 1A, prothrombin G20210A, and familial hemiplegic migraine type 1, have been reported in patients diagnosed with migraine with aura. These shared genetic

factors may precipitate the susceptibility to CSD, which may explain the association between
 migraine and stroke.²⁸

A growing body of evidence regarding the increased risk of ischemic stroke in patients with migraine without aura. Consistent with the findings from patients reporting migraine with aura, participants who reported migraine without aura had an increased adjusted HR of 1.15 (95% CI = 1.06-1.24) for ischemic stroke compared with the control group. Notably, a significant association was observed in cases of ischemic stroke resulting from cervical artery dissection.²⁹ In addition, genetic overlaps among subjects with migraine without aura, large artery stroke, and cardio-embolic stroke have been identified.³⁰ However, strong evidence has been not reported. A recent large population-based study reported an statistically insignificant risk of ischemic stroke in patients with migraine without aura but an increased risk in patients with migraine with aura.³ The study suggested that the difference may be due to changes in the lipid profile, the susceptibility to thrombosis, and genetic predisposition.³ A meta-analysis did not identify a significant association between migraine without aura and ischemic stroke.¹⁸ In the present study, we did not differentiate between migraine subtypes, such as migraine with and without aura, when analyzing the risk of stroke. Therefore, the risk of ischemic stroke in participants with migraine was relatively low but statistically significant compared to other studies investigating specific conditions.

Notably, in the present study, migraine was not associated with an increased risk of hemorrhagic stroke. In contrast to the findings from the present study, a recent meta-analysis based on 4 case-control and 4 cohort studies concluded that migraine may increase the risk of hemorrhagic stroke.²⁰ However, a recent large population-based case-control study did not show an association with different types of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage. ³¹ Migraine was an independent risk factor for

Page 21 of 37

BMJ Open

3 4	318	aneurismal rupture (odds ratio $[OR] = 2.4$; 95% CI 1.1–5.1) in a case-control study, ³² and
5 6	319	even if headache is a premonitory symptom of aneurismal rupture, recall biases might have
7 8 9	320	affected the results of the study. Overall, the relatively small number of hemorrhagic stroke
9 10 11	321	cases might have resulted in decreased statistical power.
12 13	322	In our subgroup analysis, a strong correlation between migraine and ischemic stroke was
14 15	323	observed in young patients, specifically young women (20-39 years old). Based on a
16 17 18	324	consensus statement from the European Headache Federation (EHF), ³³ the use of a combined
19 20	325	hormonal contraceptive may further increase the risk of ischemic stroke in patients with
21 22	326	migraine, specifically migraine with aura, supporting our results. Because the predisposing
23 24 25	327	factors for stroke increase the incidence of ischemic stroke with age, ³⁴ migraine itself rather
25 26 27	328	than other risk factors might be implicated in the increased risk of ischemic stroke. In
28 29	329	contrast, a recent large, population-based cohort study in Taiwan with a relatively short
30 31	330	follow-up duration of 3.6 years did not show a significant association in the subgroups of
32 33 34	331	women and patients aged < 45 years. ³ This discrepancy might be due to differences in the
35 36	332	study design, follow-up duration, and ethnic composition of the study population. Recently, a
37 38	333	similar trend for this association was also reported, ³ but it requires further confirmation due
39 40 41	334	to the lack of evidence at present.
42 43	335	The present study has several strengths. The results of this study are consistent with the
44 45	336	findings of our previous studies utilizing the HIRA-NSC. ³⁵⁻³⁷ We examined a very large,
46 47 48	337	representative, and nationwide population. Because the NHIS data cover all citizens of Korea
48 49 50	338	without exception, no participants were lost during follow-up. The control group was
51 52	339	randomly selected and matched based on age, sex, income, region of residence, and medical
53 54	340	history to decrease any confounding effects. An adjusted hazard model was used to further
55 56	341	minimize the impacts of confounders. Because migraine attacks might be frequently repeated.

minimize the impacts of confounders. Because migraine attacks might be frequently repeated,

we opted to include patients with migraine who underwent treatment at least twice based on the ICD-10 code to increase the validity of the study [G43]. In a previous study, the prevalence of migraine in Korea was reported to be approximately 6.1%.⁴ This value appeared to be slightly higher than the value reported in the present study, which was 3.7% (41,585/1,125,691), based on strict inclusion criteria for migraine. In addition, the patients with migraine were followed for 12 years in the present study. Long study periods enable the recruitment of a large study population and allow researchers to observe and analyze the delayed effects of migraine on stroke.

However, the present study has certain limitations that should be addressed in future studies. First, we were unable to extract information on stroke subtypes and location from the data used in the present study. The impact of migraine on each type of pathophysiology might vary when considering different functional outcomes, survival, and recurrence according to stroke subtype.³⁸ ³⁹ However, in the present study, the distribution of stroke subtypes was not available. The classification of stroke type can lead to a significantly decreased incidence of each disease. As an insufficient number of cases cause inappropriate comparisons due to lower statistical power, the inclusion of the distribution of stroke subtypes would hamper our ability to draw a clear conclusion from the available data. In particular, the absolute incidence of hemorrhagic stroke is very low in general practice; therefore, most of studies did not provide information about subtypes, such as the presence of an aneurysm, although the association is positive in public health studies.³¹ Second, a firm correlation between the frequency of migraine attacks and the risk of stroke has been reported,⁴⁰ but we were unable to confirm this correlation using the claim data analyzed in the present study. Similarly, the duration and severity of migraine were inconsistent among the study population. Patients with migraine who had mild complaints may not have received a consultation at the clinic;

Page 23 of 37

BMJ Open

therefore, the impact of migraine on stroke may be underestimated in this study. Third, although this study attempted to include a large, representative patient population and subsequently matched and adjusted for possible confounders, the risk factors for stroke in patients with migraine, such as cigarette smoking, obesity, and migraine-specific drugs, were not available in the insurance database.^{11 40} Finally, in the present study, the incidence of migraine was 3.7% (41,585 of 1,125,691 participants) after employing a strict matching protocol. Before matching, the incidence of migraine in Korea was 4.1% (45,587 of 1,125,691 participants). This value is consistent with previous cohort study in Korea, indicating that the overall prevalence rate of migraine was 6.1%,⁸ despite the use of different study designs. Given the global prevalence of migraine of approximately 8–15%,⁹¹⁰ the incidence of migraine in Korea is relatively low because of limited claim data. Only patients with migraine who visited the hospital are recorded. In other words, data are not available for patients with weak migraine symptoms or patients who do not visit a hospital, leading to a lower incidence. Based on a population-based epidemiological study of migraine in Korea, only 24.4% of patients ever consulted a doctor for headache and only 3.3% of patients were prescribed a drug by a doctor.¹¹

383 Conclusions

Based on a large population-based cohort study in Korea, migraine increased the risk of
ischemic stroke, but not hemorrhagic stroke. The subgroup of patients at the highest risk of
developing ischemic stroke was young women.

388 ACKNOWLEDGMENTS

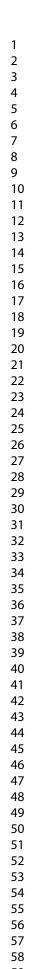
3 4	389	We thank the participants and examiners of Korean Health Insurance Review and Assessment
5 6 7	390	for participating in this cohort study and providing the data, respectively.
7 8 9	391	
10 11	392	DATA SHARING STATEMENT
12 13 14	393	No additional data are available.
14 15 16	394	
17 18	395	FUNDING STATEMENT
19 20 21	396	This work was supported by the Hallym University Research Fund and in part by a research
22 23	397	grant (NRF-2015-R1D1A1A01060860) from the National Research Foundation (NRF) of
24 25 26	398	Korea.
26 27 28	399	
29 30	400	COMPETING INTERESTS STATEMENT
31 32 33	401	None of the authors have competing interests to declare.
33 34 35	402	
36 37	403	AUTHORS' CONTRIBUTIONS
38 39	404	As the first author, SYL wrote the manuscript. DJO and JSL analyzed and interpreted the
40 41 42	405	data. IGK processed the data. HGC conceptualized, wrote, and reviewed the manuscript.
42 43 44	406	
45 46	407	References
47 48	408	1. Charles A. Migraine. N Engl J Med 2017;377(6):553-61. doi: 10.1056/NEJMcp1605502
49 50	409	2. Lipton RB, Scher AI, Kolodner K, et al. Migraine in the United States: epidemiology and
51 52 53 54 55 56 57	410	patterns of health care use. <i>Neurology</i> 2002;58(6):885-94.
58 59 60		24

1 2		
3 4	411	3. Peng KP, Chen YT, Fuh JL, et al. Migraine and incidence of ischemic stroke: A
5 6	412	nationwide population-based study. Cephalalgia 2017;37(4):327-35. doi:
7 8 9	413	10.1177/0333102416642602
9 10 11	414	4. Kim BK, Chu MK, Lee TG, et al. Prevalence and impact of migraine and tension-type
12 13	415	headache in Korea. J Clin Neurol 2012;8(3):204-11. doi: 10.3988/jcn.2012.8.3.204
14 15	416	5. Wood H. Migraine: Migraine - a risk factor for cardiovascular disease? Nat Rev Neurol
16 17 18	417	2018;14(4):194-95. doi: 10.1038/nrneurol.2018.18
19 20	418	6. Feigin VL, Lawes CM, Bennett DA, et al. Worldwide stroke incidence and early case
21 22	419	fatality reported in 56 population-based studies: a systematic review. The Lancet
23 24 25	420	Neurology 2009;8(4):355-69.
25 26 27	421	7. Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, et al. Comparison of neurological clinical
28 29	422	manifestation in patients with hemorrhagic and ischemic stroke. World journal of
30 31	423	emergency medicine 2017;8(1):34.
32 33 34	424	8. Hong KS, Bang OY, Kang DW, et al. Stroke statistics in Korea: part I. Epidemiology and
35 36	425	risk factors: a report from the korean stroke society and clinical research center for
37 38	426	stroke. J Stroke 2013;15(1):2-20. doi: 10.5853/jos.2013.15.1.2
39 40 41	427	9. Andersen KK, Olsen TS, Dehlendorff C, et al. Hemorrhagic and ischemic strokes
42 43	428	compared: stroke severity, mortality, and risk factors. Stroke 2009;40(6):2068-72. doi:
44 45	429	10.1161/STROKEAHA.108.540112
46 47 49	430	10. Das S, Roy S, Kaul S, et al. E-selectin gene (S128R) polymorphism in hemorrhagic
48 49 50	431	stroke: comparison with ischemic stroke. Neurosci Lett 2014;581:125-8. doi:
51 52	432	10.1016/j.neulet.2014.08.032
53 54	433	11. Gryglas A, Smigiel R. Migraine and Stroke: What's the Link? What to Do? Curr Neurol
55 56 57	434	Neurosci Rep 2017;17(3):22. doi: 10.1007/s11910-017-0729-y
58 59 60		25

3 4	435	12. Lee MJ, Lee C, Chung CS. The Migraine-Stroke Connection. J Stroke 2016;18(2):146-
5 6	436	56. doi: 10.5853/jos.2015.01683
7 8 9	437	13. Eikermann-Haerter K, Lee JH, Yuzawa I, et al. Migraine mutations increase stroke
) 10 11	438	vulnerability by facilitating ischemic depolarizations. Circulation 2012;125(2):335-
12 13	439	45. doi: 10.1161/CIRCULATIONAHA.111.045096
14 15 16	440	14. Timm FP, Houle TT, Grabitz SD, et al. Migraine and risk of perioperative ischemic
16 17 18	441	stroke and hospital readmission: hospital based registry study. BMJ 2017;356:i6635.
19 20	442	doi: 10.1136/bmj.i6635
21 22	443	15. Kurth T, Schurks M, Logroscino G, et al. Migraine, vascular risk, and cardiovascular
23 24 25	444	events in women: prospective cohort study. BMJ 2008;337:a636. doi:
26 27	445	10.1136/bmj.a636
28 29	446	16. Kurth T, Gaziano JM, Cook NR, et al. Migraine and risk of cardiovascular disease in
30 31 32	447	women. JAMA 2006;296(3):283-91. doi: 10.1001/jama.296.3.283
32 33 34	448	17. Monteith TS, Gardener H, Rundek T, et al. Migraine and risk of stroke in older adults:
35 36	449	Northern Manhattan Study. Neurology 2015;85(8):715-21. doi:
37 38	450	10.1212/WNL.0000000001854
39 40 41	451	18. Spector JT, Kahn SR, Jones MR, et al. Migraine headache and ischemic stroke risk: an
42 43	452	updated meta-analysis. Am J Med 2010;123(7):612-24. doi:
44 45	453	10.1016/j.amjmed.2009.12.021
46 47 48	454	19. Kuo CY, Yen MF, Chen LS, et al. Increased risk of hemorrhagic stroke in patients with
49 50	455	migraine: a population-based cohort study. PLoS One 2013;8(1):e55253. doi:
51 52	456	10.1371/journal.pone.0055253
53 54	457	20. Sacco S, Ornello R, Ripa P, et al. Migraine and hemorrhagic stroke: a meta-analysis.
55 56 57	458	Stroke 2013;44(11):3032-8. doi: 10.1161/STROKEAHA.113.002465
58 59 60		26

Page 27 of 37

1


BMJ Open

2 3	450	21 Les L Les IC Dark CIL et al Cabert Drafiles The National Health Insurance Service
4 5	459	21. Lee J, Lee JS, Park SH, et al. Cohort Profile: The National Health Insurance Service-
6 7	460	National Sample Cohort (NHIS-NSC), South Korea. International journal of
 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 	461	epidemiology 2016 doi: 10.1093/ije/dyv319
	462	22. <u>http://nhiss.nhis.or.kr/</u> .
	463	23. Kim RB, Kim BG, Kim YM, et al. Trends in the incidence of hospitalized acute
	464	myocardial infarction and stroke in Korea, 2006-2010. J Korean Med Sci
	465	2013;28(1):16-24. doi: 10.3346/jkms.2013.28.1.16
	466	24. Tietjen EG. Migraine and ischaemic heart disease and stroke: potential mechanisms and
	467	treatment implications. Cephalalgia 2007;27(8):981-7. doi: 10.1111/j.1468-
	468	2982.2007.01407.x
25 26 27	469	25. Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process
28 29 30 31 32 33 34 35 36 37 38 39 40 41	470	involved in ischaemic damage in patients with aneurysmal subarachnoid
	471	haemorrhage. Brain 2009;132(Pt 7):1866-81. doi: 10.1093/brain/awp102
	472	26. Liman TG, Bachelier-Walenta K, Neeb L, et al. Circulating endothelial microparticles in
	473	female migraineurs with aura. Cephalalgia 2015;35(2):88-94.
	474	27. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human
	475	diseases. International journal of biological sciences 2013;9(10):1057.
42 43	476	28. Pezzini A, Grassi M, Lodigiani C, et al. Predictors of migraine subtypes in young adults
44 45	477	with ischemic stroke: the italian project on stroke in young adults. Stroke
46 47	478	2011;42(1):17-21. doi: 10.1161/STROKEAHA.110.592246
48 49 50	479	29. De Giuli V, Grassi M, Lodigiani C, et al. Association between migraine and cervical
51 52	480	artery dissection: the Italian project on stroke in young adults. JAMA neurology
53 54	481	2017;74(5):512-18.
55 56 57		
57 58 59		27
60		

1 2 Page 28 of 37

3 4	482	30. Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and ischemic
5 6	483	stroke: A genome-wide analysis of common variants. Neurology 2015;84(21):2132-
7 8 9	484	45. doi: 10.1212/WNL.000000000001606
9 10 11	485	31. Gaist D, Gonzalez-Perez A, Ashina M, et al. Migraine and risk of hemorrhagic stroke: a
12 13	486	study based on data from general practice. J Headache Pain 2014;15:74. doi:
14 15	487	10.1186/1129-2377-15-74
16 17 18	488	32. Vlak MH, Rinkel GJ, Greebe P, et al. Risk of rupture of an intracranial aneurysm based
19 20	489	on patient characteristics: a case-control study. Stroke 2013;44(5):1256-9. doi:
21 22	490	10.1161/STROKEAHA.111.000679
23 24 25	491	33. Sacco S, Merki-Feld GS, KL AE, et al. Hormonal contraceptives and risk of ischemic
26 27	492	stroke in women with migraine: a consensus statement from the European Headache
28 29 30 31 32 33 34 35 36 37 38 39 40 41	493	Federation (EHF) and the European Society of Contraception and Reproductive
	494	Health (ESC). J Headache Pain 2017;18(1):108. doi: 10.1186/s10194-017-0815-1
	495	34. Tsai CF, Anderson N, Thomas B, et al. Comparing Risk Factor Profiles between
	496	Intracerebral Hemorrhage and Ischemic Stroke in Chinese and White Populations:
	497	Systematic Review and Meta-Analysis. PLoS One 2016;11(3):e0151743. doi:
	498	10.1371/journal.pone.0151743
42 43	499	35. Choi HG, Park B, Sim S, et al. Tonsillectomy Does Not Reduce Upper Respiratory
44 45	500	Infections: A National Cohort Study. PLoS One 2016;11(12):e0169264. doi:
46 47 48	501	10.1371/journal.pone.0169264
49 50	502	36. Kim SY, Kim HJ, Park EK, et al. Severe hearing impairment and risk of depression: A
51 52	503	national cohort study. PLoS One 2017;12(6):e0179973. doi:
53 54 55	504	10.1371/journal.pone.0179973
55 56 57		
58 59 60		28

2 3	505	37. Kim MS, Kim SY, Kim JH, et al. Depression in breast cancer patients who have
4		
5 6 7	506	undergone mastectomy: A national cohort study. <i>PLoS One</i> 2017;12(4):e0175395.
, 8 9	507	doi: 10.1371/journal.pone.0175395
10 11	508	38. Kurth T, Diener HC. Current views of the risk of stroke for migraine with and migraine
12 13	509	without aura. Curr Pain Headache Rep 2006;10(3):214-20.
14 15 16	510	39. Petty GW, Brown RD, Jr., Whisnant JP, et al. Ischemic stroke subtypes : a population-
17 18	511	based study of functional outcome, survival, and recurrence. Stroke 2000;31(5):1062-
19 20	512	8.
21 22 23	513	40. Bousser M-G, Welch KMA. Relation between migraine and stroke. The Lancet
23 24 25	514	Neurology 2005;4(9):533-42.
26 27	515	
28 29 30 31 32	516	Figure Legend
	517	Fig. 1 A schematic illustrating the participant selection process used in the present study. Of
33 34	518	a total of 1,125,691 participants, 41,585 participants with migraine were matched with
35 36	519	166,340 control participants for age, group, sex, income level, region of residence, and past
37 38	520	medical histories.
39 40 41		
42		
43 44		
45 46		
47		
48 49		
50		
51 52		
52 53		
54		
55 56		
57		
58 59		29
59 60		->

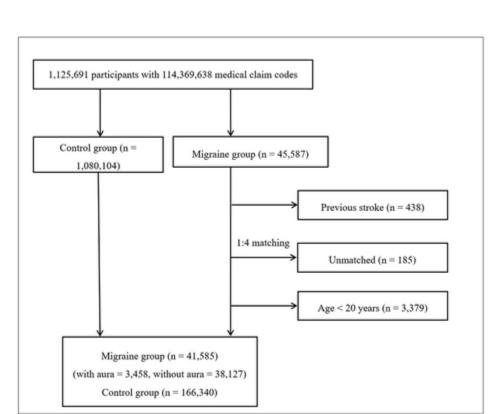


Figure 1 42x42mm (300 x 300 DPI)

BMJ Open

Characteristics	Young men (20-39 years old, n =	15,550)	Young women (20-39 years old, n = 47,410)		
	Migraine	Non-Migraine	P-value	Migraine	Non-Migraine	P-valu
	(n = 3,110, %)	(n = 12,440)	1 -value	(n = 9,482)	(n = 37,928)	1 - valu
Ischemic stroke		0	0.015*			< 0.00
Yes	15 (0.48)	28 (0.22)		26 (0.27)	41 (0.11)	
No	3,095 (99.52)	12,412 (99.78)		9,456 (99.73)	37,887 (99.89)	
Hemorrhagic stroke			0.157			0.727
Yes	14 (0.45)	36 (0.28)		16 (0.17)	58 (0.15)	
No	3,096 (99.55)	12,404 (99.72)		9,466 (99.73)	37,870 (99.85)	
Characteristics	Middle-aged	men (40-59 years o	ld, n = 22,090)	Middle-aged	women (40-59 years o	ld, n = 68,2
	Migraine	Non-Migraine		Migraine	Non-Migraine	
	(n = 4,418)	(n = 17,672)	P-value	(n = 9,482)	(n = 37,928)	P-value
Ischemic stroke			0.560			0.002
Yes	68 (1.54)	294 (1.66)		138 (1.46)	409 (1.08)	
No	4,350 (98.46)	17,378 (98.34)		13,648 (98.54)	54,952 (98.92)	

Hemorrhagic stroke	:		0.157			0.727
Yes	34 (0.77)	127 (0.72)		78 (0.82)	291 (0.77)	
No	4,384 (99.23)	17,545 (99.28)		13,570 (99.18)	54,301 (99.23)	
Characteristics	Old men (≥	60 years old, n = 14,7	740)	Old won	nen (≥ 60 years old, n	= 39,895)
	Migraine	Non-Migraine	D 1	Migraine	Non-Migraine	D 1
	(n = 2,948)	(n = 11,792)	P-value	(n = 7,979)	(n = 31,916)	P-value
Ischemic stroke			0.015*			0.002*
Yes	205 (7.0)	756 (6.4)		512 (6.4)	1,766 (5.5)	
No	2,743 (93.0)	11,036 (93.6)		7,467 (93.6)	30,150 (94.5)	
Hemorrhagic stroke	:		0.157			0.465
Yes	50 (1.7)	155 (1.3)		103 (1.3)	446 (1.4)	
No	2,898 (98.3)	11,637 (98.7)		7,876 (98.7)	31,470 (98.6)	

* Chi-square test; differences were considered significant at P < 0.05.

BMJ Open

2 3 4 5	Reporting checklist for cohort study.								
6 7 8 9	Based on the STROBE cohort guidelines.								
10 11 12	Instructions to authors								
13 14	Complete this chec	klist by	entering the page numbers from your manuscript where readers	will find					
15 16	each of the items li	sted bel	ow.						
17 18									
19 20	Your article may no	ot curren	tly address all the items on the checklist. Please modify your tex	kt to					
21 22	include the missing	informa	ation. If you are certain that an item does not apply, please write	"n/a" and					
23 24 25	provide a short exp	lanation							
26 27 28	Upload your compl	eted che	ecklist as an extra file when you submit to a journal.						
29 30 31	In your methods se	ction, sa	ay that you used the STROBE cohort reporting guidelines, and c	te them					
32 33 34	as:								
35 36	von Elm E, Altman	DG, Eg	ger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Stren	gthening					
37 38	the Reporting of Ob	oservatio	onal Studies in Epidemiology (STROBE) Statement: guidelines f	or					
39 40 41	reporting observation	onal stu	dies.						
42 43				Page					
44 45 46			Reporting Item	Number					
47 48 49	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1					
50 51 52			title or the abstract						
53 54	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2					
55 56 57 58			of what was done and what was found						
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

1 2	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4-5
3 4 5	rationale		investigation being reported	
6 7 8 9	Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	5
10 11 12 13	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
14 15 16 17	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5-6
18 19 20 21			periods of recruitment, exposure, follow-up, and data collection	
22 23 24	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6-7
25 26 27			selection of participants. Describe methods of follow-up.	
28 29 30		<u>#6b</u>	For matched studies, give matching criteria and number of exposed and unexposed	6-7
31 32 33 34	Variables	#7	Clearly define all outcomes, exposures, predictors, potential	7-8
35 36 37			confounders, and effect modifiers. Give diagnostic criteria, if	
38 39 40			applicable	
41 42	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5-8
43 44	measurement		of methods of assessment (measurement). Describe	
45 46			comparability of assessment methods if there is more than	
47 48 49			one group. Give information separately for for exposed and	
50 51			unexposed groups if applicable.	
52 53 54 55	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5-8
56 57 58	Study size	<u>#10</u>	Explain how the study size was arrived at	7
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7
3 4	variables		analyses. If applicable, describe which groupings were	
5 6 7			chosen, and why	
8 9 10	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	8
11 12	methods		control for confounding	
13 14 15		<u>#12b</u>	Describe any methods used to examine subgroups and	8
16 17 18			interactions	
19 20 21		<u>#12c</u>	Explain how missing data were addressed	NA
22 23 24		<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	NA
25 26 27		<u>#12e</u>	Describe any sensitivity analyses	NA
28 29 30	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	NA
31 32			numbers potentially eligible, examined for eligibility,	
33 34			confirmed eligible, included in the study, completing follow-	
35 36 37			up, and analysed. Give information separately for exposed	
38 39			and unexposed groups if applicable.	
40 41 42		<u>#13b</u>	Give reasons for non-participation at each stage	NA
43 44 45 46		<u>#13c</u>	Consider use of a flow diagram	7
47 48	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8-13
49 50			clinical, social) and information on exposures and potential	
51 52 53			confounders. Give information separately for exposed and	
54 55			unexposed groups if applicable.	
56 57 58				
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8		<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	8-13
		<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	8
9 10 11	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	NA
12 13			over time. Give information separately for exposed and	
14 15 16			unexposed groups if applicable.	
17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	8-13
19 20			adjusted estimates and their precision (eg, 95% confidence	
21 22 23			interval). Make clear which confounders were adjusted for	
23 24 25			and why they were included	
26 27		#16b	Report category boundaries when continuous variables were	NA
28 29		<u>#100</u>		
30 31			categorized	
32 33 34		<u>#16c</u>	If relevant, consider translating estimates of relative risk into	NA
35 36			absolute risk for a meaningful time period	
37 38 39	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	13-14
40 41			and interactions, and sensitivity analyses	
42 43 44	Key results	<u>#18</u>	Summarise key results with reference to study objectives	16
45 46 47	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	
48 49			of potential bias or imprecision. Discuss both direction and	
50 51 52			magnitude of any potential bias.	
52 53 54				
55 56				
57 58				
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	19			
3 4			limitations, multiplicity of analyses, results from similar				
5 6 7 8			studies, and other relevant evidence.				
8 9 10	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	16-18			
11 12 13			results				
14 15	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	20			
16 17			present study and, if applicable, for the original study on				
18 19 20			which the present article is based				
21 22 23	The STROBE chec	cklist is o	distributed under the terms of the Creative Commons Attribution	License			
24 25	CC-BY. This check	dist can	be completed online using <u>https://www.goodreports.org/</u> , a tool	made by			
26 27 28 29	the EQUATOR Network in collaboration with Penelope.ai						
29 30 31							
32 33							
34 35 36							
37 38							
39 40							
41 42							
43 44							
45 46							
47 48							
49 50							
50 51 52							
53							
54 55							
56 57							
58							
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

BMJ Open

Risk of ischemic stroke in patients with migraine: A longitudinal follow-up study using a national sample cohort in Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027701.R2
Article Type:	Research
Date Submitted by the Author:	30-Jan-2019
Complete List of Authors:	Lee, Sang-Yeon; Seoul National University Hospital, Otorhinolaryngology-Head and Neck Surgery Lim, Jae-Sung; Hallym University Sacred Heart Hospital, Neurology Oh, Dong Jun; Asan Medical Center, University of Ulsan College of Medicine Kong, Il Gyu; Hallym University College of Medicine, Otorhinolaryngology Choi, Hyo Geun; Hallym University,
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Epidemiology, Neurology, Ear, nose and throat/otolaryngology
Keywords:	EPIDEMIOLOGY, Migraine < NEUROLOGY, Stroke < NEUROLOGY

1 2		
3 4 5	1	Risk of ischemic stroke in patients with migraine: A
6 7 8	2	longitudinal follow-up study using a national sample
9 10 11 12	3	cohort in Korea
13 14	4	
15 16 17	5	Sang-Yeon Lee ¹ , Jae-Sung Lim ² , Dong Jun Oh ³ , Il Gyu Kong ⁴ , Hyo Geun Choi ^{4*}
18 19	6	
20 21	7	¹ Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University
22 23 24	8	Hospital, Seoul National University College of Medicine, Seoul, South Korea
25 26	9	² Department of Neurology, Hallym University College of Medicine, Anyang, Korea
27 28	10	³ Department of Internal Medicine, Asan Medical Center, University of Ulsan College of
29 30 21	11	Medicine, Seoul
31 32 33	12	⁴ Department of Laboratory Medicine, Hallym University College of Medicine, Anyang,
34 35	13	Korea
36 37	14	
38 39 40	15	Corresponding author: Hyo Geun Choi
41 42	16	Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart
43 44	17	Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068
45 46 47	18	Republic of Korea
48 49	19	Tel: 82-31-380-3849
50 51	20	Fax: 82-31-386-3860
52 53 54	21	Email: <u>pupen@naver.com</u>
55 56	22	
57 58 59 60	23	Word Count: 3226

2		
3 4	24	Abstract
5 6	25	Objective: Accumulating evidence has supported the association between migraine and
7 8 9	26	stroke, but the causative association remains unclear. We aimed to investigate the risks of
9 10 11	27	different types of stroke in patients with migraine.
12 13	28	Design: A longitudinal follow-up study
14 15	29	Setting: Data collected from a national cohort between 2002 and 2013 by the Korean Health
16 17 18	30	Insurance Review and Assessment
19 20	31	Participants : We extracted the data from patients with migraine ($n = 41,585$) and 1:4
21 22	32	matched controls ($n = 166,340$) and analyzed the occurrence of ischemic and hemorrhagic
23 24 25	33	strokes. The migraine group included participants treated for migraine (ICD-10: G43) \geq 2
25 26 27	34	times. Hemorrhagic stroke (I60-I62) and ischemic stroke (I63) were determined based on the
28 29	35	admission histories. The crude and adjusted hazard ratios (HRs) were calculated using Cox
30 31	36	proportional hazard models, and the 95% confidence intervals (CIs) were determined.
32 33 34	37	Subgroup analyses stratified by age and sex were also performed.
35 36	38	Results: Higher rates of ischemic stroke were observed in the migraine group (2.3%
37 38	39	[964/41,585]) than in the control group (2.0% [3,294/166,340], P < 0.001). The adjusted HR
39 40 41	40	for ischemic stroke was 1.18 (95% CI = 1.10-1.26) in the migraine group ($P < 0.001$).
41 42 43	41	Compared with control subjects, participants who reported migraine with aura and migraine
44 45	42	without aura had increased adjusted HRs of 1.44 (95% CI = 1.09-1.89) and 1.15 (95% CI =
46 47	43	1.06-1.24), respectively, for ischemic stroke, but no increased risk of hemorrhagic stroke. In
48 49 50	44	our subgroup analysis, a strong association between migraine and ischemic stroke was
50 51 52	45	observed in young patients, specifically young women. The contribution of migraine to the
53 54 55 56	46	occurrence of ischemic stroke was also observed in middle-aged women and old women

2 3 4	47	(each $P < 0.05$). The risk of hemorrhagic stroke did not reach statistical significance in any
5 6 7	48	age group.
7 8 9	49	Conclusion: Migraine is associated with an increased risk of ischemic stroke, but not
10 11	50	hemorrhagic stroke.
12 13	51	Keywords: migraine, stroke, cohort study, Korea
14 15 16	52	
17 18	53	STRENGTHS AND LIMITATIONS OF THIS STUDY
19 20	54	1. The strengths of the present study particularly result from the large cohort based on a
21 22 23	55	complete, national patient sample and the long follow-up period.
23 24 25	56	2. We designed a cohort study to evaluate the risks of different types of stroke in migraineurs.
26 27	57	3. Migraine should be considered in assessments of the risk of ischemic stroke, particularly in
28 29	58	young women.
30 31 32	59	4. Confounders linking migraine to stroke, such as cigarette smoking, obesity, and
33 34	60	prescription information, were not available in the present cohort study based on claim data.
35 36	61	
37 38 39	62	Introduction
40 41	63	Migraine is a common neurovascular disorder characterized by recurrent disabling episodes
42 43	64	of headache, most often unilateral headache. The headache is often accompanied by visual or
44 45	65	sensory symptoms, namely, aura. ¹ The annual prevalence of migraine is approximately 8–
46 47 48	66	15% worldwide, ²³ and in Korea, the estimated incidence is 6.1%. ⁴ Migraine appears to
49 50	67	present at a relatively young age (< 45 years); it is more prevalent in women than men, with a
51 52	68	prevalence > 25% in the 35–39-year-old female population worldwide. ¹ The inclusion of
53 54 55	69	migraine as an independent risk factor for cardiovascular events has been debated for many
55 56 57	70	years, but it is an established risk factor for ischemic stroke. ⁵
58 59		3

Stroke is a cerebrovascular condition characterized by limited blood flow to the brain due to a blockage or rupture in the cerebrovascular system.⁶ Stroke is responsible for approximately 700,000 deaths annually in the Western world.⁷ In Korea, the estimated stroke incidence is approximately 795,000 in people aged \geq 30 years.⁸ More than 80% of stroke cases are ischemic stroke, and the remaining cases are hemorrhagic stroke; ischemic and hemorrhagic strokes differ with regard to risk factors, genetic predisposition, and mortality rates.^{9 10}

To date, several underlying physiological mechanisms have been suggested to explain the association between migraine and stroke. The risk factors for stroke in migraineurs have been widely evaluated, and common comorbidities, including hypertension, obesity, dyslipidemia, and smoking, were validated.¹¹ In addition, specific genetic etiologies associated with vasculopathy can manifest in both patients suffering from migraine and stroke.¹² A recent investigation employing a mutant mouse model of migraine also indicated that shared genetic risk factors rendered the brain more vulnerable to ischemic stroke.¹³

Moreover, migraine itself carries an increased risk of ischemic stroke. Migraine is associated with an increased risk of perioperative ischemic stroke in a large cohort of surgical patients, suggesting that migraine should be included in the perioperative risk assessment.¹⁴ Recently, a population-based case-control study in Taiwan reported an association between migraine and ischemic stroke (adjusted hazard ratio [HR]: 1.24, confidence interval [CI]: 1.12–1.38).³ Similarly, an increased risk of ischemic stroke has been consistently observed in migraineurs, especially in those diagnosed with migraine with aura.^{3 15-18} Furthermore, accumulating evidence has supported the association between migraine and hemorrhagic stroke,^{19 20} but the causative association currently remains unclear.

Page 5 of 38

BMJ Open

Given the differences in the natures of hemorrhagic stroke and ischemic stroke in patients. including risk factors and genetic predispositions,^{9 10} we hypothesized that the contributions of migraine to an increased risk of stroke differ according to the stroke type. Thus, stroke types should be analyzed separately. Additionally, stroke is a leading cause of mortality; therefore, validation of the association between migraine and stroke may facilitate treatment and prognosis in these cases. Here, using a national Korean population-based sample cohort, we examined the associations between migraine and different types of stroke. **Materials and Methods Study population and data collection** The ethics committee of Hallym University (2014-I148) approved the use of these data. The Institutional Review Board exempted the requirement for written informed consent. This national cohort study used data from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC). The Korean NHIS selects samples directly from the entire population database to prevent nonsampling errors. Approximately 2% of the samples (one million) were selected from the entire Korean population (50 million). The selected data were classified into 1,476 levels (age [18 categories], sex [2 categories], and income level [41 categories]) using randomized, stratified, systematic sampling methods via proportional allocation to represent the entire population. A previous study verified the appropriateness of the sample after data selection.²¹ The National Health Insurance Sharing Service provides a detailed description of the methods used to perform these procedures.²²

115 This cohort database included (i) personal information, (ii) health insurance claim codes

116 (procedures and prescriptions), (iii) diagnostic codes based on the International Classification

117 of Disease-10 (ICD-10), (iv) death records from the Korean National Statistical Office (using

1 2		
3 4	118	the Korean Standard Classification of disease), (v) socioeconomic data (residence and
5 6	119	income), and (vi) medical examination data for each participant from 2002 to 2013.
7 8 9	120	All Korean citizens are recognized by a 13-digit resident registration number from birth
9 10 11	121	to death. Therefore, exact population statistics have been determined using this database. All
12 13	122	Koreans are required to enroll in the NHIS. All Korean hospitals and clinics use the 13-digit
14 15	123	resident registration number to register individual patients in the medical insurance system.
16 17 18	124	Therefore, the risk of overlapping medical records is minimal, even if a patient moves from
19 20	125	one place to another. All medical treatments in Korea are tracked without exception using the
21 22	126	Health Insurance Review & Assessment (HIRA) system. In Korea, the law states that a notice
23 24	127	of death must be provided to an administrative entity before a funeral can be held. Medical
25 26 27	128	doctors record the date and cause of death on a death certificate.
28 29	129	
30 31	130	Patients and public involvement
32 33 34	131	No patients or public were involved in the present study.
35 36	132	
37 38	133	Participant Selection
39 40	134	Of the 1,125,691 patients with 114,369,638 medical claim codes, participants diagnosed with
41 42 43	135	migraine (ICD-10: G43) were included. Among these participants, those who were treated \geq
44 45	136	2 times (n = 45,587) were selected. The participants were followed for 12 years.
46 47	137	The history of admission for hemorrhagic stroke (I60: Subarachnoid hemorrhage, I61:
48 49 50	138	Intracerebral hemorrhage, and I62: Other nontraumatic intracranial hemorrhage) and
50 51 52	139	ischemic stroke (I63: Cerebral infarction) was identified using ICD-10 codes. We selected the
53 54	140	participants who were treated ≥ 1 time. These methods were used in other studies evaluating
55 56 57	141	the incidence of stoke in Korea. ^{8 23}
58 59		6
60		

Page 7 of 38

BMJ Open

The participants with migraine were matched 1:4 with participants (control group) who had never been diagnosed with a migraine from 2002 through 2013 in this cohort. The control group was selected from the total population (n = 1,080,104). The matches were processed for age, group, sex, income group, region of residence, and past medical histories (age, sex, income, region of residence, hypertension, diabetes, and dyslipidemia histories). We sorted the participants in the control group using a random number order and then selected them from top to bottom to prevent selection bias when selecting the matched control participants. We assumed that the matched control participants were enrolled at the same time as each matched participant with migraine (index date). Therefore, control group members who died before the index date were excluded. In both the migraine and control groups, participants with histories of hemorrhagic or ischemic stroke before the index date were excluded. In the migraine group, 438 participants were excluded. The participants with migraine for whom we were unable to identify sufficient numbers of matching participants were excluded (n = 185). We excluded participants aged less than 20 years (n = 3,379). Finally, 1:4 matching resulted in the inclusion of 41,585 participants with migraine (migraine with aura = 3,458, migraine without aura = 38,127) and 166,340 control participants (Fig. 1).

159 Variables

The age groups were classified using 5-year intervals: 20-24, 25-29, 30-34..., and 85+ years old. Fourteen age groups were designated. The income groups were initially divided into 41 classes (one health aid class, 20 self-employment health insurance classes, and 20 employment health insurance classes). These groups were recategorized into 11 classes (class 164 1 [lowest income]–class 11 [highest income]). The region of residence was divided into 16 areas according to administrative district. These regions were regrouped into urban (Seoul,

Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan) and rural (Gyeonggi, Gangwon, Chungcheongbuk, Chungcheongnam, Jeollabuk, Jeollanam, Gyeongsangbuk, Gyeongsangnam, and Jeju) areas. The past medical histories of the participants were evaluated using ICD-10 codes. For an accurate diagnosis, hypertension (I10 and I15), diabetes (E10-E14), and dyslipidemia (E78) were recorded if the participants were treated ≥ 2 times. Using the Charlson Comorbidity Index, we selected some of confounders that might affect the association between migraine and stroke as confounders based on literature review. We performed the analysis with added variables, including congestive heart failure,²⁴ myocardial infarction,²⁵ peripheral vascular disease,²⁶ pulmonary disease,²⁷ liver disease,²⁸ and depression histories.^{29 30} Thus, the new model was adjusted for age, sex, income, region of residence, hypertension, diabetes, dyslipidemia, congestive heart failure, myocardial infarction, peripheral vascular disease, pulmonary disease, liver disease, and depression C.C. histories.

Statistical Analyses

Chi-square tests were used to compare the general characteristics between the migraine and control groups. For the analysis of the HRs of migraine for hemorrhagic stroke and ischemic stroke, Cox proportional hazard models were used, and 95% CIs were calculated. In these analyses, crude (simple) and adjusted (age, sex, income, region of residence, hypertension, diabetes, dyslipidemia, congestive heart failure, myocardial infarction, peripheral vascular disease, pulmonary disease, liver disease, and depression histories) models were used. For the subgroup analysis, we stratified the participants by age and sex (20–39 years old, 40–59 years old, 60+ years old; men and women). Two-tailed analyses were conducted, and P values less

9	than 0.05 were considered	significant. The results were s	tatistically analyzed u	sing SPSS v.
0	21.0 software (IBM, Armo	onk, NY, USA).		
1				
2	Results			
3	The mean follow-up period	d was 80.9 (standard deviation	[SD] = 41.6) months	for patients
4	with migraine and 80.9 (SI	D = 41.6) months for controls.	The rates of hemorrh	agic stroke
5	were similar in the migrair	ne group (0.7% [295/41,585]) a	and the control group	(0.7%
6	[1,113/166,340], P = 0.370), Table 1). Higher rates of isch	nemic stroke were obs	erved in the
7	migraine group (2.3% [964	4/41,585]) than in the control g	group (2.0% [3,294/16	6,340], P <
8	0.001). The general charac	eteristics (age, sex, income, reg	ion of residence, hype	ertension,
9	diabetes, and dyslipidemia	histories) of participants were	the same due to the r	natching
0	protocol (P = 1.000).			
1				
2	Table 1 General character	istics of the participants		
	Characteristics		otal participants	
		Migraine (n, %)	Control (n, %)	P-value
	Age (years)		0	1.000
	20-24	1,994 (4.8)	7,976 (4.8)	
	25-29	2,649 (6.4)	10,596 (6.4)	
	30-34	3,640 (8.8)	14,560 (8.8)	
	35-39	4,309 (10.4)	17,236 (10.4)	
	40-44	4,859 (11.7)	19,436 (11.7)	
	45-49	5,187 (12.5)	20,748 (12.5)	
	50-54	4,512 (10.9)	18,048 (10.9)	
		9		

Page	10	of	20
raye	10	υı	20

55-59	3,508 (8.4)	14,032 (8.4)	
60-64	3,209 (7.7)	12,836 (7.7)	
65-69	3,049 (7.3)	12,196 (7.3)	
70-74	2,328 (5.6)	9,312 (5.6)	
75-79	1,423 (3.4)	5,692 (3.4)	
80-84	651 (1.6)	2,604 (1.6)	
85+	267 (0.6)	1,068 (0.6)	
Sex			1.00
Male	10,476 (25.2)	41,904 (25.2)	
Female	31,109 (74.8)	124,436 (74.8)	
Income			1.00
1 (lowest)	837 (2.0)	3,348 (2.0)	
2	3,170 (7.6)	12,680 (7.6)	
3	3,004 (7.2)	12,016 (7.2)	
4	3,131 (7.5)	12,524 (7.5)	
5	3,345 (8.0)	13,380 (8.0)	
6	3,615 (8.7)	14,460 (8.7)	
7	3,908 (9.4)	15,632 (9.4)	
8	4,411 (10.6)	17,644 (10.6)	
9	4,908 (11.8)	19,632 (11.8)	
10	5,456 (13.1)	21,824 (13.1)	
11 (highest)	5,800 (13.9)	23,200 (13.9)	
Region of residence			1.00
Urban	17,959 (43.2)	71,836 (43.2)	
	10		

	Rural	23,626 (56.8)	94,504 (56.8)	
	Hypertension	16,209 (39.0)	64,836 (39.0)	1.000
	Diabetes	7,261 (17.5)	29,044 (17.5)	1.000
	Dyslipidemia	12,837 (30.9)	51,348 (30.9)	1.000
	Congestive heart failure	2,030 (4.9)	6,761 (4.1)	< 0.001*
	Myocardial infarction	913 (2.2)	3,330 (2.0)	0.013*
	Peripheral vascular disease	7,942 (19.1)	20,217 (12.2)	< 0.001*
	Pulmonary disease	29,540 (71.0)	94,811 (57.0)	< 0.001*
	Liver disease	5,087 (12.2)	15,317 (9.2)	< 0.001*
	Depression	7,808 (18.8)	15,269 (9.2)	< 0.001*
	Hemorrhagic stroke	295 (0.7)	1,113 (0.7)	0.370
	Ischemic stroke	964 (2.3)	3,294 (2.0)	< 0.001*
203		R.		
204	*Chi-square test. Differences wer	e considered significan	t at P < 0.05.	
205				
206	The crude and adjusted HRs f	or hemorrhagic stroke	were 1.06 (95% CI =	0.93–1.21, P
207	0.369) and 1.10 (95% CI = 0.96–1	1.25, P = 0.172), respect	ctively, in the migrain	e group (Tab
208	2). The crude and adjusted HRs for	or ischemic stroke were	e 1.17 (95% CI = 1.09	9–1.26) and 1.
209	(95% CI = 1.08–1.25), respective	ly, in the migraine grou	up (each $P < 0.001$).	
210				
211				
212				
		11		

Table 2 Crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic stroke

	Characteristics		Hemorrha	agic stroke			Ischemi	ic stroke	
		Crude	P-value	Adjusted	P-value	Crude	P-value	Adjusted [†]	P-value
	Migraine		0.369		0.172		< 0.001*		< 0.001*
	Yes	1.06 (0.93-1.21)		1.10 (0.96-1.25)		1.17 (1.09-1.26)		1.17 (1.08-1.25)	
	No	1.00		1.00		1.00		1.00	
214				00					
215	* Cox proportional	l hazard regression m	odel; differ	ences were conside	red signification	ant at $P < 0.05$.			
216	† Model adjusted f	for age, sex, income,	region of re	sidence, hypertensi	on, diabetes	, dyslipidemia, con	gestive hear	t failure, myocardia	al infarction
217	peripheral vascular	r disease, pulmonary	disease, live	er disease, and depr	ession histo	ries.			
	1 1	, I 5	,	, I					
					12				
					12				

Page 13 of 38

BMJ Open

In the subgroup analyses, none of the crude and adjusted HRs for hemorrhagic stroke reached statistical significance (Table 3). Among the patients with ischemic stroke, young women, middle-aged women, and old women showed statistically significant differences (each P < 0.05). The significant adjusted HRs were 2.31 (95% CI = 1.39–3.82) in young women (20-39 years old); 1.32 (95% CI = 1.08 - 1.61) in middle-aged women (40-59 years old); and 1.18 (95% CI = 1.06-1.30) in ≥ 60 -year-old women. Moreover, descriptive statistical analyses of the migraine prevalence and ischemic stroke occurrence within subgroups revealed statistically significant differences in young men, young women, middle-aged women, old men, and old women. On the other hand, the risk of hemorrhagic stroke in patients with migraine was not significantly different from the control group (Supplement table 1).

Table 3 Subgroup analysis of crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic

239 stroke

Characteristics		Hemorrhagic stroke				Ischemic stroke			
	Crude	P-value	Adjusted†	P-value	Crude	P-value	Adjusted†	P-valu	
Young men (20-3	39 years old, n = 15,	550)							
Migraine		0.158		0.330		0.017*		0.107	
Yes	1.56 (0.84-2.89)		1.37 (0.73-2.59)		2.15 (1.15-4.02)		1.72 (0.89-3.32)		
No	1.00		1.00		1.00		1.00		
Young women (2	20-39 years old, n = -	47,410)							
Migraine		0.726		0.879		< 0.001*		0.001*	
Yes	1.10 (0.64-1.92)		1.05 (0.59-1.84)		2.54 (1.55-4.15)		2.31 (1.39-3.82)		
No	1.00		1.00		1.00		1.00		
Middle-aged me	n (40-59 years old, n	n = 22,090)							
Migraine		0.721		0.668		0.565		0.418	
Yes	1.07 (0.73-1.56)		1.09 (0.74-1.61)		0.93 (0.71-1.21)		0.89 (0.68-1.17)		
				14					
				14					
		For peer revi	ew only - http://bmjope	en.bmj.com/	site/about/guidelines.x	html			

			0.006*
4-1.38) 1.12 (0 0	0.87-1.44) 1.35 (1.12-1.64) 1.32 (
0			(1.08-1.61)
	1.00		
- 14 740)		1.00	1.00
- 14,740)			
0.115	0.068	0.275	0.353
4-1.78) 1.36 (0.98-1.88) 1.09 (0.93-1.27) 1.08 ((0.92-1.26)
0	1.00	1.00	1.00
n = 39,895)			
0.462	0.757	0.002*	0.002*
5-1.14) 0.97 (0.78-1.20) 1.17 (1.06-1.29) 1.18 ((1.06-1.30)
0	1.00	1.00	1.00
	$\begin{array}{c} 4-1.78) & 1.36 (0) \\ 0 \\ \mathbf{n} = 39,895) \\ 0.462 \\ 5-1.14) & 0.97 (0) \\ \end{array}$	4-1.78) $1.36 (0.98-1.88)$ $1.09 (0.98-1.88)$ 0 1.00 $n = 39,895$) 0.462 0.757 $5-1.14$) $0.97 (0.78-1.20)$ $1.17 (0.00)$	4-1.78) $1.36 (0.98-1.88)$ $1.09 (0.93-1.27)$ $1.08 (0.93-1.27)$ 0 1.00 1.00 1.00 $n = 39,895$) 0.462 0.757 $0.002*$ $5-1.14$) $0.97 (0.78-1.20)$ $1.17 (1.06-1.29)$ $1.18 (0.00)$ 0 1.00 1.00 1.00

²⁴² † Model adjusted for age, sex, income, region of residence, hypertension, diabetes, dyslipidemia, congestive heart failure, myocardial infarction,

For beer review only

243 peripheral vascular disease, pulmonary disease, liver disease, and depression histories.

Page 17 of 38

1 2		
3 4	244	Compared with the control group, participants who reported migraine with aura and
5 6	245	migraine without aura had increased adjusted HRs of $1.44 (95\% \text{ CI} = 1.09-1.89)$ and 1.15
7 8 9	246	(95% CI = 1.06-1.24) for ischemic stroke, respectively, but no increased risk of hemorrhagic
) 10 11	247	stroke (Table 4).
12 13	248	
14 15 16	249	
16 17 18	250	
19 20	251	
21 22 22	252	
23 24 25	253	
26 27	254	
28 29	255	
30 31 32	256	
33 34	257	
35 36	258	
37 38 39	259	
40 41	260	
42 43	261	
44 45 46	262	
40 47 48	263	
49 50	264	
51 52	265	
53 54 55	266	
56 57	267	
58 59		17
60		

Table 4 Subgroup analysis of crude and adjusted hazard ratios (95% confidence interval) of migraine for hemorrhagic stroke and ischemic 268 269 stroke Characteristics Hemorrhagic stroke Ischemic stroke Crude P-value Adjusted[†] P-value Crude P-value Adjusted[†] P-value Migraine with Aura (n = 17,290)0.531 0.006* Migraine 0.506 0.009* Yes 1.17 (0.72-1.90) 1.19 (0.72-1.96) 1.45 (1.11-1.88) 1.44 (1.09-1.89)

No 1.00 1.00 1.00 1.00 Migraine without Aura (n = 190,635) Migraine 0.213 < 0.001* < 0.001* 0.446 Yes 1.05 (0.92-1.20) 1.09 (0.95-1.25) 1.16 (1.07-1.24) 1.15 (1.06-1.24) No 1.00 1.00 1.00 1.00 270

271 * Cox proportional hazard regression model; differences were considered significant at P < 0.05.

²⁷² † Model adjusted for age, sex, income, region of residence, hypertension, diabetes, dyslipidemia, congestive heart failure, myocardial infarction,

273 peripheral vascular disease, pulmonary disease, liver disease, and depression histories.

18

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	274	Discussion
5 5 7	275	Migraine appeared to increase the risk of ischemic stroke, but not hemorrhagic stroke. The
3	276	risk of ischemic stroke was 1.18-fold greater in the patients with migraine than in the
10 11	277	matched control subjects, even after adjustment for confounding factors. In the subgroup
12 13 14	278	analyses stratified by age and sex, significant correlations with ischemic stroke were
15 16	279	primarily observed in young women, middle-aged women, and old women. In contrast, the
17 18	280	risk of hemorrhagic stroke was similar in patients with migraine and the matched control
19 20 21	281	patients.
22 23	282	Migraine, particularly migraine with aura, is an established risk factor for ischemic
24 25	283	stroke. In this study, compared with the control group, participants who reported migraine
26 27 28	284	with aura had an increased adjusted HR of $1.44 (95\% \text{ CI} = 1.09-1.89)$ for ischemic stroke.
29 30	285	Migraine with aura particularly increases the risk of ischemic stroke, based on the results of
31 32	286	large population-based cohort studies and meta-analyses. ^{3 15-18} Cortical spreading depression
33 34 35	287	(CSD) is a self-propagating wave of depolarization across the cerebral cortex at a slow
36 37	288	velocity of 3 to 5 mm/min. ³¹ CSD has been implicated in migraine with aura, which plays a
38 39	289	critical role in the pathophysiology of ischemic stroke. In an experimental study, CSD altered
40 41 12	290	the tone of resistance vessels, causing hypoperfusion in tissues at risk for progressive
42 43 44	291	damage, namely, cortical spreading ischemia. ³² In addition, the inflammatory cascade of the
45 46	292	neurovascular system, which is characterized by endothelial dysfunction and coagulation
47 48	293	abnormalities, may contribute to the development of ischemic stroke. In the aura phase, the
49 50 51	294	endothelium activates coagulation and thrombosis, which are mediated by inflammatory
52	295	cytokines and endothelial biomarkers. ^{33 34} Moreover, specific genetic etiologies, such as
53 54 55 56 57	296	Factor V Leiden G 619 1A, prothrombin G20210A, and familial hemiplegic migraine type 1,
56 57 58	297	have been reported in patients diagnosed with migraine with aura. These shared genetic
58 59		19

factors may precipitate the susceptibility to CSD, which may explain the association between
 migraine and stroke.³⁵

A growing body of evidence regarding the increased risk of ischemic stroke in patients with migraine without aura. Consistent with the findings from patients reporting migraine with aura, participants who reported migraine without aura had an increased adjusted HR of 1.15 (95% CI = 1.06-1.24) for ischemic stroke compared with the control group. Notably, a significant association was observed in cases of ischemic stroke resulting from cervical artery dissection.³⁶ In addition, genetic overlaps among subjects with migraine without aura, large artery stroke, and cardio-embolic stroke have been identified.³⁷ However, strong evidence has been not reported. A recent large population-based study reported an statistically insignificant risk of ischemic stroke in patients with migraine without aura but an increased risk in patients with migraine with aura.³ The study suggested that the difference may be due to changes in the lipid profile, the susceptibility to thrombosis, and genetic predisposition.³ A meta-analysis did not identify a significant association between migraine without aura and ischemic stroke.¹⁸ In the present study, we did not differentiate between migraine subtypes, such as migraine with and without aura, when analyzing the risk of stroke. Therefore, the risk of ischemic stroke in participants with migraine was relatively low but statistically significant compared to other studies investigating specific conditions.

Notably, in the present study, migraine was not associated with an increased risk of hemorrhagic stroke. In contrast to the findings from the present study, a recent meta-analysis based on 4 case-control and 4 cohort studies concluded that migraine may increase the risk of hemorrhagic stroke.²⁰ However, a recent large population-based case-control study did not show an association with different types of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage. ³⁸ Migraine was an independent risk factor for

Page 21 of 38

BMJ Open

322	aneurismal rupture (odds ratio $[OR] = 2.4$; 95% CI 1.1–5.1) in a case-control study, ³⁹ and
323	even if headache is a premonitory symptom of aneurismal rupture, recall biases might have
324	affected the results of the study. Overall, the relatively small number of hemorrhagic stroke
325	cases might have resulted in decreased statistical power.
326	In our subgroup analysis, a strong correlation between migraine and ischemic stroke was
327	observed in young patients, specifically young women (20-39 years old). Based on a
328	consensus statement from the European Headache Federation (EHF), ⁴⁰ the use of a combined
329	hormonal contraceptive may further increase the risk of ischemic stroke in patients with
330	migraine, specifically migraine with aura, supporting our results. Because the predisposing
331	factors for stroke increase the incidence of ischemic stroke with age, ⁴¹ migraine itself rather
332	than other risk factors might be implicated in the increased risk of ischemic stroke. In
333	contrast, a recent large, population-based cohort study in Taiwan with a relatively short
334	follow-up duration of 3.6 years did not show a significant association in the subgroups of
335	women and patients aged < 45 years. ³ This discrepancy might be due to differences in the
336	study design, follow-up duration, and ethnic composition of the study population. Recently, a
337	similar trend for this association was also reported, ³ but it requires further confirmation due
338	to the lack of evidence at present.
339	The present study has several strengths. The results of this study are consistent with the
340	findings of our previous studies utilizing the HIRA-NSC. ⁴²⁻⁴⁴ We examined a very large,
341	representative, and nationwide population. Because the NHIS data cover all citizens of Korea
342	without exception, no participants were lost during follow-up. The control group was
343	randomly selected and matched based on age, sex, income, region of residence, and medical
344	history to decrease any confounding effects. An adjusted hazard model was used to further
	 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

345 minimize the impacts of confounders. Because migraine attacks might be frequently repeated,

we opted to include patients with migraine who underwent treatment at least twice based on the ICD-10 code to increase the validity of the study [G43]. In a previous study, the prevalence of migraine in Korea was reported to be approximately 6.1%.⁴ This value appeared to be slightly higher than the value reported in the present study, which was 3.7% (41,585/1,125,691), based on strict inclusion criteria for migraine. In addition, the patients with migraine were followed for 12 years in the present study. Long study periods enable the recruitment of a large study population and allow researchers to observe and analyze the delayed effects of migraine on stroke.

However, the present study has certain limitations that should be addressed in future studies. First, we were unable to extract information on stroke subtypes and location from the data used in the present study. The impact of migraine on each type of pathophysiology might vary when considering different functional outcomes, survival, and recurrence according to stroke subtype.^{38 45} However, in the present study, the distribution of stroke subtypes was not available. The classification of stroke type can lead to a significantly decreased incidence of each disease. As an insufficient number of cases cause inappropriate comparisons due to lower statistical power, the inclusion of the distribution of stroke subtypes would hamper our ability to draw a clear conclusion from the available data. In particular, the absolute incidence of hemorrhagic stroke is very low in general practice; therefore, most of studies did not provide information about subtypes, such as the presence of an aneurysm, although the association is positive in public health studies.³⁸ Second, a firm correlation between the frequency of migraine attacks and the risk of stroke has been reported,⁴⁶ but we were unable to confirm this correlation using the claim data analyzed in the present study. Similarly, the duration and severity of migraine were inconsistent among the study population. Patients with migraine who had mild complaints may not have received a consultation at the clinic;

Page 23 of 38

BMJ Open

therefore, the impact of migraine on stroke may be underestimated in this study. Third, although this study attempted to include a large, representative patient population and subsequently matched and adjusted for possible confounders, the risk factors for stroke in patients with migraine, such as cigarette smoking, obesity, and migraine-specific drugs, were not available in the insurance database.^{11 46} Finally, in the present study, the incidence of migraine was 3.7% (41,585 of 1,125,691 participants) after employing a strict matching protocol. Before matching, the incidence of migraine in Korea was 4.1% (45,587 of 1,125,691 participants). This value is consistent with previous cohort study in Korea, indicating that the overall prevalence rate of migraine was 6.1%,⁴ despite the use of different study designs. Given the global prevalence of migraine of approximately 8–15%,²³ the incidence of migraine in Korea is relatively low because of limited claim data. Only patients with migraine who visited the hospital are recorded. In other words, data are not available for patients with weak migraine symptoms or patients who do not visit a hospital, leading to a lower incidence. Based on a population-based epidemiological study of migraine in Korea, only 24.4% of patients ever consulted a doctor for headache and only 3.3% of patients were prescribed a drug by a doctor.⁴⁷

io 386

387 Conclusions

Based on a large population-based cohort study in Korea, migraine increased the risk of
ischemic stroke, but not hemorrhagic stroke. The subgroup of patients at the highest risk of
developing ischemic stroke was young women.

392 ACKNOWLEDGMENTS

3 4	393	We thank the participants and examiners of Korean Health Insurance Review and Assessment
5 6	394	for participating in this cohort study and providing the data, respectively.
7 8 9	395	
10 11	396	DATA SHARING STATEMENT
12 13	397	No additional data are available.
14 15 16	398	
17 18	399	FUNDING STATEMENT
19 20	400	This work was supported by the Hallym University Research Fund and in part by a research
21 22 23	401	grant (NRF-2015-R1D1A1A01060860) from the National Research Foundation (NRF) of
24 25	402	Korea.
26 27 28	403	
28 29 30	404	COMPETING INTERESTS STATEMENT
31 32	405	None of the authors have competing interests to declare.
33 34 25	406	
35 36 37	407	AUTHORS' CONTRIBUTIONS
38 39	408	As the first author, SYL wrote the manuscript. DJO and JSL analyzed and interpreted the
40 41	409	data. IGK processed the data. HGC conceptualized, wrote, and reviewed the manuscript.
42 43 44	410	
45 46	411	References
47 48	412	1. Charles A. Migraine. N Engl J Med 2017;377(6):553-61. doi: 10.1056/NEJMcp1605502
49 50 51	413	2. Lipton RB, Scher AI, Kolodner K, et al. Migraine in the United States: epidemiology and
52 53 54 55 56 57	414	patterns of health care use. <i>Neurology</i> 2002;58(6):885-94.
58 59 60		24

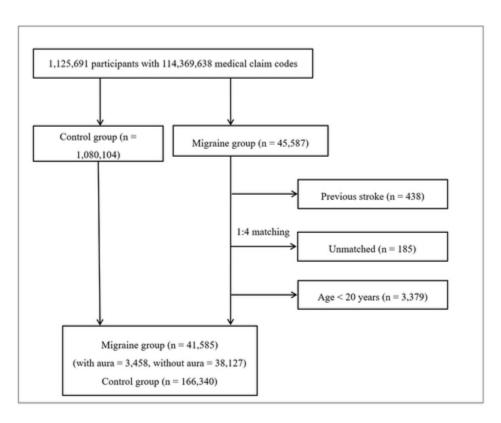
1 2		
3 4	415	3. Peng KP, Chen YT, Fuh JL, et al. Migraine and incidence of ischemic stroke: A
5 6	416	nationwide population-based study. Cephalalgia 2017;37(4):327-35. doi:
7 8 9	417	10.1177/0333102416642602
9 10 11	418	4. Kim BK, Chu MK, Lee TG, et al. Prevalence and impact of migraine and tension-type
12 13	419	headache in Korea. J Clin Neurol 2012;8(3):204-11. doi: 10.3988/jcn.2012.8.3.204
14 15	420	5. Wood H. Migraine: Migraine - a risk factor for cardiovascular disease? Nat Rev Neurol
16 17	421	2018;14(4):194-95. doi: 10.1038/nrneurol.2018.18
18 19 20	422	6. Feigin VL, Lawes CM, Bennett DA, et al. Worldwide stroke incidence and early case
21 22	423	fatality reported in 56 population-based studies: a systematic review. The Lancet
23 24	424	Neurology 2009;8(4):355-69.
25 26 27	425	7. Ojaghihaghighi S, Vahdati SS, Mikaeilpour A, et al. Comparison of neurological clinical
28 29	426	manifestation in patients with hemorrhagic and ischemic stroke. World journal of
30 31	427	emergency medicine 2017;8(1):34.
32 33 34	428	8. Hong KS, Bang OY, Kang DW, et al. Stroke statistics in Korea: part I. Epidemiology and
35 36	429	risk factors: a report from the korean stroke society and clinical research center for
37 38	430	stroke. J Stroke 2013;15(1):2-20. doi: 10.5853/jos.2013.15.1.2
39 40 41	431	9. Andersen KK, Olsen TS, Dehlendorff C, et al. Hemorrhagic and ischemic strokes
41 42 43	432	compared: stroke severity, mortality, and risk factors. <i>Stroke</i> 2009;40(6):2068-72. doi:
44 45	433	10.1161/STROKEAHA.108.540112
46 47	434	10. Das S, Roy S, Kaul S, et al. E-selectin gene (S128R) polymorphism in hemorrhagic
48 49 50	435	stroke: comparison with ischemic stroke. Neurosci Lett 2014;581:125-8. doi:
51 52	436	10.1016/j.neulet.2014.08.032
53 54	437	11. Gryglas A, Smigiel R. Migraine and Stroke: What's the Link? What to Do? Curr Neurol
55 56 57	438	Neurosci Rep 2017;17(3):22. doi: 10.1007/s11910-017-0729-y
57 58 59 60		25

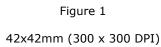
2 3 4	439	12. Lee MJ, Lee C, Chung CS. The Migraine-Stroke Connection. J Stroke 2016;18(2):146-
5 6	440	56. doi: 10.5853/jos.2015.01683
7 8	441	13. Eikermann-Haerter K, Lee JH, Yuzawa I, et al. Migraine mutations increase stroke
9 10 11	442	vulnerability by facilitating ischemic depolarizations. Circulation 2012;125(2):335-
12 13	443	45. doi: 10.1161/CIRCULATIONAHA.111.045096
14 15	444	14. Timm FP, Houle TT, Grabitz SD, et al. Migraine and risk of perioperative ischemic
16 17 18	445	stroke and hospital readmission: hospital based registry study. BMJ 2017;356:i6635.
19 20	446	doi: 10.1136/bmj.i6635
21 22	447	15. Kurth T, Schurks M, Logroscino G, et al. Migraine, vascular risk, and cardiovascular
23 24 25	448	events in women: prospective cohort study. BMJ 2008;337:a636. doi:
26 27	449	10.1136/bmj.a636
28 29	450	16. Kurth T, Gaziano JM, Cook NR, et al. Migraine and risk of cardiovascular disease in
30 31 32	451	women. JAMA 2006;296(3):283-91. doi: 10.1001/jama.296.3.283
33 34	452	17. Monteith TS, Gardener H, Rundek T, et al. Migraine and risk of stroke in older adults:
35 36	453	Northern Manhattan Study. Neurology 2015;85(8):715-21. doi:
37 38 39	454	10.1212/WNL.00000000001854
40 41	455	18. Spector JT, Kahn SR, Jones MR, et al. Migraine headache and ischemic stroke risk: an
42 43	456	updated meta-analysis. Am J Med 2010;123(7):612-24. doi:
44 45 46	457	10.1016/j.amjmed.2009.12.021
40 47 48	458	19. Kuo CY, Yen MF, Chen LS, et al. Increased risk of hemorrhagic stroke in patients with
49 50	459	migraine: a population-based cohort study. PLoS One 2013;8(1):e55253. doi:
51 52 53	460	10.1371/journal.pone.0055253
55 55	461	20. Sacco S, Ornello R, Ripa P, et al. Migraine and hemorrhagic stroke: a meta-analysis.
56 57	462	Stroke 2013;44(11):3032-8. doi: 10.1161/STROKEAHA.113.002465
58 59 60		26

Page 27 of 38

1

2 3	463	21. Lee J, Lee JS, Park SH, et al. Cohort Profile: The National Health Insurance Service-
4 5 6	464	National Sample Cohort (NHIS-NSC), South Korea. International journal of
6 7 8	465	epidemiology 2016 doi: 10.1093/ije/dyv319
9 10	466	22. <u>http://nhiss.nhis.or.kr/</u> .
11 12 13 14 15	467	23. Kim RB, Kim BG, Kim YM, et al. Trends in the incidence of hospitalized acute
	468	myocardial infarction and stroke in Korea, 2006-2010. J Korean Med Sci
15 16 17	469	2013;28(1):16-24. doi: 10.3346/jkms.2013.28.1.16
18 19		
20 21	470	24. Adelborg K, Szepligeti SK, Holland-Bill L, et al. Migraine and risk of cardiovascular
22 23	471	diseases: Danish population based matched cohort study. <i>BMJ</i> 2018;360:k96. doi:
24 25	472	10.1136/bmj.k96
26 27	473	25. Mahmoud AN, Mentias A, Elgendy AY, et al. Migraine and the risk of cardiovascular
28 29	474	and cerebrovascular events: a meta-analysis of 16 cohort studies including 1 152 407
30 31	475	subjects. BMJ Open 2018;8(3):e020498. doi: 10.1136/bmjopen-2017-020498
32 33 34 35 36	476	26. Tietjen G. Migraine as a systemic vasculopathy. Cephalalgia 2009;29(9):987-96.
	477	27. Graif Y, Shohat T, Machluf Y, et al. Association between asthma and migraine: A
37 38	478	cross-sectional study of over 110 000 adolescents. The clinical respiratory journal
39 40 41	479	2018;12(10):2491-96.
42 43	480	28. Papagianni M, Tziomalos K. Non-alcoholic fatty liver disease: an emerging predictor of
44 45	481	stroke risk, severity and outcome. Eur J Neurol 2018;25(4):610-11. doi:
46 47 48	482	10.1111/ene.13584
49 50	483	29. Zhang Y, Parikh A, Qian S. Migraine and stroke. <i>Stroke Vasc Neurol</i> 2017;2(3):160-67.
51 52	484	doi: 10.1136/svn-2017-000077
53 54 55	485	30. Vuralli D, Ayata C, Bolay H. Cognitive dysfunction and migraine. J Headache Pain
56 57	486	2018;19(1):109. doi: 10.1186/s10194-018-0933-4
58 59		27
60		


Page 28 of 38


BMJ Open

3 4	487	31. Tietjen EG. Migraine and ischaemic heart disease and stroke: potential mechanisms and
5 6	488	treatment implications. Cephalalgia 2007;27(8):981-7. doi: 10.1111/j.1468-
7 8 9	489	2982.2007.01407.x
9 10 11	490	32. Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process
12 13	491	involved in ischaemic damage in patients with aneurysmal subarachnoid
14 15	492	haemorrhage. Brain 2009;132(Pt 7):1866-81. doi: 10.1093/brain/awp102
16 17 18	493	33. Liman TG, Bachelier-Walenta K, Neeb L, et al. Circulating endothelial microparticles in
19 20	494	female migraineurs with aura. Cephalalgia 2015;35(2):88-94.
21 22	495	34. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human
23 24 25	496	diseases. International journal of biological sciences 2013;9(10):1057.
26 27	497	35. Pezzini A, Grassi M, Lodigiani C, et al. Predictors of migraine subtypes in young adults
28 29	498	with ischemic stroke: the italian project on stroke in young adults. Stroke
30 31 32	499	2011;42(1):17-21. doi: 10.1161/STROKEAHA.110.592246
32 33 34	500	36. De Giuli V, Grassi M, Lodigiani C, et al. Association between migraine and cervical
35 36	501	artery dissection: the Italian project on stroke in young adults. JAMA neurology
37 38	502	2017;74(5):512-18.
39 40 41	503	37. Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and ischemic
42 43	504	stroke: A genome-wide analysis of common variants. Neurology 2015;84(21):2132-
44 45	505	45. doi: 10.1212/WNL.000000000001606
46 47 48	506	38. Gaist D, Gonzalez-Perez A, Ashina M, et al. Migraine and risk of hemorrhagic stroke: a
49 50	507	study based on data from general practice. J Headache Pain 2014;15:74. doi:
51 52 53 54	508	10.1186/1129-2377-15-74
55 56		
57 58		
59 60		28

2 3 4	509	39. Vlak MH, Rinkel GJ, Greebe P, et al. Risk of rupture of an intracranial aneurysm based
4 5 6	510	on patient characteristics: a case-control study. Stroke 2013;44(5):1256-9. doi:
7 8	511	10.1161/STROKEAHA.111.000679
9 10	512	40. Sacco S, Merki-Feld GS, KL AE, et al. Hormonal contraceptives and risk of ischemic
11 12 13	513	stroke in women with migraine: a consensus statement from the European Headache
14 15	514	Federation (EHF) and the European Society of Contraception and Reproductive
16 17	515	Health (ESC). J Headache Pain 2017;18(1):108. doi: 10.1186/s10194-017-0815-1
18 19 20	516	41. Tsai CF, Anderson N, Thomas B, et al. Comparing Risk Factor Profiles between
21 22	517	Intracerebral Hemorrhage and Ischemic Stroke in Chinese and White Populations:
23 24	518	Systematic Review and Meta-Analysis. PLoS One 2016;11(3):e0151743. doi:
25 26 27	519	10.1371/journal.pone.0151743
28 29	520	42. Choi HG, Park B, Sim S, et al. Tonsillectomy Does Not Reduce Upper Respiratory
30 31	521	Infections: A National Cohort Study. PLoS One 2016;11(12):e0169264. doi:
32 33 34	522	10.1371/journal.pone.0169264
34 35 36	523	43. Kim SY, Kim HJ, Park EK, et al. Severe hearing impairment and risk of depression: A
37 38	524	national cohort study. PLoS One 2017;12(6):e0179973. doi:
39 40 41	525	10.1371/journal.pone.0179973
42 43	526	44. Kim MS, Kim SY, Kim JH, et al. Depression in breast cancer patients who have
44 45	527	undergone mastectomy: A national cohort study. PLoS One 2017;12(4):e0175395.
46 47 48	528	doi: 10.1371/journal.pone.0175395
49 50	529	45. Petty GW, Brown RD, Jr., Whisnant JP, et al. Ischemic stroke subtypes : a population-
51 52	530	based study of functional outcome, survival, and recurrence. Stroke 2000;31(5):1062-
53 54 55	531	8.
55 56 57		
58 59		29
60		

2 3 4	532	46. Bousser M-G, Welch KMA. Relation between migraine and stroke. The Lancet
5 6	533	Neurology 2005;4(9):533-42.
7 8	534	47. Roh J, Kim J, Ahn Y. Epidemiological and clinical characteristics of migraine in Korea.
9 10 11	535	Journal of the Korean Neurological Association 1997;15(1):1-18.
12 13	536	
14 15	537	Figure Legend
16 17 18	538	Fig. 1 A schematic illustrating the participant selection process used in the present study. Of
19 20	539	a total of 1,125,691 participants, 41,585 participants with migraine were matched with
21 22	540	166,340 control participants for age, group, sex, income level, region of residence, and past
23 24 25	541	medical histories.
26 27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
44 45		
46		
47		
48 49		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		30
60		

Characteristics	Young men	(20-39 years old, n =)	15,550)	Young wo	men (20-39 years old,	n = 47,410)	
	Migraine	Non-Migraine	D 1	Migraine	Non-Migraine	D 1	
	(n = 3,110, %)	(n = 12,440)	P-value	(n = 9,482)	(n = 37,928)	P-value	
Ischemic stroke		0,	0.015*			< 0.001*	
Yes	15 (0.48)	28 (0.22)		26 (0.27)	41 (0.11)		
No	3,095 (99.52)	12,412 (99.78)		9,456 (99.73)	37,887 (99.89)		
Hemorrhagic stroke			0.157			0.727	
Yes	14 (0.45)	36 (0.28)		16 (0.17)	58 (0.15)		
No	3,096 (99.55)	12,404 (99.72)		9,466 (99.73)	37,870 (99.85)		
Characteristics	Middle-age	d men (40-59 years ol	d, n = 22,090)	Middle-aged	women (40-59 years o	old, $n = 68,240$	
	Migraine	Non-Migraine		Migraine	Non-Migraine		
	(n = 4,418)	(n = 17,672)	P-value	(n = 9,482)	(n = 37,928)	P-value	
Ischemic stroke			0.560			0.002*	
Yes	68 (1.54)	294 (1.66)		138 (1.46)	409 (1.08)		
No	4,350 (98.46)	17,378 (98.34)		13,648 (98.54)	54,952 (98.92)		

S1. Subgroup analysis of migraine prevalence and stroke occurrence

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Hemorrhagic stroke			0.157			0.727
Yes	34 (0.77)	127 (0.72)		78 (0.82)	291 (0.77)	
No	4,384 (99.23)	17,545 (99.28)		13,570 (99.18)	54,301 (99.23)	
Characteristics	Old men (≥	60 years old, n = 14,7	740)	Old wor	nen (≥ 60 years old, n	= 39,895)
	Migraine	Non-Migraine	D 1	Migraine	Non-Migraine	D 1
	(n = 2,948)	(n = 11,792)	P-value	(n = 7,979)	(n = 31,916)	P-value
Ischemic stroke		60	0.015*			0.002*
Yes	205 (7.0)	756 (6.4)		512 (6.4)	1,766 (5.5)	
No	2,743 (93.0)	11,036 (93.6)		7,467 (93.6)	30,150 (94.5)	
Hemorrhagic stroke			0.157			0.465
Yes	50 (1.7)	155 (1.3)		103 (1.3)	446 (1.4)	
No	2,898 (98.3)	11,637 (98.7)		7,876 (98.7)	31,470 (98.6)	

* Chi-square test; differences were considered significant at P < 0.05.

Page

Number

Reporting checklist for cohort study. Based on the STROBE cohort guidelines. Instructions to authors Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cohort reporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Reporting Item Title #1a Indicate the study's design with a commonly used term in the title or the abstract Abstract #1b Provide in the abstract an informative and balanced summary 2 of what was done and what was found For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4-5
3 4 5	rationale		investigation being reported	
6 7 8	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
8 9 10 11 12 13 14			hypotheses	
	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
15 16	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5-6
17 18			periods of recruitment, exposure, follow-up, and data	
19 20 21			collection	
22 23	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6-7
24 25 26			selection of participants. Describe methods of follow-up.	
27 28 29		<u>#6b</u>	For matched studies, give matching criteria and number of	6-7
30 31			exposed and unexposed	
32 33 34	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	7-8
35 36 37			confounders, and effect modifiers. Give diagnostic criteria, if	
37 38 39 40 41 42			applicable	
	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5-8
43 44	measurement		of methods of assessment (measurement). Describe	
45 46			comparability of assessment methods if there is more than	
47 48 49			one group. Give information separately for for exposed and	
50 51			unexposed groups if applicable.	
52 53 54 55	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5-8
56 57 58	Study size	<u>#10</u>	Explain how the study size was arrived at	7
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7
	variables		analyses. If applicable, describe which groupings were	
			chosen, and why	
	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	8
	methods		control for confounding	
		<u>#12b</u>	Describe any methods used to examine subgroups and	8
			interactions	
		<u>#12c</u>	Explain how missing data were addressed	NA
		<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	NA
25 26 27		<u>#12e</u>	Describe any sensitivity analyses	NA
28 29 30	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	NA
31 32			numbers potentially eligible, examined for eligibility,	
33 34			confirmed eligible, included in the study, completing follow-	
35 36 27			up, and analysed. Give information separately for exposed	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55			and unexposed groups if applicable.	
		<u>#13b</u>	Give reasons for non-participation at each stage	NA
		<u>#13c</u>	Consider use of a flow diagram	7
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8-13
			clinical, social) and information on exposures and potential	
			confounders. Give information separately for exposed and	
			unexposed groups if applicable.	
56 57 58				
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		<u>#14b</u>	Indicate number of participants with missing data for each	8-13
			variable of interest	
		<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	8
	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	NA
			over time. Give information separately for exposed and	
			unexposed groups if applicable.	
	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	8-13
			adjusted estimates and their precision (eg, 95% confidence	
21 22 23			interval). Make clear which confounders were adjusted for	
24 25			and why they were included	
26 27		#16b	Report category boundaries when continuous variables were	NA
28 29		<u>#100</u>		INA.
30 31			categorized	
32 33 34		<u>#16c</u>	If relevant, consider translating estimates of relative risk into	NA
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49			absolute risk for a meaningful time period	
	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	13-14
			and interactions, and sensitivity analyses	
	Key results	<u>#18</u>	Summarise key results with reference to study objectives	16
	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	
			of potential bias or imprecision. Discuss both direction and	
50 51 52			magnitude of any potential bias.	
53 54				
55 56				
57 58				
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	19			
3 4			limitations, multiplicity of analyses, results from similar				
5 6 7			studies, and other relevant evidence.				
8 9 10	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	16-18			
11 12 13			results				
14 15	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	20			
16 17			present study and, if applicable, for the original study on				
18 19 20			which the present article is based				
21 22	The STROBE chec	cklist is o	distributed under the terms of the Creative Commons Attribution	License			
23 24 25	CC-BY. This checklist can be completed online using <u>https://www.goodreports.org/</u> , a tool made by						
26 27	collaboration with Penelope.ai						
28 29							
30 31							
32 33							
34 35							
36 37							
38 39							
40 41							
42							
43 44							
45 46							
47							
48 49							
50 51							
52							
53 54							
55							
56 57							
58							
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				